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Abstract

We adapt robust regression to ratio-type estimators suggested by Kadi-
lar and Cingi (Ratio estimators in simple random sampling, Applied
Mathematics and Computation 151, 893–902, 2004) and obtain the
conditions where the adapted estimators are more efficient than the
aforementioned estimators in Kadilar and Cingi, in theory. In addi-
tion, we support the theoretical results with the aid of a numerical
example and simulation having an outlier.
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1. Introduction

Ratio-type estimators take advantage of the correlation between the auxiliary variable,
x and the study variable, y. When information is available on the auxiliary variable that
is positively correlated with the study variable, the ratio estimator is a suitable estimator
to estimate the population mean. For ratio estimators in sampling theory, population
information of the auxiliary variable, such as the coefficient of variation or the kurtosis,
is often used to increase the efficiency of the estimation for a population mean. However,
the outlier problem, which is the present of extreme values in data, generally decreases the
efficiency since classical estimators are sensitive to these extreme values [5]. Therefore, in
this article, we propose to use Huber M-estimates, instead of least squares (LS) estimates,
in ratio estimators in order to reduce the negative effects of outlier data problem.

We present traditional ratio estimators for the population mean in simple random
sampling and their MSE equations in the next section. We propose ratio estimators and
mention their MSE equations in Section 3. Efficiency comparisons between the traditional
and the proposed estimators, based on the MSE equations, are considered in Section 4.
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The results of numerical example and simulation are reported in Section 5 and in Section
6, respectively. We arrive at a conclusion from these results in the last section.

2. Traditional Ratio Estimators

Motivated by Sisodia and Dwivedi [15], Singh and Kakran [14], and Upadhyaya
and Singh [16]; Kadilar and Cingi [10] proposed the following ratio-type estimators
(ȳKC i ; i = 1, 2, ..., 5) for the population mean Ȳ of the study variable y in simple random
sampling:
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where Cx and β2 (x) are the population coefficient of variation and the population coeffi-
cient of the kurtosis, respectively, of the auxiliary variable; ȳ and x̄ are the sample means
of the study and auxiliary variable, respectively and it is assumed that the population
mean X̄ of the auxiliary variable x is known. Here

b =
sxy

s2x

is obtained by the LS method, where s2x and s2y are the sample variances of the auxil-
iary and the study variable, respectively and sxy is the sample covariance between the
auxiliary and the study variable.

The MSE equation of the estimators (2.1)–(2.5) can be found using a first degree
approximation of the Taylor series expansion, and is as follows:
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(for details see Kadilar and Cingi [10]) where i = 1, 2, . . . 5; B =
Sxy

S2
x

is obtained by the

LS method; f = n
N
; n is the sample size; N is the population size;
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,
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and RKC5 =
Ȳ Cx
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are the population ratios; S2
x and S2

y are the population variances of the auxiliary and
study variable, respectively and Sxy is the population covariance between the auxiliary
and the study variable. It is worth while pointing out that we take E(b) = B in (2.6)
(see [3]), where E represents the expected value.

Kadilar and Cingi [10] concluded that all the ratio estimators given above were more
efficient than the classical estimators, presented in Sisodia and Dwivedi [15], Singh and
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Kakran [14] and Upadhyaya and Singh [16]. This result was obtained with the aid of
a numerical example, whose data will also be used in this paper. Note that Kadilar
and Cingi [8] adapted these classical estimators for simple random sampling to stratified
random sampling, and then Kadilar and Cingi [12] proposed a new ratio estimator that
was always more efficient than these adapted estimators in stratified random sampling.

3. Suggested Estimators

For the estimation of the population mean, we propose to apply the following 5 ratio
estimators using robust regression, instead of ratio estimators presented in (2.1)–(2.5),
to data which have outliers:
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where brob is obtained by Huber M-estimates in robust regression.

The main advantage of Huber M-estimates over LS estimates is that they are not
sensitive to outliers [6]. Thus, when there are outliers in the data, M-estimation is more
accurate than LS estimation. Huber M-estimates use a function ρ(e) that is a compromise
between e2 and |e|, where e is the error term of the regression model y = a + bx + e, a
being the constant of the model. The Huber ρ(e) function has the form:

ρ(e) =

{

e2 −k ≤ e ≤ k,

2k|e| − k2 e < −k or k < e,

where k is a tuning constant that controls the robustness of the estimator. Huber [7]
suggested k = 1.5 σ̂, where σ̂ is an estimate of the standard deviation σ of the population
random errors. Details about constant k and M-estimators can be found in Candan [2],
Rousseeuw and Leroy [13].

The value of the regression coefficient, brob is obtained by minimizing

n
∑

i=1

ρ(yi − a− bxi)

with respect to a and b [7]. The details for the minimization procedure can be found in
Birkes and Dodge [1].

We remark that the MSE equation of the proposed ratio estimators ȳpr i; i = 1, 2, . . . , 5,
is in the same form as the MSE equation in (2.6), but it is clear that B in (2.6) should
be replaced by Brob, whose value as obtained by Huber M-estimation is as follows:
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It is well known that since E [Ψ (e)] = 0, where Ψ (e) = ρ′ (e) and e has an identically
independent distribution, we can easily assume that E(brob) = Brob in (3.6), as for b
in (2.6). We would like to remark that the value of Brob is computed as brob, but the
population data is used for Brob.

4. Efficiency Comparisons

In this section we compare the MSE of the proposed estimators, given in (3.6), with
the MSE of the ratio estimators, given in (2.6).
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Similarly, for Brob −B < 0, that is Brob < B:

Brob > B − 2RKC i

Consequently, we have the following conditions:

(4.1) 0 < Brob −B < −2RKC i

or

(4.2) −2RKC i < Brob −B < 0.

When condition (4.1) or (4.2) is satisfied, the proposed estimators given in (3.1)–(3.5),
are more efficient than the ratio estimator, given in (2.1)–(2.5), respectively.

5. Numerical Illustration

We use data in Kadilar and Cingi [10] to compare efficiencies between the traditional
and proposed estimators based on the MSE equations. These data concern the level of
apple production (in tons) as the study variable and number of apple trees (1 unit =100
trees) as the auxiliary variable in 106 villages of the Aegean Region in Turkey in 1999
(Source: Institute of Statistics, Republic of Turkey).

The statistics of the population are given in Table 1.

Table 1. Data Statistics

N = 106 Ȳ = 2212.59 RKC1 = 8.0688

n = 30 X̄ = 274.22 RKC2 = 8.0076

ρ = 0.86 Sy = 11551.53 RKC3 = 7.1654

B = 17.21 Sx = 574.61 RKC4 = 8.0670

Brob = 5.02 β2(x) = 34.57 RKC5 = 7.6109

Syx = 5681761.76 Cx = 2.10
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In Figure 1 we clearly see that there are outliers in the data, so we can expect the
proposed estimators to perform better than the traditional estimators.

Figure 1. Scatter Graph of Auxiliary and Study Variables.
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Using simple random sampling, we assume a sample size of n=30. We would like to point
out that sample size has no direct effect on the efficiency comparisons of the estimators,
since the sample size n is not involved in the efficiency conditions (4.1) or (4.2), as shown
in Section 4. Note that the correlation, ρ, between the auxiliary and study variable is
0.86 for this data set.

We obtain the MSE values of the traditional and proposed estimators as defined in Sec-
tion 2 and Section 3, respectively, and using these values compute the relative efficiency
for each proposed estimator in (3.1)–(3.5) with respect to the traditional estimators in
(2.1)–(2.5) using the formulae:

(5.1) RE(ȳpr i) =
MSE (ȳpr i)

MSE (ȳKC j)
; i = 1, 2, . . . , 5 and j = 1, 2, . . . , 5.

Table 2. Theoretical Results for the Relative Efficiencies of each Proposed
Estimator with respect to the Traditional Estimators

Relative Efficiencies ȳKC1 ȳKC2 ȳKC3 ȳKC4 ȳKC5

ȳpr1 0.7217 0.7259 0.7841 0.7219 0.7530

ȳpr2 0.7247 0.7288 0.7873 0.7248 0.7560

ȳpr3 0.7694 0.7738 0.8359 0.7695 0.8027

ȳpr4 0.7218 0.7260 0.7842 0.7219 0.7531

ȳpr5 0.7447 0.7490 0.8090 0.7448 0.7769
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By this way, we compute 25 relative efficiency values for each n, as shown in Table 2 and
Table 3. If the relative efficiency value obtained from (5.1) is smaller than 1, then it is
apparent that the proposed estimator has a smaller MSE than the estimators presented
in Kadilar and Cingi [10]. Therefore, from Table 2, we see that all the proposed ratio
estimators are more efficient than the traditional ratio estimators. However, this result
is expected because the condition (4.2) is satisfied for all proposed estimators as follows:

−2RKC1
∼= −2RKC2

∼= −2RKC4
∼= −16,

−2RKC3
∼= −14 ; −2RKC5

∼= −15, and

Brob −B ∼= −12.

Thus, the condition: −2RKC i < Brob −B < 0 is satisfied.

6. Simulation Study

The following steps, which were coded in an S-plus program, summarize the simulation

procedures used to find the MSE of an estimator, say ˆ̄Y , such as ȳKC i, introduced in
Section 2 or ȳpr i, introduced in Section 3:

Step 1: We select 5000 samples of size n from the real data set, mentioned in
Section 5, using SRSWOR (simple random sampling without replacement).

Step 2: We use the data from 5000 samples in Step 1 to obtain the value of ˆ̄Y .

Thus, we find 5000 values of ˆ̄Y from 5000 samples for each n.

Step 3: For each n, the MSE of ˆ̄Y is computed by

MSE
(

ˆ̄Y
)

=
1

5000

5000
∑

i=1

(

ˆ̄Y − Ȳ
)2

,

where Ȳ is the population mean of the study variable.

In this simulation study, we take sample sizes n = 20, 30, 40, 50. The values of the
MSE ratios of the proposed estimators with respect to traditional estimators for each
n are given in Table 3. These values are computed using (5.1). From Table 3, we can
conclude that all proposed estimators are more efficient than the traditional estimators
for all sample sizes. These simulation results support the theoretical findings in Table 2.
We would also like to point out that the values of relative efficiencies of the proposed esti-
mators with respect to the traditional estimators in Table 3 would decrease dramatically,
in other words, the efficiencies of the proposed estimators would increase significantly, if
there were more outliers in data.

Table 3. Simulation Results for the Relative Efficiencies of each Proposed
Estimator with respect to the Traditional Estimators for various Sample

Sizes

Sample Sizes RE (ȳpr i) ȳKC1 ȳKC2 ȳKC3 ȳKC4 ȳKC5

n = 20 ȳpr1 0.8799 0.8904 0.9913 0.8802 0.9472

ȳpr2 0.8712 0.8816 0.9815 0.8715 0.9379

ȳpr3 0.8027 0.8124 0.9044 0.8030 0.8642

ȳpr4 0.8796 0.8902 0.9910 0.8799 0.9470

ȳpr5 0.8292 0.8392 0.9342 0.8295 0.8927
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Table 3. (Continued)

Sample Sizes RE (ȳpr i) ȳKC1 ȳKC2 ȳKC3 ȳKC4 ȳKC5

n = 30 ȳpr1 0.7813 0.7857 0.8184 0.7815 0.8064

ȳpr2 0.7813 0.7856 0.8183 0.7814 0.8063

ȳpr3 0.8029 0.8073 0.8409 0.8030 0.8286

ȳpr4 0.7813 0.7857 0.8184 0.7815 0.8064

ȳpr5 0.7870 0.7914 0.8243 0.7871 0.8122

n = 40 ȳpr1 0.9446 0.9457 0.9519 0.9447 0.9503

ȳpr2 0.9474 0.9484 0.9546 0.9474 0.9530

ȳpr3 0.9937 0.9948 0.9987 0.9937 0.9976

ȳpr4 0.9447 0.9458 0.9520 0.9448 0.9504

ȳpr5 0.9671 0.9682 0.9745 0.9672 0.9729

n = 50 ȳpr1 0.9021 0.9025 0.9042 0.9021 0.9043

ȳpr2 0.9048 0.9053 0.9069 0.9049 0.9070

ȳpr3 0.9481 0.9485 0.9503 0.9481 0.9503

ȳpr4 0.9022 0.9026 0.9043 0.9022 0.9044

ȳpr5 0.9239 0.9243 0.9260 0.9239 0.9261

7. Conclusion

From the theoretical discussion in Section 4, and the results of the numerical example
and simulation, we infer that the proposed estimators are more efficient than the ratio
estimators in Kadilar and Cingi [10] when there are outliers in data. This article shows
that M estimation can be used for the ratio estimators of the population mean in simple
random sampling and that using M estimation improves the efficiency of ratio estimators.
Chambers [4] produced the same result for M estimation in the regression estimator. In
forthcoming studies, we hope to adapt the method presented here to estimators using
two auxiliary variables as suggested by Kadilar and Cingi [9, 11].
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