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Abstract

In this paper we prove some results related to a certain vector field
satisfying the local Möbius equation on vector fields.
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1. Introduction

A vector field Z on a Riemannian manifold (M, g) is said to satisfy the local Möbius
equation if

(∇2Z)(X,Y ) = g(∆Z,X)Y

for all vector fields X,Y .

It is known that the existence of solutions Z to the local Möbius equation is related
to the conformal structure of the manifold, since the divergence div Z is a solution of the
local Möbius equation, i.e.

Hessdiv Z =
∇div Z

n
Id

and moreover, in such cases ∇div Z is a conformal vector field, since £∇div Z = 2Hessdiv Z.
(See also the first four in references. )

The purpose of this paper is to point out such a connection by considering the vector
field Z itself. We prove the following:

(Theorem 3.4). A nonzero solution Z of the local Möbius equation is conformal, provided
that M is compact.
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(Theorem 3.5). A nonzero conformal vector field Z satisfying

R(X,Y )Z = −[g(∇Z, Y )X − g(∇Z,X)Y ],

(which is a consequence of the local Möbius equation ), is a solution of the local Möbius
equation.

2. Preliminaries

Here, we briefly state the main concepts and definitions used throughout this paper.

Let (M, g) be a Riemannian manifold of dimension n, ∇ the Levi-Civita connection
and

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

the curvature tensor. We write also < X,Y > if this is convenient. The Ricci curvature
(tensor) is the trace of R : trace(X → R(X,Y )Z) and is denoted by Ric(Y, Z). If
{X1, . . . , Xn} is a local orthonormal frame for TM , then

Ric(Y, Z) =

n
∑

i=1

g(R(Xi, Y )Z,Xi) =

n
∑

i=1

g(R(Y,Xi)Xi, Z).

Thus Ric is a symmetric bilinear form. It could also be defined as a symmetric (1,1)
tensor

Ric(Z) =
n

∑

i=1

R(Z,Xi)Xi.

The scalar curvature is defined by Sc = trRic. Let Z be a vector field on this n-
dimensional Riemannian manifold (M, g) with Levi-Civita connection ∇. The second
covariant differential ∇2Z of Z is defined by

(∇2Z)(X,Y ) = ∇X∇Y Z −∇∇XY Z,

where X,Y ∈ Γ(TM). We define the Laplacian ∆Z of Z on (M, g) to be the trace of
∇2Z with respect to g, that is,

∆Z = trace∇2Z =

n
∑

i=1

(∇2Z)(Xi, Xi),

where {X1, . . . , Xn} is a local orthonormal frame for TM .

Also, the affinity tensor LZ∇ of Z is defined by

(LZ∇)(X,Y ) = LZ∇XY −∇LZXY −∇XLZY,

where LZ is the Lie derivative with respect to Z and X,Y ∈ Γ(TM). ( See, for example
page 109 of [5] ). We define the tension field ¤Z of Z on (M, g) to be the trace of LZ∇
with respect to g, that is

¤Z = traceLZ∇ =
n

∑

i=1

(LZ∇)(Xi, Xi),

where {X1, . . . , Xn} is a local orthonormal frame for TM .

By a straightforward computation, it can be shown by using the torsion-free property
of ∇ that

(LZ∇)(X,Y ) = (∇2Z)(X,Y ) +R(Z,X)Y,

(see page 110 of [5]), and hence

¤Z = ∆Z +Ric(Z),
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where X,Y ∈ Γ(TM). (Also see page 40 of [6]).

The divergence of a vector field Z, divZ, on (M, g) is defined as

div Z = tr(∇Z) =
n

∑

i=1

g(∇Xi
Z,Xi)

if {Xi} is an orthonormal basis of TM .

3. Some Results Related to a certain Vector Field

The elementary results of this section could also be collected from [1]. First we state
an elementary lemma to be used in the proof of the results of this paper which is, for
example, Lemma 3.3 in [1].

3.1. Lemma. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a vector

field on (M, g) satisfying the local Möbius equation

(∇2Z)(X,Y ) = g(∆Z,X)Y,

for all X,Y ∈ ΓTM , then

(i) R(X,Y )Z = −[g(∆Z, Y )X − g(X,∆Z)Y ] for all X,Y ∈ Γ(TM), and hence

Ric(Z) = −(n− 1)∆Z,
(ii) ∇div Z = n∆Z, and hence

∇2div Z = n∇∆Z,

where ∇2div Z is the Hessian tensor of div Z.

For completeness, we give the proof of this and the other lemmas.

Proof. (i). Let X,Y ∈ Γ(TM). Then

R(X,Y )Z = ∇2X,Y Z −∇
2
Y,XZ

= g(∆Z,X)Y − g(∆Z, Y )X

= −[g(∆Z, Y )X − g(∆Z,X)Y ].

Hence

g(Ric(Z), X) = g(
n

∑

i=1

R(Z,Xi)Xi, X)

=
n

∑

i=1

g(R(Z,Xi)Xi, X)

=
n

∑

i=1

R(Z,Xi, Xi, X)

=
n

∑

i=1

R(Xi, X, Z,Xi)

=

n
∑

i=1

g(R(Xi, X)Z,Xi)

=

n
∑

i=1

g(−g(∆Z,X)Xi + g(∆Z,Xi)X,Xi)

= −g(∆Z,X)
n

∑

i=1

g(Xi, Xi) +
n

∑

i=1

g(∆Z,Xi)g(X,Xi),
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where {X1, · · · , Xn} is an orthonormal frame for TM near p ∈M . Hence,

g(Ric(Z), X) = −ng(∆Z,X) + g(∆Z,X)

= (−n+ 1)g(∆Z,X)

= −(n− 1)g(∆Z,X)

= g(−(n− 1)∆Z,X).

(ii). Let {X1, · · · , Xn} be an adapted orthonormal frame near p ∈ M , that is,
{X1, · · · , Xn} is an orthonormal frame in TM with (∇Xi)p = 0 for i = 1, . . . , n, and let
X ∈ Γ(TM). Then at p ∈M ,

g(∇div Z,X) = X(div Z)

=
n

∑

i=1

Xg(∇XiZ,Xi)

=
n

∑

i=1

[g(∇X∇XiZ,Xi) + g(∇XiZ,∇XXi)]

=
n

∑

i=1

[g((∇2Z)(X,Xi), Xi)− g(∇∇XXiZ,Xi)]

=

n
∑

i=1

g(g(∆Z,X)Xi, Xi)

= g(∆Z,X)

n
∑

i=1

g(Xi, Xi)

= ng(∆Z,X)

= g(n∆Z,X).

Hence, it follows that ∇div Z = n∆Z and hence ∇2div Z = n∇∆Z. ¤

3.2. Lemma. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a non-zero

vector field on (M, g) satisfying the local Möbius equation

(∇2Z)(X,Y ) = g(∆Z,X)Y,

for all X,Y ∈ Γ(TM) and ∆Z is a non-zero conformal vector field on (M, g), then

∇2div Z =
∆div Z

n
id.

Proof. Since ∆Z is non-zero, it follows from Lemma 3.1 that div Z is non-constant and
∇2div Z = n∇∆Z. Hence,∇∆Z is self-adjoint and can be written as ∇∆Z = div∆Z

n
id+

σ, where σ is the traceless self-adjoint part of ∇∆Z. But, since ∆Z is assumed to be a
conformal vector field, σ = 0 ( see page 173 0f [5] ), and it follows that

∇2div Z = n∇∆Z

= n(
div∆Z

n
id)

= div∆Zid

=
∆div Z

n
id,

since ∆div Z = ndiv∆Z by Lemma 3.1. ¤
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3.3. Lemma. Let (M, g) be an n(≥ 2)-dimensional Riemannian manifold. If Z is a

non-zero vector field on (M, g) satisfying the local Möbius equation

(∇2Z)(X,Y ) = g(∆Z,X)Y,

for all X,Y ∈ Γ(TM), then it also satisfies the equation

2Z +
n− 2

n
∇div Z = 0

on (M, g).

Proof.

2Z +
n− 2

n
∇div Z = ∆Z +Ric(Z) +

n− 2

n
∇div Z

=
1

n
∇div Z − (n− 1)∆Z +

n− 2

n
∇div Z

=
1

n
∇div Z −

n− 1

n
∇div Z +

n− 2

n
∇div Z

=
−n+ 2

n
∇div Z +

n− 2

n
∇div Z

= 0.

¤

3.4. Theorem. Let (M, g) be an n-dimensional compact Riemannian manifold. If Z is

a non-zero vector field on (M, g) satisfying the local Möbius equation

(∇2Z)(X,Y ) = g(∆Z,X)Y,

for all X,Y ∈ Γ(TM), then Z is a conformal vector field on M .

Proof. Follows from Lemma 3.3 ( see page 47 of [6] ). ¤

3.5. Theorem. Let (M, g) be an n(≥ 2)-dimensional Riemannian manifold. If Z is a

non-zero conformal vector field on (M, g) satisfying the equation

R(X,Y )Z = −[g(∆Z, Y )X − g(X,∆Z)Y ],

for all X,Y ∈ Γ(TM), then Z satisfies the local Möbius equation

(∇2Z)(X,Y ) = g(∆Z,X)Y.

for all X,Y ∈ Γ(TM).

Proof. This can be easily obtained from the equation

2Z = ∆Z +Ric(Z),

which implies

∆Z =
2− n

n
∇div Z +

n− 1

n
∇div Z

=
1

n
∇div Z,

since Z is conformal ( see page 47 of [6] ) and by Lemma 3.1. ¤
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