A RELATED FIXED POINT THEOREM ON THREE METRIC SPACES

B. Fisher* and K. P. R. Rao ${ }^{\dagger}$

Received $03: 05: 2007$: Accepted $01: 11: 2007$

Abstract

A related fixed point theorem for three mappings, not all of which need be continuous, on three metric spaces of which one is a compact metric space is obtained. An example is obtained to illustrate the theorem.

Keywords: Compact space, Related fixed point.
2000 AMS Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.

1. Introduction and Preliminaries

Related fixed point theorems on three complete metric spaces have been studied by Nung [5], Jain et al. [1,2,3,4] and Rao et al. [7]. In this paper, we prove a related fixed point theorem for three mappings, not all of which are necessarily continuous, on three metric spaces, of which one is a compact metric space. We also give an example to illustrate our theorem. Our theorem also improves Theorem 3 of Rao et al. [6].

2. Main Results

2.1. Theorem. Let $(X, d),(Y, \rho)$ and (Z, σ) be three metric spaces and $T: X \rightarrow Y$, $S: Y \rightarrow Z$, and $R: Z \rightarrow X$ mappings satisfying the inequalities:

$$
d(R S y, R S T x)<\max \{d(x, R S y), d(x, R S T x), \rho(y, T x),
$$

$$
\begin{equation*}
\rho(y, T R S y), \rho(T x, T R S y)\} \tag{2.1}
\end{equation*}
$$

for all x in X and y in Y with $y \neq T x$,

$$
\begin{array}{ll}
\rho(T R z, T R S y)<\max \{\rho(y, T R z), \rho(y, T R S y), & \sigma(z, S y), \\
& \sigma(z, S T R z), \sigma(S y, S T R z)\} \tag{2.2}
\end{array}
$$

for all y in Y and z in Z with $z \neq S y$, and

[^0]\[

$$
\begin{align*}
\sigma(S T x, S T R z)<\max \{\sigma(z, S T x), \sigma(z, S T R z), & d(x, R z), \\
& d(x, R S T x), d(R z, R S T x)\} \tag{2.3}
\end{align*}
$$
\]

for all x in X and z in Z with $x \neq R z$. Further, assume one of the following conditions:
(a) (X, d) is compact and $R S T$ is continuous,
(b) (Y, ρ) is compact and $T R S$ is continuous,
(c) (Z, σ) is compact and $S T R$ is continuous.

Then RST has a unique fixed point w in $X, T R S$ has a unique fixed point u in Y and $S T R$ has a unique fixed point v in Z. Further $S u=v, R v=w$ and $T w=u$.

Proof. Suppose (a) holds. Define $\phi(x)=d(x, R S T x)$ for $x \in X$. Then there exists p in X such that

$$
\phi(p)=d(p, R S T p)=\inf \{\phi(x): x \in X\}
$$

Suppose that $R S T R S T R S T p \neq R S T R S T p$. Then

$$
\begin{array}{ccc}
S T R S T R S T p \neq S T R S T p, & T R S T R S T p \neq T R S T p, & R S T R S T p \neq R S T p, \\
S T R S T p \neq S T p, & T R S T p \neq T p, & R S T p \neq p
\end{array}
$$

From (2.1), with $y=T R S T p, x=R S T R S T p$, we have

$$
d(R S T R S T p, R S T R S T R S T p)<\max \{d(R S T R S T p, R S T R S T p)
$$

$$
\begin{aligned}
& d(R S T R S T p, R S T R S T R S T p) \\
& \quad \rho(T R S T p, T R S T R S T p) \\
& \quad \rho(T R S T p, T R S T R S T p) \\
& \quad \rho(T R S T R S T p, T R S T R S T p)\},
\end{aligned}
$$

so that
(2.4) $\quad \phi(R S T R S T p)<\rho(T R S T p, T R S T R S T p)$.

From (2.2), with $z=S T p, y=T R S T p$, we have

$$
\begin{gathered}
\rho(T R S T p, T R S T R S T p)<\max \{\rho(T R S T p, T R S T p), \rho(T R S T p, T R S T R S T p), \\
\sigma(S T p, S T R S T p), \sigma(S T p, S T R S T p), \\
\sigma(S T R S T p, S T R S T p)\},
\end{gathered}
$$

so that
(2.5) $\quad \rho(T R S T p, T R S T R S T p)<\sigma(S T p, S T R S T p)$.

From (2.3) with $x=p, z=S T p$ we have

$$
\begin{aligned}
\sigma(S T p, S T R S T p)<\max \{ & \sigma(S T p, S T p), \sigma(S T p, S T R S T p) \\
& d(p, R S T p), d(p, R S T p), d(R S T p, R S T p)\},
\end{aligned}
$$

so that
(2.6) $\quad \sigma(S T p, S T R S T p)<\phi(p)$

From (2.4), (2.5) and (2.6), we have $\phi(R S T R S T p)<\phi(p)$, contradicting the existence of p. Hence, $R S T R S T R S T p=R S T R S T p$.

Putting RSTRSTp $=w$ in X we have,

$$
R S T w=w
$$

Now let $T w=u$ in Y and $S u=v$ in Z. Then $R v=R S u=R S T w=w$, and it follows that

$$
S T R v=S T w=S u=v
$$

and

$$
T R S u=T R v=T w=u
$$

To prove uniqueness, suppose that $R S T$ has a second distinct fixed point w_{0} in X. Then

$$
R S T w \neq R S T w_{0}, S T w \neq S T w_{0}, T w \neq T w_{0}
$$

Using (2.1), with $y=T w, x=w_{0}$, we get

$$
d\left(R S T w, R S T w_{0}\right)<\max \left\{d\left(w_{0}, R S T w\right), d\left(w_{0}, R S T w_{0}\right)\right.
$$

$$
\left.\rho\left(T w, T w_{0}\right), \rho(T w, T R S T w), \rho\left(T w_{0}, T R S T w\right)\right\}
$$

so that
$(2.7) \quad d\left(w, w_{0}\right)<\rho\left(T w, T w_{0}\right)$.
Using (2.2) with $z=S T w, y=T w_{0}$, we get

$$
\begin{gathered}
\rho\left(T R S T w, T R S T w_{0}\right)<\max \left\{\rho\left(T w_{0}, T R S T w\right), \rho\left(T w_{0}, T R S T w_{0}\right),\right. \\
\sigma\left(S T w, S T w_{0}\right), \sigma(S T w, S T R S T w), \\
\left.\sigma\left(S T w_{0}, S T R S T w\right)\right\}
\end{gathered}
$$

so that
(2.8) $\quad \rho\left(T w, T w_{0}\right)<\sigma\left(S T w, S T w_{0}\right)$.

Using (3) with $x=w, z=S T w_{0}$, we get

$$
\begin{aligned}
& \sigma\left(S T w, S T R S T w_{0}\right)<\max \left\{\sigma\left(S T w_{0}, S T w\right), \sigma\left(S T w_{0}, S T R S T w_{0}\right)\right. \\
& \left.d\left(w, R S T w_{0}\right), d(w, R S T w), d\left(R S T w_{0}, R S T w\right)\right\}
\end{aligned}
$$

so that
(2.9) $\quad \sigma\left(S T w, S T w_{0}\right)<d\left(w, w_{0}\right)$.

From (2.7), (2.8) and (2.9), we have $d\left(w, w_{0}\right)<d\left(w, w_{0}\right)$ so that $w=w_{0}$, proving the uniqueness of w.

Similarly, we can show that v is the unique fixed point of $S T R$ and u is the unique fixed point of $T R S$.

It follows similarly that the theorem holds if (b) or (c) holds instead of (a).
Now, we give the following example to illustrate our theorem.
2.2. Example. Let $X=[0,1], Y=[1,2), Z=(2,3]$, and let $d=\rho=\sigma$ be the usual metric for the real numbers. Define $T: X \rightarrow Y, S: Y \rightarrow Z$ and $R: Z \rightarrow X$ by:

$$
\begin{aligned}
& T x= \begin{cases}1 & \text { if } x \in[0,3 / 4) \\
3 / 2 & \text { if } x \in[3 / 4,1]\end{cases} \\
& S y=3 \forall y \in Y, \\
& R z= \begin{cases}3 / 4 & \text { if } z \in(2,5 / 2] \\
1 & \text { if } z \in(5 / 2,3]\end{cases}
\end{aligned}
$$

Here Y and Z are not compact spaces and T and R are not continuous. However, all the conditions of Theorem 2.1 are satisfied. Clearly,

$$
R S T(1)=1, T R S(3 / 2)=3 / 2, S T R(3)=3, S(3 / 2)=3, R 3=1 \text { and } T 1=3 / 2
$$

2.3. Remark. Theorem 2.1 holds if (2.1), (2.2) and(2.3) are replaced by
$(2.1)^{1} \quad d(R S y, R S T x)<\frac{\max \{d(x, R S T x) \rho(y, T R S y), d(x, R S y) \rho(y, T x)\}}{\max \{d(x, R S T x), d(x, R S y), \rho(T x, T R S y)\}}$
$\forall x \in X, y \in Y$ with denominator $\neq 0$,
$\rho(T R z, T R S y)<\frac{\max \{\rho(y, T R S y) \sigma(z, S T R z), \rho(y, T R z) \sigma(z, S y)\}}{\max \{\rho(y, T R S y), \rho(y, T R z), \sigma(S y, S T R z)\}}$
$\forall z \in Z, y \in Y$ with denominator $\neq 0$,
$(2.3)^{1} \sigma(S T x, S T R z)<\frac{\max \{\sigma(z, S T R z) d(x, R S T x), \sigma(z, S T x) d(x, R z)\}}{\max \{\sigma(z, S T R z), \sigma(z, S T x), d(R z, R S T x)\}}$
$\forall z \in Z, x \in X$ with denominator $\neq 0$.

References

[1] Jain, R. K., Sahu, H. K. and Fisher, B. Related fixed point theorems for three metric spaces, Novi Sad J. Math. 26, 11-17, 1996.
[2] Jain, R. K., Sahu, H. K. and Fisher, B. A related fixed point theorem on three metric spaces, Kyungpook Math. J. 36, 151-154, 1996.
[3] Jain, R. K., Shrivastava, A. K. and Fisher, B. Fixed point theorems on three complete metric spaces, Novi Sad J. Math. 27, 27-35, 1997.
[4] Jain, S. and Fisher, B. A related fixed point theorem for three metric spaces, Hacettepe J. Math. and Stat. 31, 19-24, 2002.
[5] Nung, N. P. A fixed point theorem in three metric spaces, Math. Sem. Notes, Kobe Univ. 11, 77-79, 1983.
[6] Rao, K. P. R., Srinivasa Rao, N. and Hari Prasad, B. V.S. N. Three fixed point results for three maps, J .Nat. Phy. Sci. 18, 41-48, 2004.
[7] Rao, K. P. R., Hari Prasad, B. V.S. N. and Srinivasa Rao, N. Generalizations of some fixed point theorems in complete metric spaces, Acta Ciencia Indica, Vol. XXIX, M. No. 1, 31-34, 2003.

[^0]: *Department of Mathematics, University of Leicester, Leicester, LE1 7RH, U.K. E-mail: fbr@leicester.ac.uk
 ${ }^{\dagger}$ Corresponding Author. Department of Applied Mathematics, Acharya Nagarjuna University - Nuzvid Campus, NUZVID-521201, Krishna Dt, A.P., India. E-mail: kprrao2004@yahoo.com

