SOME RESULTS ON PRIME RINGS AND (σ, τ) - LIE IDEALS

E. Güven* and M. Soytürk*

Received 27:04:2006 : Accepted 08:03:2007

Abstract

Let R be a prime ring with characteristic not $2, \sigma, \tau, \alpha, \beta, \lambda$ and μ automorphisms of R and $d: R \longrightarrow R$ a nonzero (σ, τ)-derivation. Suppose that $a \in R$. In this paper, we give some results on (σ, τ) Lie ideals and prove that: (1) If $[a, d(R)]_{\alpha, \beta}=0$ and $d \sigma=\sigma d$, $d \tau=\tau d$, then $a \in C_{\alpha, \beta}$. (2) Let d_{1} be a nonzero (σ, τ)-derivation and d_{2} an (α, β)-derivation of R such that $d_{2} \alpha=\alpha d_{2}, d_{2} \beta=\beta d_{2}$. If [$\left.d_{1}(R), d_{2}(R)\right]_{\lambda, \mu}=0$ then R is commutative. (3) If I is a nonzero ideal of R and $d(x, y)=0$ for all $x, y \in I$, then R is commutative. (4) If $d(R, a)=0$ then $(d(R), a)_{\sigma, \tau}=0$.

Keywords: Prime ring, (σ, τ)-derivation, Commutativity.
2000 AMS Classification: $16 \mathrm{~W} 25,16 \mathrm{U} 80$.

1. Introduction

Let $\sigma, \tau, \alpha, \beta, \lambda, \mu$ be automorphisms of a ring R and U an additive subgroup of R. The definition of (σ, τ)-Lie ideal is given in [6] as follows.
(i) U is a right (σ, τ)-Lie ideal of R, if $[U, R]_{\sigma, \tau} \subset U$.
(ii) U is a left (σ, τ)-Lie ideal of R, if $[R, U]_{\sigma, \tau} \subset U$.
(iii) U is a (σ, τ)-Lie ideal of R if U is both a left (σ, τ)-Lie ideal of R and a right (σ, τ)-Lie ideal of R.
It is clear that every Lie ideal of R is a $(1,1)$-Lie ideal of R.
An additive mapping $d: R \longrightarrow R$ is called a (σ, τ)-derivation if $d(x y)=d(x) \sigma(y)+$ $\tau(x) d(y)$ for all $x, y \in \mathrm{R}$. We write $[x, y]_{\sigma, \tau}=x \sigma(y)-\tau(y) x,[x, y]=x y-y x, C_{\sigma, \tau}=\{c \in$ $R \mid c \sigma(r)=\tau(r) c$ for all $r \in R\}$ and use the following commutator identities extensively.
(A): $[x y, z]_{\sigma, \tau}=x[y, z]_{\sigma, \tau}+[x, \tau(z)] y=x[y, \sigma(z)]+[x, z]_{\sigma, \tau} y$
(B): $[x, y z]_{\sigma, \tau}=\tau(y)[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z)$
(C): $(x y, z)_{\sigma, \tau}=x(y, z)_{\sigma, \tau}-[x, \tau(z)] y=x[y, \sigma(z)]+(x, z)_{\sigma, \tau} y$
(D): $(x, y z)_{\sigma, \tau}=\tau(y)(x, z)_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z)$

[^0]Suppose that a is an element of R such that $a d(x)=d(x) a$ for all $x \in R$. Then, a must be central due to Herstein's theorem [4]. In [2], J. C.Chang extended this result by assuming that $[a, \delta(x)]=0$ for all $x \in R$, where δ is an (α, β)-derivation of R such that $\delta \alpha=\alpha \delta$, $\delta \beta=\beta \delta$. One of the goals of this paper is to generalize the preceding results in the form expressed in abstract (1). In [3,Theorem 2] Herstein proved that if $[d(x), d(y)]=0$ for all $x \in R$ then R is commutative. J. C.Chang extended this result in [2,Theorem-2(i)] by assuming that $[\delta(x), \delta(y)=0$ for all $x, y \in R$, where δ is an (α, β)-derivation of R such that $\delta \alpha=\alpha \delta, \delta \beta=\beta \delta$. In this paper, we generalize this result in the form expressed in abstract (2). Furthermore, we give some results on (σ, τ)-Lie ideals in prime rings.

2. Results

2.1. Lemma. [7, Lemma 3] Let R be a prime ring. If $b, a b \in C_{\sigma, \tau}$ then $a \in Z$ or $b=0$.
2.2. Lemma. [5, Lemma 2] Let U be a nonzero left (σ, τ)-Lie ideal of R and $d: R \longrightarrow R$ a nonzero derivation. If $d(U)=0$ then $[U, \sigma(U)]=0$ and $[\sigma(U), \tau(U)]=0$.
2.3. Lemma. [8, Lemma 1] Let U be a nonzero ideal of R and $d: R \longrightarrow R$, a nonzero (σ, τ)-derivation such that $d \sigma=\sigma d, d \tau=\tau d$. If $d^{2}(U)=0$ then $d=0$.
2.4. Lemma. Let U be a nonzero left (σ, τ)-Lie ideal of R. If $U \subset C_{\alpha, \beta}$ then $U \subset Z$.

Proof. For any $r, x \in R, v \in U$, we have

$$
\begin{aligned}
0 & =\left[[r \sigma(v), v]_{\sigma, \tau}, x\right]_{\alpha, \beta} \\
& =\left[r[\sigma(v), \sigma(v)]+[r, v]_{\sigma, \tau} \sigma(v), x\right]_{\alpha, \beta} \\
& =[r, v]_{\sigma, \tau}[\sigma(v), \alpha(x)]+\left[[r, v]_{\sigma, \tau}, x\right]_{\alpha, \beta} \sigma(v) \\
& =[r, v]_{\sigma, \tau}[\sigma(v), \alpha(x)]
\end{aligned}
$$

That is:

$$
\begin{equation*}
[r, v]_{\sigma, \tau}[\sigma(v), \alpha(x)]=0, \text { for all } r, x \in R, v \in U \tag{2.1}
\end{equation*}
$$

Replacing x by $x z, z \in R$ in (2.1) and using the primeness of R we get
(2.2) $\quad[r, v]_{\sigma, \tau}=0$, for all $r \in R$ or $[\sigma(v), R]=0$.

If $[r, v]_{\sigma, \tau}=0$ for all $r \in R$, then $0=[r t, v]_{\sigma, \tau}=r[t, v]_{\sigma, \tau}+[r, \tau(v)] t=[r, \tau(v)] t$, for all $r, t \in R$. Since R is prime we obtain $v \in Z$ from the last relation. That is, $U \subset Z$ is obtained from (2.2).

The following lemma is a generalization of [3,Lemma 5.1].
2.5. Lemma. Let d be a nonzero (σ, τ)-derivation on R. If $d(R) \subset C_{\lambda, \mu}$, then R is commutative.

Proof. For any $x, y, r \in R$ we have

$$
\begin{aligned}
0 & =[d(x y), r]_{\lambda, \mu} \\
& =[d(x) \sigma(y)+\tau(x) d(y), r]_{\lambda, \mu} \\
& =d(x)[\sigma(y), \lambda(r)]+[d(x), r]_{\lambda, \mu} \sigma(y)+\tau(x)[d(y), r]_{\lambda, \mu}+[\tau(x), \mu(r)] d(y) \\
& =d(x)[\sigma(y), \lambda(r)]+[\tau(x), \mu(r)] d(y)
\end{aligned}
$$

Replacing r by $\mu^{-1} \tau(x)$ in the last relation we have,

$$
\begin{equation*}
0=d(x)\left[\sigma(y), \lambda \mu^{-1} \tau(x)\right], \text { for all } x, y \in R \tag{2.3}
\end{equation*}
$$

If we take $y z$ instead of y in (2.3), and use the primeness of R we have $d(x)=0$ or $x \in Z$. Let us consider Brauer's Trick. Note that $K=\{x \in R \mid x \in Z\}$ and
$L=\{x \in R \mid d(x)=0\}$ are subgroups of R, furthermore $R=K \cup L$. This gives $R=K$ or $R=L$ by Brauer's Trick. Since d is nonzero, we obtain that $R=K$, and so R is commutative.
2.6. Theorem. If d is a nonzero (σ, τ)-derivation of R such that $d \sigma=\sigma d, d \tau=\tau d$ and $[a, d(R)]_{\alpha, \beta}=0$, then $a \in C_{\alpha, \beta}$.

Proof. Let $[a, d(R)]_{\alpha, \beta}=0$. For any $x, y \in R$ we have

$$
\begin{aligned}
0 & =[a, d(x y)]_{\alpha, \beta} \\
& =[a, d(x) \sigma(y)+\tau(x) d(y)]_{\alpha, \beta} \\
& =\beta d(x)[a, \sigma(y)]_{\alpha, \beta}+[a, \tau(x)]_{\alpha, \beta} \alpha d(y),
\end{aligned}
$$

for all $x, y \in R$. Replacing x by $\tau^{-1} d(x)$ in the last relation and using the hypothesis, we get
(2.4) $\quad \beta d \tau^{-1} d(x)[a, \sigma(y)]_{\alpha, \beta}=0$, for all $x, y \in R$.

If we take $y z, z \in R$ instead of y in (2.4) we obtain $\beta d \tau^{-1} d(x) \beta \sigma(y)[a, \sigma(z)]_{\alpha, \beta}=0$, for all $x, y, z \in R$. Since R is prime and σ, β are onto we have:

$$
\begin{equation*}
d \tau^{-1} d(R)=0 \text { or }[a, R]_{\alpha, \beta}=0 \tag{2.5}
\end{equation*}
$$

Now $d \tau=\tau d$ and $d \tau^{-1} d(R)=0$ imply that $d^{2}(R)=0$. Thus $d=0$ by Lemma 2.3. Hence $a \in C_{\alpha, \beta}$ follows from (2.5) and the hypothesis.
2.7. Corollary. Let U be a nonzero right (σ, τ)-Lie ideal of R and d a nonzero derivation on R such that $d \sigma=\sigma d, d \tau=\tau d$. If $d(U)=0$ then $U \subset C_{\sigma, \tau}$.

Proof. We have

$$
\begin{aligned}
0 & =d[v, r]_{\sigma, \tau} \\
& =d(v \sigma(r)-\tau(r) v) \\
& =v d \sigma(r)-d \tau(r) v,
\end{aligned}
$$

for all $r \in R, v \in U$. So we obtain $[v, d(r)]_{\sigma, \tau}=0$ for all $r \in R, v \in U$. This implies that $U \subset C_{\sigma, \tau}$ by Theorem 2.6.
2.8. Theorem. (1) Let U be a nonzero left (σ, τ)-Lie ideal of R and d a nonzero (α, β)-derivation on R such that $d \alpha=\alpha d, d \beta=\beta d$. If $[U, d(R)]_{\lambda, \mu}=0$ then $U \subset Z$.
(2) Let d_{1} be a nonzero (σ, τ)-derivation, d_{2} a nonzero (α, β)-derivation on R such that $d_{2} \alpha=\alpha d_{2}$ and $d_{2} \beta=\beta d_{2}$. If $\left[d_{1}(R), d_{2}(R)\right]_{\lambda, \mu}=0$ then R is commutative.

Proof. (1) If $[U, d(R)]_{\lambda, \mu}=0$ then we have $U \subset C_{\lambda, \mu}$ by Theorem 2.6. This implies that $U \subset Z$ by Lemma 2.4.
(2) If $\left[d_{1}(R), d_{2}(R)\right]_{\lambda, \mu}=0$ then $d_{1}(R) \subset C_{\lambda, \mu}$ by Theorem 2.6. This implies that R is commutative by Lemma 2.5.
2.9. Theorem. Let d be a nonzero (σ, τ)-derivation and $a \in R$. If $d(R, a)=0$ then $(d(R), a)_{\sigma, \tau}=0$.

Proof. For any $r \in R$, using the hypothesis, we have:

$$
\begin{aligned}
0 & =d(a r, a)=d(a(r, a)-[a, a] r) \\
& =d(a(r, a)) \\
& =d(a) \sigma(r, a)+\tau(a) d(r, a) \\
& =d(a) \sigma(r, a) .
\end{aligned}
$$

That is,

$$
\begin{equation*}
d(a) \sigma(r, a)=0, \text { for all } r \in R \tag{2.6}
\end{equation*}
$$

Replacing r by $r x, x \in R$ in (2.6) we get, $0=d(a) \sigma(r) \sigma[x, a]+d(a) \sigma(r, a) \sigma(x)$. Thus we obtain
(2.7) $\quad d(a) \sigma(r) \sigma[x, a]=0$, for all $x, r \in R$.

Since R is prime we have $d(a)=0$ or $a \in Z$ by (2.7). If $a \in Z$ then we can deduce that $d(a)=0$ as follows. Firstly,

$$
\begin{aligned}
0 & =d(r, a) \\
& =2 d(r a) \\
& =2 d(r) \sigma(a)+2 \tau(r) d(a)
\end{aligned}
$$

for all $r \in R$. Replacing r by (r, a) in the preceding relation and using that char $R \neq 2$, we have
(2.8) $\quad \tau(r, a) d(a)=0$, for all $r \in R$.

Since $a \in Z$ and char $R \neq 2$ we have $a R \tau^{-1} d(a)=0$ by (2.8) and so $d(a)=0$ is obtained. Thus, we have, $0=d(r, a)=(d(r), a)_{\sigma, \tau}+(d(a), r)_{\sigma, \tau}=(d(r), a)_{\sigma, \tau}$, for all $r \in R$.
2.10. Lemma. Let U be a nonzero left (σ, τ)-Lie ideal of R and d a nonzero derivation of R such that $d \sigma=\sigma d$ and $d \tau=\tau d$. If $d(U)=0$ then U is commutative.

Proof. For any $r \in R, v \in U$ we have

$$
\begin{aligned}
0 & =d[r, v]_{\sigma, \tau} \\
& =d(r \sigma(v)-\tau(v) r) \\
& =d(r) \sigma(v)+r d \sigma(v)-d \tau(v) r-\tau(v) d(r) \\
& =d(r) \sigma(v)-\tau(v) d(r) .
\end{aligned}
$$

That is,
(2.9) $\quad d(r) \sigma(v)=\tau(v) d(r$ for all $r \in R, v \in U$.

Replacing r by $r x, x \in R$ in (2.9) and using (2.9) again we get:

$$
\begin{aligned}
0 & =d(r x) \sigma(v)-\tau(v) d(r x) \\
& =d(r) x \sigma(v)+r d(x) \sigma(v)-\tau(v) d(r) x-\tau(v) r d(x) \\
& =d(r) x \sigma(v)+r \tau(v) d(x)-d(r) \sigma(v) x-\tau(v) r d(x),
\end{aligned}
$$

for all $x, r \in R, v \in U$. That is,
(2.10) $d(r)[x, \sigma(v)]+[r, \tau(v)] d(x)=0$, for all $x, r \in R, v \in U$.

If we take $\sigma(w), w \in U$ instead of x in (2.10) we obtain, $d(R)[\sigma(w), \sigma(v)]=0$,for all $v, w \in U$. Since R is prime we have $d=0$ or $\sigma[U, U]=0$. Since $d \neq 0$ we get $[U, U]=0$.
2.11. Lemma. Let U be a nonzero left (σ, τ)-Lie ideal of R and d a nonzero derivation of R such that $d \sigma=\sigma d, d \tau=\tau d$. If $d^{2}(U)=0$ and $d(U) \subset Z$ then U is commutative.

Proof. For all $x \in R$ and $u \in U$ we have

$$
U \ni[\tau(u) x, u]_{\sigma, \tau}=\tau(u)[x, u]_{\sigma, \tau}[\tau(u), \tau(u)] x=\tau(u)[x, u]_{\sigma, \tau}
$$

That is, $\tau(u)[x, u]_{\sigma, \tau} \in U$, for all $x \in R, u \in U$. Thus,

$$
\begin{aligned}
0 & =d^{2}\left(\tau(u)[x, u]_{\sigma, \tau}\right) \\
& =d\left(d \tau(u)[x, u]_{\sigma, \tau}+\tau(u) d[x, u]_{\sigma, \tau}\right) \\
& =d^{2} \tau(u)[x, u]_{\sigma, \tau}+d \tau(u) d[x, u]_{\sigma, \tau}+d \tau(u) d[x, u]_{\sigma, \tau}+\tau(u) d^{2}[x, u]_{\sigma, \tau}
\end{aligned}
$$

gives
(2.11) $d \tau(u) d[x, u]_{\sigma, \tau}=0$, for all $x \in R, u \in U$.

Replacing u by $u+v, v \in U$ in (2.11) we obtain,
(2.12) $d \tau(u) d[x, v]_{\sigma, \tau}+d \tau(v) d[x, u]_{\sigma, \tau}=0$, for all $x \in R, u, v \in U$.

If we multiply (2.12) on the by left by $d \tau(u)$ and use that $d(U) \subset Z$ and $d \tau=\tau d$, we have that
(2.13) $\quad(d \tau(u))^{2} d[R, U]_{\sigma, \tau}=0$, for all $u \in U$.

On the other hand, for any $x \in R$ and $v \in U$ we obtain:

$$
\begin{aligned}
{[x \sigma(v), v]_{\sigma, \tau} } & =x[\sigma(v), \sigma(v)]+[x, v]_{\sigma, \tau} \sigma(v) \\
& =[x, v]_{\sigma, \tau} \sigma(v) \in[R, U]_{\sigma, \tau}
\end{aligned}
$$

That is, $d\left([x, v]_{\sigma, \tau} \sigma(v)\right) \in d[R, U]_{\sigma, \tau}$. If we consider this relation in (2.13) we have,

$$
\begin{aligned}
0 & =(d \tau(u))^{2} d\left([x, v]_{\sigma, \tau} \sigma(v)\right) \\
& =(d \tau(u))^{2} d[x, v]_{\sigma, \tau} \sigma(v)+(d \tau(u))^{2}[x, v]_{\sigma, \tau} d \sigma(v)
\end{aligned}
$$

That is,
(2.14) $\quad(d \tau(u))^{2}[x, v]_{\sigma, \tau} d \sigma(v)=0$, for all $x \in R, u, v \in U$.

Taking $v+w, w \in U$ instead of v in (2.14) we get

$$
\begin{aligned}
& 0=(d \tau(u))^{2}[x, v+w]_{\sigma, \tau} d \sigma(v+w) \\
&=(d \tau(u))^{2}[x, v]_{\sigma, \tau} d \sigma(v)+(d \tau(u))^{2}[x, w]_{\sigma, \tau} d \sigma(v)+(d \tau(u))^{2}[x, v]_{\sigma, \tau} d \sigma(w) \\
&+(d \tau(u))^{2}[x, w]_{\sigma, \tau} d \sigma(w)
\end{aligned}
$$

If we use (2.14), we obtain:
(2.15) $\quad(d \tau(u))^{2}[x, v]_{\sigma, \tau} d \sigma(w)+(d \tau(u))^{2}[x, w]_{\sigma, \tau} d \sigma(v)=0$, for all $x \in R, u, v, w \in U$.

Let us multiply (2.15) by $d \sigma(v)$ on the right hand side, and use that $d(U) \subset Z$ and (2.14).
Then we have,
(2.16) $\quad(d \tau(u))^{2}[x, w]_{\sigma, \tau}(d \sigma(v))^{2}=0$, for all $x \in R, u, v, w \in U$.

Since $d(U) \subset Z$ and R is prime we obtain:
(2.17) $(d \tau(u))^{2}[x, w]_{\sigma, \tau}=0$, for all $x \in R, u, w \in U$ or $(d \sigma(v))^{2}=0$, for all $v \in U$.

If we recall that $d(U) \subset Z$ and $d \sigma=\sigma d, d \tau=\tau d$, we obtain $d(U)=0$ or $[R, U]_{\sigma, \tau}=0$.
Case 1. If $[R, U]_{\sigma, \tau}=0$ then for all $x, y \in R, v \in U$ we have,

$$
\begin{aligned}
0 & =[x y, v]_{\sigma, \tau} \\
& =x\left[y, \sigma(v]+[x, v]_{\sigma, \tau} y\right. \\
& =x[y, \sigma(v]
\end{aligned}
$$

That is, $R[R, \sigma(U)]=0$. Since R is prime we obtain $U \subset Z$.

Case 2. If $d(U)=0$ then U is commutative by Lemma 2.10.
2.12. Theorem. Let U be a nonzero left (σ, τ)-Lie ideal of R and d a nonzero derivation of R such that $d \sigma=\sigma d$ and $d \tau=\tau d$. If $d(U) \subset Z$ then U is commutative.

Proof. Let $x, y \in R$ and $u, v \in U$. Then we have,

$$
\begin{aligned}
Z \ni d[d(v) x, u]_{\sigma, \tau} & =d\left(d(v)[x, u]_{\sigma, \tau}+[d(v), \tau(u)] x\right) \\
& =d\left(d(v)[x, u]_{\sigma, \tau}\right) \\
& =d^{2}(v)[x, u]_{\sigma, \tau}+d(v) d[x, u]_{\sigma, \tau}
\end{aligned}
$$

for all $x \in R, u, v \in U$. Since $d(v) d[x, u]_{\sigma, \tau} \in Z$ we have:

$$
\begin{equation*}
d^{2}(v)[x, u]_{\sigma, \tau} \in Z, \text { for all } x \in R, u, v \in U \tag{2.18}
\end{equation*}
$$

If we recall that $d(U) \subset Z$, then Lemma 2.1 and (2.18) give $d^{2}(v)=0$, for all $v \in U$, or $[x, u]_{\sigma, \tau} \in Z$, for all $x \in R, u \in U$.
Case 1. If $d^{2}(U)=0$, then U is commutative by Lemma 7 .
Case 2. If $[x, u]_{\sigma, \tau} \in Z$, for all $x \in R, u \in U$, then

$$
Z \ni[x \sigma(u), u]_{\sigma, \tau}=x[\sigma(u), \sigma(u)]+[x, u]_{\sigma, \tau} \sigma(u)=[x, u]_{\sigma, \tau} \sigma(u)
$$

for all $x \in R, u \in U$. Again applying Lemma 2.1 in the last relation we obtain,
(2.19) $\quad[x, u]_{\sigma, \tau}=0$, for all $x \in R$, or $u \in Z$.

If $[x, u]_{\sigma, \tau}=0$, for all $x \in R$ then,

$$
\begin{aligned}
0 & =[x r, u]_{\sigma, \tau} \\
& =x[r, \sigma(u)]+[x, u]_{\sigma, \tau} r \\
& =x[r, \sigma(u)]
\end{aligned}
$$

for all $x, r \in R, u \in U$. That is,$R[R, \sigma(u)]=0$. Since R is prime, the last equation gives us $u \in Z$. So, we have $u \in Z$ for the two cases in (2.19). Hence we obtain $U \subset Z$, so again U is commutative.
2.13. Theorem. Let U be a nonzero left (σ, τ)-Lie ideal of R and d a nonzero derivation of R such that $d \sigma=\sigma d$ and $d \tau=\tau d$. If $d(U)=0$ and $u^{2} \in Z$ for all $u \in U$ then $U \subset Z$.

Proof. If $d(U)=0$ then $[U, \sigma(U)]=0$ by Lemma 2.2, and U is commutative by Lemma 2.10. For any $u, v \in U$ we have $(u+v)^{2}=u^{2}+v^{2}+2 u v \in Z$. Since char $R \neq 2$ we have $u v \in Z$ for all $u, v \in U$. Now let us take the arbitrary elements r, s of R and u, v of U. Then we get
(2.20) $[r, u]_{\sigma, \tau}[s, v]_{\sigma, \tau} \in Z$, for all $r, s \in R, u, v \in U$.

Replacing s by $s x, x \in R$, in (2.20), we have

$$
Z \ni[r, u]_{\sigma, \tau}[s x, v]_{\sigma, \tau}=[r, u]_{\sigma, \tau} s[x, \sigma(v)]+[r, u]_{\sigma, \tau}[s, v]_{\sigma, \tau} x
$$

Taking $w \in U$ instead of x, and using that $[U, \sigma(U)]=0$ in the preceding relation, we get:
(2.21) $[r, u]_{\sigma, \tau}[s, v]_{\sigma, \tau} w \in Z$, for all $r, s \in R, u, v, w \in U$.

From the (2.20), (2.21) and Lemma 2.1 we have,
(2.22) $[r, u]_{\sigma, \tau}[s, v]_{\sigma, \tau}=0$, for all $r, s \in R, u, v \in U$, or $w \in Z$, for all $w \in U$.

If $[r, u]_{\sigma, \tau}[s, v]_{\sigma, \tau}=0$ for all $r, s \in R, u, v \in U$, then

$$
\begin{aligned}
0 & =[r t, u]_{\sigma, \tau}[s, v]_{\sigma, \tau} \\
& =r[t, u]_{\sigma, \tau}[s, v]_{\sigma, \tau}+[r, \tau(u)] t[s, v]_{\sigma, \tau} \\
& =[r, \tau(u)] t[s, v]_{\sigma, \tau},
\end{aligned}
$$

for all $r, t, s \in R, u, v \in U$. This gives that $[R, \tau(U)] R[R, U]_{\sigma, \tau}=0$. On the other hand, $[R, U]_{\sigma, \tau}=0$ implies that $U \subset Z$ as we saw in the proof of Lemma 2.11.

References

[1] Chang, J. C. On fixed power central (α, β)-derivations, Bull. Inst. Math. Acad. Scica 15 (2), 163-178, 1975.
[2] Chang, J. C. On (α, β)-derivations of prime rings, Chinese J. Math.(Taiwan, R.O.C.) 22 (1), 21-30, 1994.
[3] Herstein, I. N. A note on derivations, Canad. Math. Bull. 21, 369-370, 1978.
[4] Herstein, I. N. A note on derivations, II, Canad. Math. Bull. 22 (4), 509-511, 1979.
[5] Kaya, K. and Aydın, N. Some results on generalized Lie ideals, A Scientific Journal Issued by Jordan University for Women 3 (1), 1999.
[6] Kaya, K. (σ, τ)-Lie ideals in prime rings, An. Univ. Timisoara, Stiinte Mat. 30 (2-3), 251-255, 1992.
[7] Kaya, K. On (σ, τ)-derivations of prime rings, Doğa TU Mat. D. C. 12 (2), 42-45, 1988.
[8] Soytürk, M. The commutativity of prime rings with (σ, τ)-derivations, C. Ü. Fen Bil. Derg. 15-16, 1996.

[^0]: *Department of Mathematics, Kocaeli University, Kocaeli, Turkey.
 E-mail : (E. Güven) evrimokaya@yahoo.com (M. Soytürk) msoyturk@kou.edu.tr

