SOME RESULTS RELATED TO A CERTAIN VECTOR FIELD SATISFYING THE LOCAL MÖBIUS EQUATION

Nebi Önder*

Received $15: 03: 2007$: Accepted $13: 11: 2007$

Abstract

In this paper we prove some results related to a certain vector field satisfying the local Möbius equation on vector fields.

Keywords: Second covariant differential, Divergence, Laplacian, Conformal vector field, Affine conformal vector field, k-nullity vector field, Möbius equation.
2000 AMS Classification: $53 \mathrm{C} 99,58 \mathrm{~J} 99$.

1. Introduction

A vector field Z on a Riemannian manifold (M, g) is said to satisfy the local Möbius equation if

$$
\left(\nabla^{2} Z\right)(X, Y)=g(\Delta Z, X) Y
$$

for all vector fields X, Y.
It is known that the existence of solutions Z to the local Möbius equation is related to the conformal structure of the manifold, since the divergence $\operatorname{div} \mathrm{Z}$ is a solution of the local Möbius equation, i.e.

$$
\operatorname{Hess}_{\mathrm{div} \mathrm{Z}}=\frac{\nabla \operatorname{div} \mathrm{Z}}{n} I d
$$

and moreover, in such cases $\nabla \operatorname{div} Z$ is a conformal vector field, since $£_{\nabla \operatorname{div}} \mathrm{Z}=2 \operatorname{Hess}_{\text {div }}$. (See also the first four in references.)

The purpose of this paper is to point out such a connection by considering the vector field Z itself. We prove the following:
(Theorem 3.4). A nonzero solution Z of the local Möbius equation is conformal, provided that M is compact.

[^0](Theorem 3.5). A nonzero conformal vector field Z satisfying
$$
R(X, Y) Z=-[g(\nabla Z, Y) X-g(\nabla Z, X) Y]
$$
(which is a consequence of the local Möbius equation), is a solution of the local Möbius equation.

2. Preliminaries

Here, we briefly state the main concepts and definitions used throughout this paper. Let (M, g) be a Riemannian manifold of dimension n, ∇ the Levi-Civita connection and

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

the curvature tensor. We write also $\langle X, Y\rangle$ if this is convenient. The Ricci curvature (tensor) is the trace of $R: \operatorname{trace}(X \rightarrow R(X, Y) Z)$ and is denoted by $\operatorname{Ric}(Y, Z)$. If $\left\{X_{1}, \ldots, X_{n}\right\}$ is a local orthonormal frame for $T M$, then

$$
\operatorname{Ric}(Y, Z)=\sum_{i=1}^{n} g\left(R\left(X_{i}, Y\right) Z, X_{i}\right)=\sum_{i=1}^{n} g\left(R\left(Y, X_{i}\right) X_{i}, Z\right)
$$

Thus Ric is a symmetric bilinear form. It could also be defined as a symmetric $(1,1)$ tensor

$$
\operatorname{Ric}(Z)=\sum_{i=1}^{n} R\left(Z, X_{i}\right) X_{i}
$$

The scalar curvature is defined by $S c=\operatorname{tr}$ Ric. Let Z be a vector field on this n dimensional Riemannian manifold (M, g) with Levi-Civita connection ∇. The second covariant differential $\nabla^{2} Z$ of Z is defined by

$$
\left(\nabla^{2} Z\right)(X, Y)=\nabla_{X} \nabla_{Y} Z-\nabla_{\nabla_{X} Y} Z
$$

where $X, Y \in \Gamma(T M)$. We define the Laplacian ΔZ of Z on (M, g) to be the trace of $\nabla^{2} Z$ with respect to g, that is,

$$
\Delta Z=\operatorname{trace} \nabla^{2} Z=\sum_{i=1}^{n}\left(\nabla^{2} Z\right)\left(X_{i}, X_{i}\right)
$$

where $\left\{X_{1}, \ldots, X_{n}\right\}$ is a local orthonormal frame for $T M$.
Also, the affinity tensor $L_{Z} \nabla$ of Z is defined by

$$
\left(L_{Z} \nabla\right)(X, Y)=L_{Z} \nabla_{X} Y-\nabla_{L_{Z} X} Y-\nabla_{X} L_{Z} Y
$$

where L_{Z} is the Lie derivative with respect to Z and $X, Y \in \Gamma(T M)$. (See, for example page 109 of [5]). We define the tension field $\square Z$ of Z on (M, g) to be the trace of $L_{Z} \nabla$ with respect to g, that is

$$
\square Z=\operatorname{trace} L_{Z} \nabla=\sum_{i=1}^{n}\left(L_{Z} \nabla\right)\left(X_{i}, X_{i}\right)
$$

where $\left\{X_{1}, \ldots, X_{n}\right\}$ is a local orthonormal frame for $T M$.
By a straightforward computation, it can be shown by using the torsion-free property of ∇ that

$$
\left(L_{Z} \nabla\right)(X, Y)=\left(\nabla^{2} Z\right)(X, Y)+R(Z, X) Y
$$

(see page 110 of [5]), and hence

$$
\square Z=\Delta Z+\operatorname{Ric}(Z)
$$

where $X, Y \in \Gamma(T M)$. (Also see page 40 of [6]).
The divergence of a vector field $Z, \operatorname{div} Z$, on (M, g) is defined as

$$
\operatorname{div} \mathrm{Z}=\operatorname{tr}(\nabla \mathrm{Z})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~g}\left(\nabla_{\mathrm{x}_{\mathrm{i}}} \mathrm{Z}, \mathrm{X}_{\mathrm{i}}\right)
$$

if $\left\{X_{i}\right\}$ is an orthonormal basis of $T M$.

3. Some Results Related to a certain Vector Field

The elementary results of this section could also be collected from [1]. First we state an elementary lemma to be used in the proof of the results of this paper which is, for example, Lemma 3.3 in [1].
3.1. Lemma. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a vector field on (M, g) satisfying the local Möbius equation

$$
\left(\nabla^{2} Z\right)(X, Y)=g(\Delta Z, X) Y
$$

for all $X, Y \in \Gamma T M$, then
(i) $R(X, Y) Z=-[g(\Delta Z, Y) X-g(X, \Delta Z) Y]$ for all $X, Y \in \Gamma(T M)$, and hence $\operatorname{Ric}(Z)=-(n-1) \Delta Z$,
(ii) $\nabla \operatorname{div} \mathrm{Z}=\mathrm{n} \Delta \mathrm{Z}$, and hence
$\nabla^{2} \operatorname{div} Z=n \nabla \Delta Z$,
where $\nabla^{2} \operatorname{div} \mathrm{Z}$ is the Hessian tensor of $\operatorname{div} \mathrm{Z}$.
For completeness, we give the proof of this and the other lemmas.
Proof. (i). Let $X, Y \in \Gamma(T M)$. Then

$$
\begin{aligned}
R(X, Y) Z & =\nabla_{X, Y}^{2} Z-\nabla_{Y, X}^{2} Z \\
& =g(\Delta Z, X) Y-g(\Delta Z, Y) X \\
& =-[g(\Delta Z, Y) X-g(\Delta Z, X) Y] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
g(\operatorname{Ric}(Z), X) & =g\left(\sum_{i=1}^{n} R\left(Z, X_{i}\right) X_{i}, X\right) \\
& =\sum_{i=1}^{n} g\left(R\left(Z, X_{i}\right) X_{i}, X\right) \\
& =\sum_{i=1}^{n} R\left(Z, X_{i}, X_{i}, X\right) \\
& =\sum_{i=1}^{n} R\left(X_{i}, X, Z, X_{i}\right) \\
& =\sum_{i=1}^{n} g\left(R\left(X_{i}, X\right) Z, X_{i}\right) \\
& =\sum_{i=1}^{n} g\left(-g(\Delta Z, X) X_{i}+g\left(\Delta Z, X_{i}\right) X, X_{i}\right) \\
& =-g(\Delta Z, X) \sum_{i=1}^{n} g\left(X_{i}, X_{i}\right)+\sum_{i=1}^{n} g\left(\Delta Z, X_{i}\right) g\left(X, X_{i}\right)
\end{aligned}
$$

where $\left\{X_{1}, \cdots, X_{n}\right\}$ is an orthonormal frame for $T M$ near $p \in M$. Hence,

$$
\begin{aligned}
g(\operatorname{Ric}(Z), X) & =-n g(\Delta Z, X)+g(\Delta Z, X) \\
& =(-n+1) g(\Delta Z, X) \\
& =-(n-1) g(\Delta Z, X) \\
& =g(-(n-1) \Delta Z, X) .
\end{aligned}
$$

(ii). Let $\left\{X_{1}, \cdots, X_{n}\right\}$ be an adapted orthonormal frame near $p \in M$, that is, $\left\{X_{1}, \cdots, X_{n}\right\}$ is an orthonormal frame in $T M$ with $\left(\nabla X_{i}\right)_{p}=0$ for $i=1, \ldots, n$, and let $X \in \Gamma(T M)$. Then at $p \in M$,

$$
\begin{aligned}
g(\nabla \operatorname{div} Z, X) & =X(\operatorname{div} Z) \\
& =\sum_{i=1}^{n} X g\left(\nabla_{X_{i}} Z, X_{i}\right) \\
& =\sum_{i=1}^{n}\left[g\left(\nabla_{X} \nabla_{X_{i}} Z, X_{i}\right)+g\left(\nabla_{X_{i}} Z, \nabla_{X} X_{i}\right)\right] \\
& =\sum_{i=1}^{n}\left[g\left(\left(\nabla^{2} Z\right)\left(X, X_{i}\right), X_{i}\right)-g\left(\nabla_{\nabla_{X} X_{i}} Z, X_{i}\right)\right] \\
& =\sum_{i=1}^{n} g\left(g(\Delta Z, X) X_{i}, X_{i}\right) \\
& =g(\Delta Z, X) \sum_{i=1}^{n} g\left(X_{i}, X_{i}\right) \\
& =n g(\Delta Z, X) \\
& =g(n \Delta Z, X)
\end{aligned}
$$

Hence, it follows that $\nabla \operatorname{div} Z=n \Delta Z$ and hence $\nabla^{2} \operatorname{div} Z=n \nabla \Delta Z$.
3.2. Lemma. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a non-zero vector field on (M, g) satisfying the local Möbius equation

$$
\left(\nabla^{2} Z\right)(X, Y)=g(\Delta Z, X) Y
$$

for all $X, Y \in \Gamma(T M)$ and ΔZ is a non-zero conformal vector field on (M, g), then

$$
\nabla^{2} \operatorname{div} Z=\frac{\Delta \operatorname{div} Z}{n} i d
$$

Proof. Since ΔZ is non-zero, it follows from Lemma 3.1 that $\operatorname{div} Z$ is non-constant and $\nabla^{2} \operatorname{div} Z=n \nabla \Delta Z$. Hence, $\nabla \Delta Z$ is self-adjoint and can be written as $\nabla \Delta Z=\frac{d i v \Delta Z}{n} i d+$ σ, where σ is the traceless self-adjoint part of $\nabla \Delta Z$. But, since ΔZ is assumed to be a conformal vector field, $\sigma=0$ (see page 173 of [5]), and it follows that

$$
\begin{aligned}
\nabla^{2} \operatorname{div} Z & =n \nabla \Delta Z \\
& =n\left(\frac{\operatorname{div} \Delta Z}{n} i d\right) \\
& =\operatorname{div} \Delta Z i d \\
& =\frac{\Delta \operatorname{div} Z}{n} i d,
\end{aligned}
$$

since $\Delta \operatorname{div} Z=n \operatorname{div} \Delta Z$ by Lemma 3.1.
3.3. Lemma. Let (M, g) be an $n(\geq 2)$-dimensional Riemannian manifold. If Z is a non-zero vector field on (M, g) satisfying the local Möbius equation

$$
\left(\nabla^{2} Z\right)(X, Y)=g(\Delta Z, X) Y
$$

for all $X, Y \in \Gamma(T M)$, then it also satisfies the equation

$$
\square Z+\frac{n-2}{n} \nabla \operatorname{div} Z=0
$$

on (M, g).
Proof.

$$
\begin{aligned}
\square Z+\frac{n-2}{n} \nabla \operatorname{div} Z & =\Delta Z+\operatorname{Ric}(Z)+\frac{n-2}{n} \nabla \operatorname{div} Z \\
& =\frac{1}{n} \nabla \operatorname{div} Z-(n-1) \Delta Z+\frac{n-2}{n} \nabla \operatorname{div} Z \\
& =\frac{1}{n} \nabla \operatorname{div} Z-\frac{n-1}{n} \nabla \operatorname{div} Z+\frac{n-2}{n} \nabla \operatorname{div} Z \\
& =\frac{-n+2}{n} \nabla \operatorname{div} Z+\frac{n-2}{n} \nabla \operatorname{div} Z \\
& =0 .
\end{aligned}
$$

3.4. Theorem. Let (M, g) be an n-dimensional compact Riemannian manifold. If Z is a non-zero vector field on (M, g) satisfying the local Möbius equation

$$
\left(\nabla^{2} Z\right)(X, Y)=g(\Delta Z, X) Y
$$

for all $X, Y \in \Gamma(T M)$, then Z is a conformal vector field on M.
Proof. Follows from Lemma 3.3 (see page 47 of [6]).
3.5. Theorem. Let (M, g) be an $n(\geq 2)$-dimensional Riemannian manifold. If Z is a non-zero conformal vector field on (M, g) satisfying the equation

$$
R(X, Y) Z=-[g(\Delta Z, Y) X-g(X, \Delta Z) Y]
$$

for all $X, Y \in \Gamma(T M)$, then Z satisfies the local Möbius equation

$$
\left(\nabla^{2} Z\right)(X, Y)=g(\Delta Z, X) Y
$$

for all $X, Y \in \Gamma(T M)$.
Proof. This can be easily obtained from the equation

$$
\square Z=\Delta Z+\operatorname{Ric}(Z)
$$

which implies

$$
\begin{aligned}
\Delta Z & =\frac{2-n}{n} \nabla \operatorname{div} Z+\frac{n-1}{n} \nabla \operatorname{div} Z \\
& =\frac{1}{n} \nabla \operatorname{div} Z
\end{aligned}
$$

since Z is conformal (see page 47 of [6]) and by Lemma 3.1.

References

[1] Erkekoğlu, F. : On Special Cases of Local Möbius Equations, Publ. Math. Debrecen, 67/1-2, (2005), 155-167.
[2] Erkekoğlu, F., Garcia-Rio, E., Kupeli, D.N. and Ünal, B. : Characterizing Specific Riemannian Manifolds By Differential Equations, Acta Applicandae Mathematicae, 76(2), (2003) 195-219.
[3] Erkekoğlu, F., Kupeli, D.N. and Ünal, B.: Some Results Related To The Laplacian On Vector Fields, Publ. Math. Debrecen, 69/1-2, (2006), 137-154.
[4] Garcia-Rio, E., Kupeli, D.N. and Ünal, B.: On a Differential Equation Characterizing Euclidean Sphere, Journal of Differential Equations, 194, (2003) 287-299.
[5] Poor, W.A.: Differential Geometric Structures, McGraw-Hill, New York, 1981.
[6] Yano, K.: Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.

[^0]: *Department of Mathematics, Faculty of Science and Letters, Mimar Sinan G.S. University, Çirağan Caddesi, Çiğdem Sokak, No: 1, Beşiktaş, 34349 Istanbul, Turkey.
 E-mail: zafernebi@hotmail.com

