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Abstract

In this paper we prove some results related to a certain vector field
satisfying the local M&bius equation on vector fields.
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1. Introduction
A vector field Z on a Riemannian manifold (M, g) is said to satisfy the local Mébius
equation if
(V*Z)(X,Y) = g(AZ, X)Y
for all vector fields X,Y.

It is known that the existence of solutions Z to the local Mobius equation is related
to the conformal structure of the manifold, since the divergence div Z is a solution of the
local Mobius equation, i.e.

VdivZ
n

Hessgivz = Id

and moreover, in such cases Vdiv Z is a conformal vector field, since £vaivz = 2 Hessqiv z.
(See also the first four in references. )

The purpose of this paper is to point out such a connection by considering the vector
field Z itself. We prove the following:

(Theorem 3.4). A nonzero solution Z of the local Mébius equation is conformal, provided
that M is compact.
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(Theorem 3.5). A nonzero conformal vector field Z satisfying
R(X,Y)Z =—[g(VZ,Y)X —g(VZ, X)Y],

(which is a consequence of the local Mobius equation ), is a solution of the local Mobius
equation.

2. Preliminaries

Here, we briefly state the main concepts and definitions used throughout this paper.
Let (M, g) be a Riemannian manifold of dimension n, V the Levi-Civita connection
and
R(X, Y)Z =VxVyZ —-VyVxZ — V[Xy]Z

the curvature tensor. We write also < X,Y > if this is convenient. The Ricci curvature
(tensor) is the trace of R : trace(X — R(X,Y)Z) and is denoted by Ric(Y,Z). If
{X1,...,Xn} is a local orthonormal frame for T M, then
Ric(Y,Z) =Y g(R(X:,Y)Z, X)) = > g(R(Y, X:)Xi, Z).
i=1 i=1
Thus Ric is a symmetric bilinear form. It could also be defined as a symmetric (1,1)
tensor

Ric(Z) = Y  R(Z,X:)X..
i=1
The scalar curvature is defined by Sc = trRic. Let Z be a vector field on this n-
dimensional Riemannian manifold (M, g) with Levi-Civita connection V. The second
covariant differential V2Z of Z is defined by
(V2Z)(X,Y)=VxVyZ —VyyvZ,

where X,Y € T'(TM). We define the Laplacian AZ of Z on (M, g) to be the trace of
V2Z with respect to g, that is,
AZ =traceV?Z = Y (V?Z)(Xi, X,),
i=1
where {X1,..., Xy} is a local orthonormal frame for T M.
Also, the affinity tensor LzV of Z is defined by

(LZV)(X7 Y) =LzVxY — VLZXY —VxLzY,

where Lz is the Lie derivative with respect to Z and X,Y € I'(T'M). ( See, for example
page 109 of [5] ). We define the tension field OZ of Z on (M, g) to be the trace of LzV
with respect to g, that is

0Z =trace LzV = Z(LZV)(Xi, Xi),
i—1
where {X1,..., Xy} is a local orthonormal frame for T M.

By a straightforward computation, it can be shown by using the torsion-free property
of V that

(LzV)(X,Y) = (V' Z)(X,Y) + R(Z, X)Y,
(see page 110 of [5]), and hence
0Z = AZ 4 Ric(Z),
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where X,Y € I'(T'M). (Also see page 40 of [6]).
The divergence of a vector field Z, divZ, on (M, g) is defined as

divz =tr(VZ) = Y g(Vx,Z,Xi)
i=1
if {X;} is an orthonormal basis of T M.

3. Some Results Related to a certain Vector Field

The elementary results of this section could also be collected from [1]. First we state
an elementary lemma to be used in the proof of the results of this paper which is, for
example, Lemma 3.3 in [1].

3.1. Lemma. Let (M,g) be an n-dimensional Riemannian manifold. If Z is a vector
field on (M, g) satisfying the local Mobius equation
(V’Z)(X,Y) = g(AZ, X)Y,
for all X, Y € TTM, then
(i) R(X,Y)Z =—[g(AZ,Y)X — g(X,AZ)Y] for all X, Y € T(T'M), and hence
Ric(Z) = —-(n—1)AZ,
(it) VdivZ = nAZ, and hence
V3divZ = nVAZ,
where V2div Z is the Hessian tensor of div Z.
For completeness, we give the proof of this and the other lemmas.
Proof. (i). Let X,Y € I'(TM). Then
R(X,Y)Z =VixyZ—VyxZ
=g(AZ, X)Y —g(AZ, V)X
=—[g(AZ, )X — g(AZ,X)Y].

Hence
n

g(Ric(2),X) = g(z R(Z,X)X:, X)
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where {X1, -+, Xy} is an orthonormal frame for TM near p € M. Hence,
9(Ric(Z), X) = —ng(AZ, X) + g(AZ, X)
=(—n+1)9(AZ, X)
—(n—1)g(AZ, X)
— g(~(n - )AZ,X).
(i1). Let {Xi,---,Xn} be an adapted orthonormal frame near p € M, that is,

{X1, -+, Xn} is an orthonormal frame in TM with (VX;), =0fori=1,...,n, and let
X €eT'(TM). Then at p € M,

g(VdivZ, X) = X(divZ)

= > Xg(Vx,Z,Xi)

=1

= Y [9(VxVx,Z X:) + 9(Vx,Z,Vx X))]

[g((V2Z)(X, Xi)? XZ) - g(VvXXiZ7 Xl)]

Il
'M: i
I

i=1

g(g(AZ7 X)Xia XZ)

Il
.M:

=1

= 9(AZ, X)) g(Xi, X,)
=1

= ng(AZ, X)

= g(nAZ, X).

Hence, it follows that Vdiv Z = nAZ and hence V3div Z = nVAZ. O

3.2. Lemma. Let (M,g) be an n-dimensional Riemannian manifold. If Z is a non-zero
vector field on (M, g) satisfying the local Mébius equation

(V22)(X.Y) = g(AZ, X)Y,
for all X, Y € T(TM) and AZ is a non-zero conformal vector field on (M, g), then

_ AdivZ

Vidiv Z = id.

Proof. Since AZ is non-zero, it follows from Lemma 3.1 that div Z is non-constant and
V3div Z = nVAZ. Hence,VAZ is self-adjoint and can be written as VAZ = %id—i—
o, where o is the traceless self-adjoint part of VAZ. But, since AZ is assumed to be a
conformal vector field, o = 0 ( see page 173 0f [5] ), and it follows that

VidivZ = nVAZ
div AZ
= ’rL(
n
= divAZid
Adiv Z

= =23%0,
n

since Adiv Z = ndiv AZ by Lemma 3.1. d

id)
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3.3. Lemma. Let (M,g) be an n(> 2)-dimensional Riemannian manifold. If Z is a
non-zero vector field on (M, g) satisfying the local Mobius equation

(V2Z)(X,Y) = g(AZ, X)Y,
for all X, Y € I(T'M), then it also satisfies the equation
0Z + nTJde Z=0
on (M,g).

Proof.

n

0Z+ " 2Vdivz - AZ+Ric(Z)+nT_2Vdin

n
"2 2
n

= %wwz —(n—1)AZ +

= Vdivz - " vaivz+ "=2vaiv z
n n n

= 29z + " 2Vdiv z
n n

_—

O

3.4. Theorem. Let (M,g) be an n-dimensional compact Riemannian manifold. If Z is
a non-zero vector field on (M, g) satisfying the local Mébius equation

(V*Z2)(X,Y) = g(AZ,X)Y,
for all X, Y € T'(TM), then Z is a conformal vector field on M.

Proof. Follows from Lemma 3.3 ( see page 47 of [6] ). O

3.5. Theorem. Let (M,g) be an n(> 2)-dimensional Riemannian manifold. If Z is a
non-zero conformal vector field on (M, g) satisfying the equation

R(X,Y)Z = —[g(AZ,Y)X — g(X,AZ)Y],
for all X, Y € T(TM), then Z satisfies the local Mobius equation
(V2Z)(X,Y) = g(AZ,X)Y.
for all X, Y € T(TM).

Proof. This can be easily obtained from the equation
0Z = AZ + Ric(Z),
which implies

AZ = 27"aivz + " lvaivz
n n

= lVdiv Z,
n

since Z is conformal ( see page 47 of [6] ) and by Lemma 3.1. O
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