$\bigwedge^{}_{}$ Hacettepe Journal of Mathematics and Statistics Volume 36 (1) (2007), 7–10

A NEW DIFFERENTIAL INEQUALITY

B.A. Frasin^{*}

Received 19:12:2005 : Accepted 21:05:2007

Abstract

We find conditions on the complex-valued function $A: U \to \mathbb{C}$ defined in the unit disc U such that the differential inequality

$$\operatorname{Re}\left[A(z)p^{2}(z) - \alpha(zp'(z) - 1)^{2} + 2\beta(zp'(z))^{2} + \gamma\right] > 0$$

implies $\operatorname{Re} p(z)>0,$ where $p\in \mathcal{H}[1,n],$ $\alpha,\beta\in \mathbb{C}$ and n is a positive integer.

Keywords: Differential subordination, Dominant. 2000 AMS Classification: 30 C 80.

1. Introduction and preliminaries

We let $\mathcal{H}[U]$ denote the class of holomorphic functions in the unit disc

 $U = \{ z \in \mathbb{C} : |z| < 1 \}.$

For $a \in \mathbb{C}$ and $n \in \mathbb{N}^*$ we let

 $\mathcal{H}[a,n] = \{ f \in \mathcal{H}[U] : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots, z \in U \}.$

In order to prove the new results we shall use the following lemma, which is a particular form of Theorem 2.3.i in [1, p.35].

1.1. Lemma. [1, p.35]. Let $\psi : \mathbb{C}^2 \times U \to \mathbb{C}$ be a function which satisfies

 $\operatorname{Re}\psi(\rho i,\sigma;z) \le 0,$

where $\rho, \sigma \in \mathbb{R}, \sigma \leq -\frac{n}{2}(1+\rho^2), z \in U \text{ and } n \geq 1.$

If $p \in \mathcal{H}[1, n]$ and

 $\operatorname{Re}\psi(p(z), zp'(z); z) > 0$

then

 $\operatorname{Re} p(z) > 0.$

^{*}Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan. E-mail: bafrasin@yahoo.com

B.A. Frasin

Oros and Cătaş [2] (see also [3]) obtained a condition on the complex-valued function $A: U \to \mathbb{C}$ defined in the unit disc U such that the differential inequality

$$\operatorname{Re}\left[A(z)p^{2}(z) - \alpha(zp'(z))^{2} + \beta zp'(z) + \gamma\right] > 0$$

implies $\operatorname{Re} p(z) > 0$, where $p \in \mathcal{H}[1, n], \alpha, \beta, \gamma \in \mathbb{R}$ and n is a positive integer.

In this note, we find new condition on the complex-valued function A defined in the unit disc U such that the differential inequality

$$\operatorname{Re}\left[A(z)p^{2}(z) - \alpha(zp'(z) - 1)^{2} + 2\beta(zp'(z))^{2} + \gamma\right] > 0$$

implies $\operatorname{Re} p(z) > 0$, where $p \in \mathcal{H}[1, n], \alpha, \beta \in \mathbb{C}$ and n is a positive integer.

2. Main results

2.1. Theorem. Let $\alpha \in \mathbb{C}$ (Re $\alpha \geq 0$), $\beta \in \mathbb{C}$, $(\alpha + \beta) \in \mathbb{R}^+$, $\gamma \leq (\alpha + \beta)n + (\frac{n^2}{4} + 1)$ Re α and let n be a positive integer. Suppose that the function $A : U \to \mathbb{C}$ satisfies:

0

(2.1)
$$\operatorname{Re} A(z) > -\frac{n^2}{4} \operatorname{Re} \alpha - \frac{n}{2} (\alpha + \beta).$$

If $p \in \mathcal{H}[1, n]$ and
(2.2) $\operatorname{Re} [A(z)p^2(z) - \alpha(zp'(z) - 1)^2 + 2\beta(zp'(z))^2 + \gamma] >$
then

 $\operatorname{Re} p(z) > 0.$

Proof. We let $\psi : \mathbb{C}^2 \times U \to \mathbb{C}$ be defined by

$$\psi(p(z), zp'(z); z) = A(z)p^{2}(z) - \alpha(zp'(z) - 1)^{2} + 2\beta(zp'(z))^{2} + \gamma.$$

From (2.2) we have

$$\operatorname{Re} \psi(p(z), zp'(z); z) > 0 \text{ for } z \in U.$$

For $z \in U$ and $\sigma, \rho \in \mathbb{R}$ satisfying $\sigma \leq -\frac{n}{2}(1+\rho^2)$, we have $-\sigma^2 \leq -\frac{n^2}{4}(1+\rho^2)^2$ and hence, using (2.1), we obtain:

By using Lemma 1.1, we have that $\operatorname{Re} p(z) > 0$.

If $\gamma = (\alpha + \beta)n + \left(\frac{n^2}{4} + 1\right) \operatorname{Re} \alpha$, then Theorem 2.1 can be rewritten as follows:

2.2. Corollary. Let $\alpha \in \mathbb{C}$ (Re $\alpha \geq 0$), $\beta \in \mathbb{C}$, $(\alpha + \beta) \in \mathbb{R}^+$, and let n be a positive integer. Suppose that the function $A: U \to \mathbb{C}$ satisfies:

(2.3)
$$\operatorname{Re} A(z) > -\frac{n^2}{4} \operatorname{Re} \alpha - \frac{n}{2} (\alpha + \beta).$$

8

A New Differential Inequality

If $p \in \mathcal{H}[1, n]$ and

(2.4) Re
$$[A(z)p^{2}(z) - \alpha(zp'(z) - 1)^{2} + 2\beta(zp'(z))^{2} + (\alpha + \beta)n + \left(\frac{n^{2}}{4} + 1\right)\operatorname{Re}\alpha] > 0$$

then

 $\operatorname{Re} p(z) > 0.$

Taking $\beta = \overline{\alpha}$ in Theorem 2.1, we have

2.3. Corollary. Let $\alpha \in \mathbb{C}$ (Re $\alpha \geq 0$), $\gamma \leq (n^2 + 8n + 4)\frac{\operatorname{Re}\alpha}{4}$, and let n be a positive integer. Suppose that the function $A: U \to \mathbb{C}$ satisfies:

(2.5) Re
$$A(z) > -(n^2 + 2n) \frac{\operatorname{Ke} \alpha}{4}$$
.
If $p \in \mathcal{H}[1, n]$ and
(2.6) Re $[A(z)p^2(z) - \alpha(zp'(z) - 1)^2 + 2\overline{\alpha}(zp'(z))^2 + \gamma] > 0$
then
Re $p(z) > 0$.

Taking $\alpha + \beta = 1$ in Theorem 2.1, we have

2.4. Corollary. Let $\alpha \in \mathbb{C}$ (Re $\alpha \geq 0$), $\gamma \leq n + \left(\frac{n^2}{4} + 1\right)$ Re α , and let n be a positive integer. Suppose that the function $A: U \to \mathbb{C}$ satisfies:

(2.7) Re
$$A(z) > -\frac{n}{4} \operatorname{Re} \alpha - \frac{n}{2}$$
.
If $p \in \mathcal{H}[1, n]$ and
(2.8) Re $[A(z)p^2(z) - \alpha(zp'(z) - 1)^2 + 2(1 - \alpha)(zp'(z))^2 + \gamma] > 0$
then
Re $p(z) > 0$.

Taking $\alpha = 0$ in Theorem 2.1, we have

2.5. Corollary. Let $\beta \ge 0$, $\gamma \le \beta n$, and let n be a positive integer. Suppose that the function $A: U \to \mathbb{C}$ satisfies:

(2.9) Re
$$A(z) > -\frac{n}{2}\beta$$
.
If $p \in \mathcal{H}[1, n]$ and
(2.10) Re $[A(z)p^{2}(z) + 2\beta(zp'(z))^{2} + \gamma] > 0$
then

 $\operatorname{Re} p(z) > 0.$

Taking $\beta = 0$ in Theorem 2.1, we have

2.6. Corollary. Let $\alpha \geq 0$, $\gamma \leq \alpha n + \left(\frac{n^2}{4} + 1\right) \alpha$, and let n be a positive integer. Suppose that the function $A: U \to \mathbb{C}$ satisfies:

(2.11) Re
$$A(z) > -\frac{n^2}{4}\alpha - \frac{n}{2}\alpha$$
.
If $p \in \mathcal{H}[1, n]$ and
(2.12) Re $[A(z)p^2(z) - \alpha(zp'(z) - 1)^2 + \gamma] >$
then

$$\operatorname{Re} p(z) > 0.$$

0

B.A. Frasin

References

- [1] Miller, S. S. and Mocanu, P. T. Differential Subordinations. Theory and Applications (Marcel Dekker Inc., New York, Basel, 2000).
 [2] Oros, Gh. I. On a differential inequality II, General Mathematics 10 (1-2), 33–36, 2002.
- [3] Oros, Gh. I. and Cătaş, A. A new differential inequality I, General Mathematics 11 (1-2), $47\text{--}52,\ 2003.$

10