SOME REMARKS ON INDEFINITE BINARY QUADRATIC FORMS AND QUADRATIC IDEALS

Ahmet Tekcan*

Received $07: 11: 2006$: Accepted $25: 01: 2007$

Abstract

Let δ denote a real quadratic irrational with trace $t=\delta+\bar{\delta}$ and norm $n=\delta \bar{\delta}$. Given a real quadratic irrational $\gamma \in \mathbb{Q}(\delta)$, there are rational integers P and Q such that $\gamma=\frac{P+\delta}{Q}$ with $Q \mid(\delta+P)(\bar{\delta}+P)$. Hence for each $\gamma=\frac{P+\delta}{Q}$, there is a corresponding ideal $I_{\gamma}=[Q, P+\delta]$, and an indefinite binary quadratic form $F_{\gamma}(x, y)=Q(x+\delta y)(x+\bar{\delta} y)$ of discriminant $\Delta=t^{2}-4 n$. In the first section, we give some preliminaries from binary quadratic forms and ideals. In the second section, we obtain some properties of I_{γ} and F_{γ} for $\delta=\sqrt{D}$, where $D \neq 1$ is the Extended-Richaud-Degert type (ERD-type), that is, $D=w^{2}+v$ for positive integers w and v such that $v \mid 4 w$. In the third section, we obtain some properties of a special family of ideals I_{γ} and indefinite quadratic forms F_{γ} for $\gamma=\frac{w+1+\sqrt{D}}{2 w-v+1}$.

Keywords: ERD-type, Ideal, Indefinite quadratic form, Quadratic irrational, Cycle of an ideal, Cycle of a form, Ambiguous form.
2000 AMS Classification: 11E20, 11E25, 11E76, 11J70.

1. Introduction.

A real binary quadratic form (or just a form) F is a polynomial in two variables x, y of the type

$$
\begin{equation*}
F=F(x, y)=a x^{2}+b x y+c y^{2} \tag{1.1}
\end{equation*}
$$

with real coefficients a, b, c. We denote F briefly by $F=(a, b, c)$. The discriminant of F is defined by the formula $b^{2}-4 a c$ and is denoted by Δ. If $\operatorname{gcd}(a, b, c)=1$, then F is called primitive. A quadratic form F of discriminant Δ is called indefinite if $\Delta>0$, and

[^0]is called reduced if $|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta}$ (for further details on binary quadratic forms see $[1,2,3]$).

There is a strong connection between binary quadratic forms and the extended modular group $\bar{\Gamma}$. Gauss (1777-1855) defined the group action of $\bar{\Gamma}$ on the set of forms as follows:

$$
\begin{align*}
g F(x, y)=\left(a r^{2}+b r s+c s^{2}\right) x^{2}+(2 a r t+b r u+b t s & +2 c s u) x y \\
& +\left(a t^{2}+b t u+c u^{2}\right) y^{2} \tag{1.2}
\end{align*}
$$

for $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$ and $F=(a, b, c)$. Two forms F and G are called equivalent iff there exists a $g \in \bar{\Gamma}$ such that $g F=G$. If $\operatorname{det} g=1$, then F and G are called properly equivalent. If $\operatorname{det} g=-1$, then F and G are called improperly equivalent. A quadratic form F is said to be ambiguous if it is improperly equivalent to itself (see [7] for the connection between the extended modular group and binary quadratic forms).

Let $F=(a, b, c)$ be an indefinite reduced quadratic form of discriminant Δ. Then the cycle of F is given by the following theorem.
1.1. Theorem. [1, Sec: 6.10, p.106] Let $F=(a, b, c)$ be an indefinite reduced quadratic form of discriminant Δ. Then the cycle of F of length l is $F_{0} \sim F_{1} \sim F_{2} \sim \cdots \sim F_{l-1}$, where $F_{0}=F=\left(a_{0}, b_{0}, c_{0}\right)$,

$$
\begin{equation*}
s_{i}=\left|s\left(F_{i}\right)\right|=\left[\frac{b_{i}+\sqrt{\Delta}}{2\left|c_{i}\right|}\right] \tag{1.3}
\end{equation*}
$$

and

$$
\begin{align*}
F_{i+1} & =\left(a_{i+1}, b_{i+1}, c_{i+1}\right) \\
& =\left(\left|c_{i}\right|,-b_{i}+2 s_{i}\left|c_{i}\right|,-\left(a_{i}+b_{i} s_{i}+c_{i} s_{i}^{2}\right)\right) \tag{1.4}
\end{align*}
$$

for $0 \leq i \leq l-2$.
Mollin [4, p.4] considers the arithmetic of ideals in his book. Let $D \neq 1$ be a square free integer and let $\Delta=\frac{4 D}{r^{2}}$, where $r=2$ if $D \equiv 1(\bmod 4)$, and $r=1$, otherwise. If we set $\mathbb{K}=\mathbb{Q}(\sqrt{D})$, then \mathbb{K} is called a quadratic number field of discriminant Δ and O_{Δ} is the ring of integers of the quadratic field \mathbb{K} of discriminant Δ. Let $I=[\alpha, \beta]$ denote the \mathbb{Z}-module $\alpha \mathbb{Z} \oplus \beta \mathbb{Z}$, i.e., the additive abelian group, with basis elements α and β consisting of $\{\alpha x+\beta y: x, y \in \mathbb{Z}\}$. Note that $O_{\Delta}=\left[1, \frac{1+\sqrt{D}}{r}\right]$. In this case $w_{\Delta}=\frac{r-1+\sqrt{D}}{r}$ is called the principal surd. Every principal surd $w_{\Delta} \in O_{\Delta}$ can be uniquely expressed as $w_{\Delta}=x \alpha+y \beta$, where $x, y \in \mathbb{Z}$ and $\alpha, \beta \in O_{\Delta}$. We call α, β an integral basis for \mathbb{K}.

If $\frac{\alpha \bar{\beta}-\beta \bar{\alpha}}{\sqrt{\Delta}}>0$, then α and β are called ordered basis elements. Recall that two bases of an ideal are ordered if and only if they are equivalent under an element of $\bar{\Gamma}$. If I has ordered basis elements, then we say that I is simply ordered. If I is ordered, then

$$
F(x, y)=\frac{N(\alpha x+\beta y)}{N(I)}
$$

is a quadratic form of discriminant Δ. In this case we say that F belongs to I, and write $I \rightarrow F$. Conversely, let us assume that

$$
G(x, y)=A x^{2}+B x y+C y^{2}=d\left(a x^{2}+b x y+c y^{2}\right)
$$

is a quadratic form, where $d= \pm \operatorname{gcd}(A, B, C)$ and $b^{2}-4 a c=\Delta$. If $B^{2}-4 A C>0$, then we get $d>0$ and if $B^{2}-4 A C<0$, then we choose d such that $a>0$. If

$$
I=[\alpha, \beta]= \begin{cases}{\left[a, \frac{b-\sqrt{\Delta}}{2}\right]} & \text { for } a>0 \\ {\left[a, \frac{b-\sqrt{\Delta}}{2}\right] \sqrt{\Delta}} & \text { for } a<0 \text { and } \Delta>0,\end{cases}
$$

then I is an ordered O_{Δ}-ideal. Note that if $a>0$, then I is primitive and if $a<0$, then $\frac{I}{\sqrt{\Delta}}$ is primitive. Thus to every form G, there corresponds an ideal I to which G belongs and we write $G \rightarrow I$. Hence we have a correspondence between ideals and quadratic forms (for further details see [4, p. 350]).
1.2. Theorem. [4, Sec:1.2, p.9] If $I=\left[a, b+c w_{\Delta}\right]$, then I is a non-zero ideal of O_{Δ} if and only if

$$
c|b, c| a \text { and } a c \mid N\left(b+c w_{\Delta}\right)
$$

Let δ denote a real quadratic irrational integer with trace $t=\delta+\bar{\delta}$ and norm $n=\delta \bar{\delta}$. Given a real quadratic irrational $\gamma \in \mathbb{Q}(\delta)$, there are rational integers P and Q such that $\gamma=\frac{P+\delta}{Q}$ with $Q \mid(\delta+P)(\bar{\delta}+P)$. Hence for each $\gamma=\frac{P+\delta}{Q}$ there is a corresponding \mathbb{Z}-module

$$
\begin{equation*}
I_{\gamma}=[Q, P+\delta], \tag{1.5}
\end{equation*}
$$

(in fact, this module is an ideal by Theorem 1.2), and an indefinite quadratic form

$$
\begin{equation*}
F_{\gamma}(x, y)=Q(x+\delta y)(x+\bar{\delta} y) \tag{1.6}
\end{equation*}
$$

of discriminant $\Delta=t^{2}-4 n$.
The ideal I_{γ} in (1.5) is said to be reduced if and only if

$$
\begin{equation*}
P+\delta>Q \text { and }-Q<P+\bar{\delta}<0 \tag{1.7}
\end{equation*}
$$

and is said to be ambiguous if and only if it contains both $\frac{P+\delta}{Q}$ and $\frac{P+\bar{\delta}}{Q}$, hence if and only if $\frac{2 P}{Q} \in \mathbb{Z}$.

Let $\left\langle m_{0}, \overline{m_{1} m_{2} \ldots m_{l-1}}\right\rangle$ denote the continued fraction expansion of $\gamma=\frac{P+\delta}{Q}$ with period length $l=l(I)$. Then the cycle of I_{γ} is $I_{\gamma}=I_{\gamma}^{0} \sim I_{\gamma}^{1} \sim \ldots \sim I_{\gamma}^{l-1}$, where

$$
\begin{equation*}
m_{i}=\left[\frac{P_{i}+\delta}{Q_{i}}\right], P_{i+1}=m_{i} Q_{i}-P_{i} \text { and } Q_{i+1}=\frac{\delta^{2}-P_{i+1}^{2}}{Q_{i}} \tag{1.8}
\end{equation*}
$$

for $0 \leq i \leq l-1$ (see also $[5,6]$).

2. Indefinite quadratic forms and ideals

Let $\gamma=\frac{P+\delta}{Q}$ be a quadratic irrational. If we take $\delta=\sqrt{D}$, then we have $I_{\gamma}=$ $[Q, P+\sqrt{D}]$ and $F_{\gamma}=\left(Q, 2 P, \frac{P^{2}-D}{Q}\right)$ of discriminant $\Delta=4 D$ by (1.5) and (1.6), respectively. In [8], we consider the cycle of ideals I_{γ} and cycles of indefinite quadratic forms F_{γ} for some specific values of D. In the present paper we obtain some properties of the ideals I_{γ} and indefinite quadratic forms F_{γ} for quadratic irrationals $\gamma=\frac{P+\sqrt{D}}{Q}$, where $D \neq 1$ is the Extended-Richaud-Degert type (ERD-type), that is, $D=w^{2}+v$ for positive integers w and v such that $v \mid 4 w$.

Let $w=k v$ for a positive integer $k \geq 1$. Then $D=k^{2} v^{2}+v$ is the ERD-type since $\frac{4 w}{v}=\frac{4 k v}{v}=4 k$. Let $Q=v$ and $P=w=k v$. Then

$$
\begin{equation*}
\gamma=\frac{k v+\sqrt{k^{2} v^{2}+v}}{v} \tag{2.1}
\end{equation*}
$$

is a quadratic irrational. Therefore

$$
\begin{equation*}
I_{\gamma}=\left[v, k v+\sqrt{k^{2} v^{2}+v}\right] \tag{2.2}
\end{equation*}
$$

is an ideal and
(2.3) $\quad F_{\gamma}=(v, 2 k v,-1)$
is an indefinite quadratic form of discriminant $\Delta=4\left(k^{2} v^{2}+v\right)$.
2.1. Theorem. The ideal I_{γ} in (2.2) is ambiguous and reduced.

Proof. It is easily seen that $\frac{2 P}{Q}=\frac{2 k v}{v}=2 k \in \mathbb{Z}$. Therefore I_{γ} is ambiguous.
Note that $k^{2} v^{2}<k^{2} v^{2}+v$. Therefore

$$
k^{2} v^{2}<k^{2} v^{2}+v \Longleftrightarrow P^{2}<D \Longleftrightarrow P<\sqrt{D} \Longleftrightarrow P-\sqrt{D}<0
$$

Since $v+2 k v>1$, we have

$$
\begin{aligned}
& 0<v+2 k v-1 \\
\Longleftrightarrow & 0<v^{2}+2 k v^{2}-v \\
\Longleftrightarrow & v<v^{2}+2 k v^{2} \\
\Longleftrightarrow & k^{2} v^{2}+v<v^{2}+2 k v^{2}+k^{2} v^{2} \\
\Longleftrightarrow & k^{2} v^{2}+v<(k v+v)^{2} \\
\Longleftrightarrow & D<(P+Q)^{2} \\
\Longleftrightarrow & \sqrt{D}<P+Q \\
\Longleftrightarrow & -Q<P-\sqrt{D}
\end{aligned}
$$

Hence we get $-Q<P-\sqrt{D}<0$. Similarly it can be shown that $P+\sqrt{D}>Q$. Therefore I_{γ} is reduced by (1.7).
2.2. Theorem. The continued fraction expansion of γ is $\langle 2 k, 2 k v\rangle$, and the cycle of I_{γ} is the cycle

$$
I_{\gamma}^{0}=\left[v, k v+\sqrt{k^{2} v^{2}+v}\right] \sim I_{\gamma}^{1}=\left[1, k v+\sqrt{k^{2} v^{2}+v}\right]
$$

of length 2 .
Proof. Let $I=I_{0}=\left[v, k v+\sqrt{k^{2} v^{2}+v}\right]$. Then by (1.8), we have

$$
m_{0}=\left[\frac{P_{0}+\sqrt{D}}{Q_{0}}\right]=\left[\frac{k v+\sqrt{k^{2} v^{2}+v}}{v}\right]=2 k
$$

and hence

$$
\begin{aligned}
& P_{1}=m_{0} Q_{0}-P_{0}=2 k . v-k v=k v \\
& Q_{1}=\frac{D-P_{1}^{2}}{Q_{0}}=\frac{k^{2} v^{2}+v-k^{2} r^{2}}{v}=1
\end{aligned}
$$

For $i=1$ we have

$$
m_{1}=\left[\frac{P_{1}+\sqrt{D}}{Q_{1}}\right]=\left[\frac{k v+\sqrt{k^{2} v^{2}+v}}{1}\right]=2 k v
$$

and hence

$$
\begin{aligned}
& P_{2}=m_{1} Q_{1}-P_{1}=2 k v .1-k v=k v=P_{0} \\
& Q_{2}=\frac{D-P_{2}^{2}}{Q_{1}}=\frac{k^{2} v^{2}+v-k^{2} v^{2}}{1}=v=Q_{0}
\end{aligned}
$$

Therefore, the continued fraction expansion of γ is $\langle 2 k, 2 k v\rangle$, and the cycle of I_{γ} is $I_{\gamma}^{0}=\left[v, k v+\sqrt{k^{2} v^{2}+v}\right] \sim I_{\gamma}^{1}=\left[1, k v+\sqrt{k^{2} v^{2}+v}\right]$.
2.3. Example. Let $v=5$ and $k=7$. Then the continued fraction expansion of $\gamma=$ $\frac{35+\sqrt{1230}}{5}$ is $\langle 14,70\rangle$, and the cycle of $I_{\gamma}=[5,35+\sqrt{1230}]$ is $I_{\gamma}^{0}=[5,35+\sqrt{1230}] \sim$ $I_{\gamma}^{1}=[1,35+\sqrt{1230}]$.
2.4. Theorem. The indefinite quadratic form F_{γ} in (2.3) is ambiguous and reduced.

Proof. Let $g=\left(\begin{array}{ll}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$ and $F_{\gamma}=(v, 2 k v,-1)$. Then by (1.2), the system of equations

$$
\begin{aligned}
v r^{2}+2 k v r s-s^{2} & =v \\
2 v r t+2 k v r u+2 k v t s-2 s u & =2 k v \\
v t^{2}+2 k v t u-u^{2} & =-1
\end{aligned}
$$

has a solution for $r=1, s=2 k v, t=0$ and $u=-1$, i.e. $g F_{\gamma}=F_{\gamma}$. Hence F_{γ} is improperly equivalent to itself since $\operatorname{det} g=-1$. So F_{γ} is ambiguous by definition.

Note that $v, k v>0$. Therefore,

$$
\begin{aligned}
k^{2} v^{2}<k^{2} v^{2}+v & \Longleftrightarrow 4 k^{2} v^{2}<4\left(k^{2} v^{2}+v\right) \\
& \Longleftrightarrow \sqrt{4 k^{2} v^{2}}<\sqrt{4\left(k^{2} v^{2}+v\right)} \\
& \Longleftrightarrow 2 k v<\sqrt{\Delta} \\
& \Longleftrightarrow b<\sqrt{\Delta} .
\end{aligned}
$$

Since $k^{2} v^{2}+v<k^{2} v^{2}+2 k v^{2}+v^{2}$, we have

$$
\begin{aligned}
k^{2} v^{2}+v<(k v+v)^{2} & \Longleftrightarrow \sqrt{k^{2} v^{2}+v}<\sqrt{(k v+v)^{2}} \\
& \Longleftrightarrow \sqrt{k^{2} v^{2}+v}<k v+v \\
& \Longleftrightarrow 2 \sqrt{k^{2} v^{2}+v}<2 k v+2 v \\
& \Longleftrightarrow \sqrt{4\left(k^{2} v^{2}+v\right)}<2 k v+2 v \\
& \Longleftrightarrow \sqrt{4\left(k^{2} v^{2}+v\right)}-2 v<2 k v \\
& \Longleftrightarrow \sqrt{\Delta}-2|a|<b
\end{aligned}
$$

Hence $|\sqrt{\Delta}-2| a\left|\mid<b<\sqrt{\Delta}\right.$. Therefore, F_{γ} is reduced.
2.5. Theorem. The cycle of $F_{\gamma}=(v, 2 k v,-1)$ is the cycle

$$
F_{\gamma}^{0}=(v, 2 k v,-1) \sim F_{\gamma}^{1}=(1,2 k v,-v)
$$

of length 2.
Proof. Let $F_{\gamma}^{0}=F_{\gamma}=\left(a_{0}, b_{0}, c_{0}\right)=(v, 2 k v,-1)$. Then by (1.3), we get

$$
s_{0}=\left[\frac{b_{0}+\sqrt{\Delta}}{2\left|c_{0}\right|}\right]=\left[\frac{2 k v+\sqrt{4\left(k^{2} v^{2}+v\right)}}{2|-1|}\right]=\left[k v+\sqrt{k^{2} v^{2}+v}\right]=2 k v,
$$

and hence

$$
\begin{aligned}
F_{\gamma}^{1} & =\left(a_{1}, b_{1}, c_{1}\right)=\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =\left(1,-2 k v+4 k v,-v-2 k v .2 k v+(2 k v)^{2}\right) \\
& =(1,2 k v,-v)
\end{aligned}
$$

by (1.4). For $i=1$ we have

$$
s_{1}=\left[\frac{b_{1}+\sqrt{\Delta}}{2\left|c_{1}\right|}\right]=\left[\frac{2 k v+\sqrt{4\left(k^{2} v^{2}+v\right)}}{2|-v|}\right]=\left[\frac{k v+\sqrt{k^{2} v^{2}+v}}{v}\right]=2 k
$$

and hence

$$
\begin{aligned}
F_{\gamma}^{2} & =\left(a_{2}, b_{2}, c_{2}\right)=\left(\left|c_{1}\right|,-b_{1}+2 s_{1}\left|c_{1}\right|,-a_{1}-b_{1} s_{1}-c_{1} s_{1}^{2}\right) \\
& =\left(v,-2 k v+2.2 k \cdot v,-1-2 k v \cdot 2 k+v \cdot 4 k^{2}\right) \\
& =(v, 2 k v,-1) \\
& =F_{0}
\end{aligned}
$$

Therefore the cycle of F is $F_{\gamma}^{0}=(v, 2 k v,-1) \sim F_{\gamma}^{1}=(1,2 k v,-v)$.

3. A special family of ideals and quadratic forms

Let $D=w^{2}+v$ be of ERD-type, and let $w=k v$ for an integer $k \geq 1$. Let $Q=$ $2 k v-v+1$ and $P=k v+1$. Then
(3.1) $\quad \gamma=\frac{k v+1+\sqrt{k^{2} v^{2}+v}}{2 k v-v+1}$
is a quadratic irrational. Therefore
(3.2) $\quad I_{\gamma}=\left[2 k v-v+1, k v+1+\sqrt{k^{2} v^{2}+v}\right]$
is an ideal and
(3.3) $\quad F_{\gamma}=(2 k v-v+1,2 k v+2,1)$
is an indefinite quadratic form of discriminant $\Delta=4\left(k^{2} v^{2}+v\right)$.
3.1. Theorem. I_{γ} is not reduced.

Proof. Note that $2 k v+1>v$. Hence

$$
\begin{aligned}
2 k v+1>v & \Longleftrightarrow k^{2} v^{2}+2 k v+1>k^{2} v^{2}+v \\
& \Longleftrightarrow P^{2}>D \\
& \Longleftrightarrow P>\sqrt{D} \\
& \Longleftrightarrow P-\sqrt{D}>0
\end{aligned}
$$

which is a contradiction to (1.7). Therefore I_{γ} is not reduced.
3.2. Theorem. I_{γ} is ambiguous if and only if $k=1$, that is $w=v$.

Proof. Let I_{γ} be ambiguous. Then

$$
\frac{2 P}{Q}=\frac{2 k v+2}{2 k v-v+1}=1+\frac{v+1}{2 k v-v+1}
$$

must be an integer. It is easily seen that it is an integer for $k=1$. Indeed, for $k=1$ we have

$$
\frac{2 P}{Q}=\frac{2 k v+2}{2 k v-v+1}=1+\frac{v+1}{2 k v-v+1}=1+\frac{v+1}{v+1}=2 \in \mathbb{Z}
$$

Conversely let us assume that $k=1$. Then

$$
\frac{2 P}{Q}=\frac{2 k v+2}{2 k v-v+1}=\frac{2 v+2}{v+1}=2 \in \mathbb{Z}
$$

Therefore I_{γ} is ambiguous.
3.3. Theorem. The continued fraction expansion of γ is $\langle 1,2 k-1, \overline{2 k v, 2 k}\rangle$, and the cycle of I_{γ} is

$$
\begin{aligned}
I_{\gamma}^{0} & =\left[2 k v-v+1, k v+1+\sqrt{k^{2} v^{2}+v}\right] \\
& \sim I_{\gamma}^{1}=\left[v, k v-v+\sqrt{k^{2} v^{2}+v}\right] \\
& \sim I_{\gamma}^{2}=\left[1, k v+\sqrt{k^{2} v^{2}+v}\right] \\
& \sim I_{\gamma}^{3}=\left[v, k v+\sqrt{k^{2} v^{2}+v}\right] .
\end{aligned}
$$

Proof. Let $I_{\gamma}=I_{\gamma}^{0}=\left[2 k v-v+1, k v+1+\sqrt{k^{2} v^{2}+v}\right]$. Then by (1.8), we get

$$
m_{0}=\left[\frac{P_{0}+\sqrt{D}}{Q_{0}}\right]=\left[\frac{k v+1+\sqrt{k^{2} v^{2}+v}}{2 k v-v+1}\right]=1,
$$

and hence

$$
\begin{aligned}
P_{1} & =m_{0} Q_{0}-P_{0}=1 .(2 k v-v+1)-(k v+1)=k v-v \\
Q_{1} & =\frac{D-P_{1}^{2}}{Q_{0}}=\frac{k^{2} v^{2}+v-(k v-v)^{2}}{2 k v-v+1}=\frac{v(2 k v-v+1)}{2 k v-v+1}=v .
\end{aligned}
$$

For $i=1$ we have

$$
m_{1}=\left[\frac{P_{1}+\sqrt{D}}{Q_{1}}\right]=\left[\frac{k v-v+\sqrt{k^{2} v^{2}+v}}{v}\right]=2 k-1,
$$

and hence

$$
\begin{aligned}
P_{2} & =m_{1} Q_{1}-P_{1}=(2 k-1) v-(k v-v)=k v \\
Q_{2} & =\frac{D-P_{2}^{2}}{Q_{1}}=\frac{k^{2} v^{2}+v-k^{2} v^{2}}{v}=1
\end{aligned}
$$

For $i=2$ we have

$$
m_{2}=\left[\frac{P_{2}+\sqrt{D}}{Q_{2}}\right]=\left[\frac{k v+\sqrt{k^{2} v^{2}+v}}{1}\right]=2 k v
$$

and hence

$$
\begin{aligned}
P_{3} & =m_{2} Q_{2}-P_{2}=2 k v .1-k v=k v \\
Q_{3} & =\frac{D-P_{3}^{2}}{Q_{2}}=\frac{k^{2} v^{2}+v-k^{2} v^{2}}{1}=v .
\end{aligned}
$$

For $i=3$ we have

$$
m_{3}=\left[\frac{P_{3}+\sqrt{D}}{Q_{3}}\right]=\left[\frac{k v+\sqrt{k^{2} v^{2}+v}}{v}\right]=2 k,
$$

and hence

$$
\begin{aligned}
P_{4} & =m_{3} Q_{3}-P_{3}=2 k v-k v=k v \\
Q_{4} & =\frac{D-P_{4}^{2}}{Q_{3}}=\frac{k^{2} v^{2}+v-k^{2} v^{2}}{v}=1 .
\end{aligned}
$$

For $i=4$ we have

$$
m_{4}=\left[\frac{P_{4}+\sqrt{D}}{Q_{4}}\right]=\left[\frac{k v+\sqrt{k^{2} v^{2}+v}}{1}\right]=2 k v=m_{2} .
$$

Therefore, the continued fractional expansion of γ is $\langle 1,2 k-1, \overline{2 k v, 2 k}\rangle$, and hence the cycle of I_{γ} is $I_{\gamma}^{0}=\left[2 k v-v+1, k v+1+\sqrt{k^{2} v^{2}+v}\right] \sim I_{\gamma}^{1}=\left[v, k v-v+\sqrt{k^{2} v^{2}+v}\right] \sim$ $I_{\gamma}^{2}=\left[1, k v+\sqrt{k^{2} v^{2}+v}\right] \sim I_{\gamma}^{3}=\left[v, k v+\sqrt{k^{2} v^{2}+v}\right]$.
3.4. Example. Let $v=3$ and $k=3$. Then the continued fraction expansion of $\gamma=$ $\frac{10+\sqrt{84}}{16}$ is $\langle 1,5, \overline{18,6}\rangle$, and the cycle of $I_{\gamma}=[16,10+\sqrt{84}]$ is

$$
I_{\gamma}^{0}=[16,10+\sqrt{84}] \sim I_{\gamma}^{1}=[3,6+\sqrt{84}] \sim I_{\gamma}^{2}=[1,9+\sqrt{84}] \sim I_{\gamma}^{3}=[3,9+\sqrt{84}]
$$

3.5. Theorem. F_{γ} is not reduced.

Proof. Note that $2 k v+1>v$. Then

$$
\begin{aligned}
2 k v+1>v & \Longleftrightarrow 8 k v+4>4 v \\
& \Longleftrightarrow 4 k^{2} v^{2}+8 k v+4>4 k^{2} v^{2}+4 v \\
& \Longleftrightarrow(2 k v+2)^{2}>4\left(k^{2} v^{2}+1\right) \\
& \Longleftrightarrow(2 k v+2)^{2}>4 D \\
& \Longleftrightarrow(2 k v+2)^{2}>\Delta \\
& \Longleftrightarrow 2 k v+2>\sqrt{\Delta} \\
& \Longleftrightarrow b>\sqrt{\Delta} .
\end{aligned}
$$

Therefore, F_{γ} is not reduced.
If a quadratic form $F=(a, b, c)$ of discriminant Δ is not reduced, then we can get it reduced by using the following reduction algorithm: Let $F=F_{0}=\left(a_{0}, b_{0}, c_{0}\right)$ be a non-reduced form of discriminant Δ, let

$$
s_{i}= \begin{cases}\operatorname{sign}\left(c_{i}\right)\left[\frac{b_{i}}{2\left|c_{i}\right|}\right] & \text { if }\left|c_{i}\right| \geq \sqrt{\Delta} \tag{3.4}\\ \operatorname{sign}\left(c_{i}\right)\left[\frac{b_{i}+\sqrt{\Delta}}{2\left|c_{i}\right|}\right] & \text { if }\left|c_{i}\right|<\sqrt{\Delta}\end{cases}
$$

and let

$$
\begin{equation*}
R^{i+1}(F)=\left(c_{i},-b_{i}+2 s_{i} c_{i}, c_{i} s_{i}^{2}-b_{i} s_{i}+a_{i}\right) \tag{3.5}
\end{equation*}
$$

for $i \geq 0$. The number s_{i} is called the reducing number, and the form $R^{i+1}(F)$ is called the reduction of F. If $R^{1}(F)$ is not reduced, then we apply the reduction algorithm again and hence we get $R^{2}(F)$. If $R^{2}(F)$ is not reduced, then we apply the reduction algorithm again and hence we get $R^{3}(F)$. After a finite number of steps $j \geq i$, the form $R^{j}(F)$ is reduced. The form $R^{j}(F)$ is called the reducing type of F (for further details see [1, p.90]).

We proved in Theorem 3.5 that the form $F_{\gamma}=(2 k v-v+1,2 k v+2,1)$ is not reduced. But we can get a reducing type of F_{γ} as we mentioned above. For $i=0$, we have

$$
\begin{aligned}
s_{0} & =\operatorname{sign}\left(c_{0}\right)\left[\frac{b_{0}+\sqrt{\Delta}}{2\left|c_{0}\right|}\right] \\
& =\left[\frac{2 k v+2+\sqrt{4\left(k^{2} v^{2}+v\right)}}{2}\right] \\
& =\left[k v+1+\sqrt{k^{2} v^{2}+v}\right] \\
& =2 k v+1
\end{aligned}
$$

by (3.4), and hence

$$
\begin{aligned}
R^{1}\left(F_{\gamma}\right) & =\left(c_{0},-b_{0}+2 s_{0} c_{0}, c_{0} s_{0}^{2}-b_{0} s_{0}+a_{0}\right) \\
& =\begin{array}{c}
(1,-(2 k v+2)+2(2 k v+1), \\
\end{array} \quad(1,2 k v,-v)
\end{aligned}
$$

by (3.5). Note that the form $R^{1}\left(F_{\gamma}\right)$ is reduced. Therefore we have proved:
3.6. Theorem. The reducing type of F_{γ} is $R^{1}\left(F_{\gamma}\right)=(1,2 k v,-v)$.
3.7. Theorem. The cycle of $R^{1}\left(F_{\gamma}\right)=(1,2 k v,-v)$ is the cycle

$$
R^{1}\left(F_{\gamma}^{0}\right)=(1,2 k v,-v) \sim R^{1}\left(F_{\gamma}^{1}\right)=(v, 2 k v,-1)
$$

of length 2 .
Proof. Let $R^{1}\left(F_{\gamma}\right)=R^{1}\left(F_{\gamma}^{0}\right)=(1,2 k v,-v)$. For $i=0$, we have

$$
s_{0}=\left[\frac{b_{0}+\sqrt{\Delta}}{2\left|c_{0}\right|}\right]=\left[\frac{2 k v+\sqrt{4\left(k^{2} v^{2}+v\right)}}{2|-v|}\right]=\left[\frac{k v+\sqrt{k^{2} v^{2}+v}}{v}\right]=2 k,
$$

and hence

$$
\begin{aligned}
R^{1}\left(F_{\gamma}^{1}\right) & =\left(a_{1}, b_{1}, c_{1}\right) \\
& =\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =\left(|-v|,-2 k v+2(2 k)|-v|,-1-2 k v(2 k)-(-v)(2 k)^{2}\right) \\
& =(v, 2 k v,-1) .
\end{aligned}
$$

For $i=1$, we have

$$
s_{1}=\left[\frac{b_{1}+\sqrt{\Delta}}{2\left|c_{1}\right|}\right]=\left[\frac{2 k v+\sqrt{4\left(k^{2} v^{2}+v\right)}}{2|-1|}\right]=\left[k v+\sqrt{k^{2} v^{2}+v}\right]=2 k v,
$$

and hence

$$
\begin{aligned}
R^{1}\left(F_{\gamma}^{2}\right) & =\left(a_{2}, b_{2}, c_{2}\right) \\
& =\left(\left|c_{1}\right|,-b_{1}+2 s_{1}\left|c_{1}\right|,-a_{1}-b_{1} s_{1}-c_{1} s_{1}^{2}\right) \\
& =\left(|-1|,-2 k v+2(2 k v)|-1|,-v-2 k v(2 k v)-(-1)(2 k v)^{2}\right) \\
& =(1,2 k v,-v) \\
& =R^{1}\left(F_{\gamma}^{0}\right) .
\end{aligned}
$$

Therefore, the cycle of $R^{1}\left(F_{\gamma}\right)$ is completed and is

$$
R^{1}\left(F_{\gamma}^{0}\right)=(1,2 k v,-v) \sim R^{1}\left(F_{\gamma}^{1}\right)=(v, 2 k v,-1) .
$$

References

[1] Buchmann, J. Algorithms for Binary Quadratic Forms, (In preparation, accepted by Springer-Verlag).
[2] Buell, D. A. Binary Quadratic Forms, Clasical Theory and Modern Computations (SpringerVerlag, New York, 1989).
[3] Flath, D. E. Introduction to Number Theory (Wiley, 1989).
[4] Mollin, R. A. Quadratics (CRS Press, Boca Raton, New York, London, Tokyo, 1996).
[5] Mollin, R. A. and Poorten, A. J. A note on symmetry and ambiguity, Bull. Austral. Math. Soc. 51, 215-233, 1995.
[6] Mollin, R. A. and Cheng, K. Palindromy and ambiguous ideals revisited, Journal of Number Theory 74, 98-110, 1999.
[7] Tekcan, A. and Bizim, O. The connection between quadratic forms and the extended modular group, Mathematica Bohemica 128 (3), 225-236, 2003.
[8] Tekcan, A. On the cycles of indefinite quadratic forms and cycles of ideals, Hacettepe Journal of Mathematics and Statistics 35 (1), 63-70, 2006.

[^0]: *Uludag University, Faculty of Science, Department of Mathematics, Görükle, 16059 Bursa Turkey. E-mail: tekcan@uludag.edu.tr

