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Abstract

Let 6 denote a real quadratic irrational with trace ¢t = 6 + ¢ and norm
n = 06. Given a real quadratic irrational v € Q(6), there are rational
integers P and @ such that v = % with Q|(6 + P)(§ + P). Hence
for each v = PT""S, there is a corresponding ideal I, = [Q, P + 4], and
an indefinite binary quadratic form F.(z,y) = Q(z + dy)(z + dy) of
discriminant A = t? — 4n.

In the first section, we give some preliminaries from binary quadratic
forms and ideals. In the second section, we obtain some properties of
I, and F, for § = VD, where D # 1 is the Extended-Richaud-Degert
type (ERD-type), that is, D = w? +wv for positive integers w and v such

that v|4w. In the third section, we obtain some properties of a special

w41+vVD

family of ideals I, and indefinite quadratic forms F, for v = 5=,
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1. Introduction.

A real binary quadratic form (or just a form) F is a polynomial in two variables z,y
of the type
(1.1) F=F(z,y) = az’ + bay + ¢’

with real coefficients a,b,c. We denote F briefly by F' = (a,b,c). The discriminant of
F is defined by the formula b*> — 4ac and is denoted by A. If ged(a, b, c) = 1, then F is
called primitive. A quadratic form F' of discriminant A is called indefinite if A > 0, and
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is called reduced if ’\/Z - 2\&\‘ < b < V/A (for further details on binary quadratic forms
see [1,2,3]).
There is a strong connection between binary quadratic forms and the extended mod-

ular group I'. Gauss (1777-1855) defined the group action of ' on the set of forms as
follows:

gF(z,y) = (ar2 + brs + 682) 2 + (2art + bru + bts + 2csu) xy

1.2
(12 + (at2 + btu + cuz) Y

2

for g = (Z Z) €T and F = (a,b,¢). Two forms F and G are called equivalent iff

there exists a g € T such that gF = G. If detg = 1, then F' and G are called properly
equivalent. If det g = —1, then F and G are called improperly equivalent. A quadratic
form F is said to be ambiguous if it is improperly equivalent to itself (see [7] for the
connection between the extended modular group and binary quadratic forms).

Let F = (a, b, c) be an indefinite reduced quadratic form of discriminant A. Then the
cycle of F' is given by the following theorem.

1.1. Theorem. [1, Sec: 6.10, p.106] Let F = (a,b,c) be an indefinite reduced quadratic
form of discriminant A. Then the cycle of F' of length [ is Fo ~ Fy ~ Fy ~ +-- ~ Fj_q,
where Fo = F = (ao, bo, co),
_ (bt VA

(1.3) s =|s(Fy)| = { 3] ]
and
Fitv1 = (@it1, biy1,cit1)

= (|Ci|, —b; + 2s;|ci|, —(a; + bisi + 02512))
for0<i<Il—2.

(1.4)

Mollin [4, p.4] considers the arithmetic of ideals in his book. Let D # 1 be a square
— Where r = 2 if D = 1 (mod4), and r = 1, otherwise. If
r

we set K = Q(v/D), then K is called a quadratic number field of discriminant A and

O is the ring of integers of the quadratic field K of discriminant A. Let I = [«, 3]
denote the Z-module aZ & (Z, i.e., the additive abelian group, with basis elements «

1++vD
T

free integer and let A =

and f consisting of {ax + By : z,y € Z}. Note that Oa = {1,

-1 D
ﬂ is called the principal surd. Every principal surd wa € Oa can be

} . In this case

wa =
r
uniquely expressed as wa = za + yB, where z,y € Z and o, € Oa. We call o, 3 an
integral basis for K.
i &P~ fa
VA B
of an ideal are ordered if and only if they are equivalent under an element of I'. If I has
ordered basis elements, then we say that I is simply ordered. If I is ordered, then
N(az + By)
N(I)
is a quadratic form of discriminant A. In this case we say that F' belongs to I, and write
I — F. Conversely, let us assume that

G(z,y) = Az® + Bry + Cy® = d(aalc2 + by + cyz)

> 0, then « and 3 are called ordered basis elements. Recall that two bases

F('Tvy) =
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is a quadratic form, where d = +gcd(A, B,C) and b*> — 4ac = A. If B> —4AC > 0, then
we get d > 0 and if B> — 4AC < 0, then we choose d such that a > 0. If
[a, #] fora >0

[a, b*f] VA fora<0and A >0,

I=lo,f] =

then [ is an ordered Oa-ideal. Note that if a > 0, then I is primitive and if a < 0, then
ﬁ is primitive. Thus to every form G, there corresponds an ideal I to which G belongs
and we write G — I. Hence we have a correspondence between ideals and quadratic
forms (for further details see [4, p. 350]).

1.2. Theorem. [4,Sec:1.2, p.9] If I = [a, b+ cwa], then I is a non-zero ideal of Oa if
and only if
clb, cla and ac|N(b+ cwa).

Let § denote a real quadratic irrational integer with trace t = § + 6 and norm n = 6.
Given a real quadratic irrati_onal ~v € Q(9), there are rational integers P and @ such that

= %‘*“s with Q| (6 + P)(0 + P). Hence for each v = %"5 there is a corresponding
Z-module
(1.5) I, =[Q, P+4],
(in fact, this module is an ideal by Theorem 1.2), and an indefinite quadratic form
(1.6)  Fy(z,y) = Q(z + dy)(z + oy)
of discriminant A =t — 4n.

The ideal I, in (1.5) is said to be reduced if and only if
(1.7) P+é6>Qand —Q<P+6<0,

and is said to be ambiguous if and only if it contains both %‘*“s and P—"'g, hence if and

Q
only if % €.
Let (mo, mimz...m;—1) denote the continued fraction expansion of v = % with
period length I = I(I). Then the cycle of I, is I, = I3 ~ I} ~ ... ~ I}7" where
P, 6% — P?
(1.8) m; = |: Q+ 6:| s P,'+1 = szz — Pi and Qi+1 = Tﬂ

for 0 <4 <1—1 (see also [5,6]).

2. Indefinite quadratic forms and ideals

Let v = %*5 be a quadratic irrational. If we take § = v/D, then we have I, =

[Q, P+ VD] and F, = (Q72P, P25D) of discriminant A = 4D by (1.5) and (1.6),

respectively. In [8], we consider the cycle of ideals I, and cycles of indefinite quadratic
forms F for some specific values of D. In the present paper we obtain some properties

of the ideals I, and indefinite quadratic forms F, for quadratic irrationals v = £ +Q‘/B,

where D # 1 is the Extended-Richaud-Degert type (ERD-type), that is, D = w? + v for
positive integers w and v such that v|4dw.

Let w = kv for a positive integer k > 1. Then D = k?v? + v is the ERD-type since
47“12%:419 Let @ = v and P = w = kv. Then

kv +VEk%2v2 +o
21) y=—7"7"—""
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is a quadratic irrational. Therefore

(2.2) I, =[v,kv+ VE?>v2 4 0]

is an ideal and

(2.3) F, = (v,2kv,—1)

is an indefinite quadratic form of discriminant A = 4(k?v? + v).

2.1. Theorem. The ideal I, in (2.2) is ambiguous and reduced.

Proof. It is easily seen that % = 2kv — 9k ¢ Z. Therefore I, is ambiguous.

Note that k?v? < k*v? + v. Therefore

kv’ <k’ +v <= P’<D < P<VD < P-VD<0.

Since v + 2kv > 1, we have

0<v+2kv—1

= 0< v’ + 2k —v
= v < v’ + 2kv?
= k% 4o <o’ 4 2k0° + K207
— k0 +v < (kv +v)?
—=D<(P+Q)
—VD<P+Q
— —-Q<P-VD.

Hence we get —Q < P—+/D < 0. Similarly it can be shown that P++/D > Q. Therefore
L, is reduced by (1.7). O

2.2. Theorem. The continued fraction expansion of v is (2k,2kv), and the cycle of 1,
is the cycle

I = [v, kv + k202 + 0] ~ I} = [1, kv + / k202 + 0]
of length 2.
Proof. Let I = Iy = [v, kv + v/k?v? + v]. Then by (1.8), we have

— Py++vD _ kv + Vk2v2 + v _ o
? Qo v

and hence
P =moQo — Py = 2k.v — kv = kv,
_D-P} K 4v—k?

Q1= 0 ” =1.

For 1 = 1 we have
{Pl—i—\/ﬁ] {kv—i— k20?2 + v
mi =

0 = 1 = 2kv
and hence
Po=miQ1—Pr=2kvl—-kv=kv=~F
_ D-—P K 4v— k%

Q2 = o T =v = Qo.
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Therefore, the continued fraction expansion of v is (2k,2kv), and the cycle of I, is
P A i ) ;

2.3. Example. Let v = 5 and k = 7. Then the continued fraction expansion of v =
@ is (14,70), and the cycle of I, = [5,35 + v/1230] is I = [5,35 + v/1230] ~
I} =[1,35 + /1230].

2.4. Theorem. The indefinite quadratic form F, in (2.3) is ambiguous and reduced.

r

Proof. Let g = (t

equations

Z> € T and F, = (v,2kv,—1). Then by (1.2), the system of

vr? + 2kvrs — 82 = v
2urt + 2kvru + 2kvts — 2su = 2kv
vt? + 2kvtu — u® = —1

has a solution for r = 1, s = 2kv, ¢ = 0 and v = —1, i.e. gF, = F,. Hence F} is
improperly equivalent to itself since det g = —1. So F), is ambiguous by definition.
Note that v, kv > 0. Therefore,

0 < E*v® 4 v <= 4% < 4(K*0° 4 v)
= Vak2v? < \/4(k20? + )
— 2kv < VA
= b< VA
Since k%v? + v < k*v? 4 2kv? + v?, we have
v 40 < (kv +0v)? <= VE202 4+ 0 < (kv +v)?
<= \/m <kv+wv
<~ 2\/m < 2kv + 2v
— \/m < 2kv+2v
— \/m —2v < 2kv
— VA —2|a| <b.
Hence |VA — 2|a|| < b < VA. Therefore, F, is reduced. O
2.5. Theorem. The cycle of Fy, = (v,2kv,—1) is the cycle
Y = (v,2kv, —1) ~ F} = (1,2kv, —v)

of length 2.
Proof. Let F,? = F, = (ao, bo, co) = (v,2kv, —1). Then by (1.3), we get

o — {boz-l‘-cf} _ | 2ko+ 2|4_(k12|v2+v) _ {kv+ 2g? H} — 9%,
and hence

Fy = (a1,b1,c1) = (|co|, —bo + 2s0lco|, —ao — boso — cosp)

= (1, —2kv + 4kv, —v — 2kv.2kv + (2/4:11)2)
= (1, 2kv, —v)
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by (1.4). For ¢ =1 we have

o {b1+\/ﬁ} _ 2kv + /4(k2v? + v) _ [kv—!— o2 o]
2|1 2| — | ’
and hence
F.f = (a2,b2,c2) = (|cl\, —b1 + 2s1]e1], —a1 — bis1 — cls?)
= (v, —2kv + 2.2k.v, —1 — 2kv.2k + v.4k?)
= (v, 2kv, —1)
= Fp.
Therefore the cycle of F is Fg = (v,2kv,—1) ~ F% = (1, 2kv, —v). O

3. A special family of ideals and quadratic forms

Let D = w? + v be of ERD-type, and let w = kv for an integer k > 1. Let Q =
2kv —v+1and P =kv+ 1. Then

kv +1+VE202 4w

BD 7= et

is a quadratic irrational. Therefore

(32) I,=[2kv—v+1,kv+1+Vk?>v2+0]
is an ideal and

(33) F,=2kv—v+1,2kv+21)

is an indefinite quadratic form of discriminant A = 4(k?v? + v).
3.1. Theorem. I, is not reduced.

Proof. Note that 2kv + 1 > v. Hence
2kv+1>0v <= k0* +2kv+1> k0" +v
— P’>D
«— P>VD
> P-VD>0,

which is a contradiction to (1.7). Therefore I, is not reduced. g
3.2. Theorem. I, is ambiguous if and only if k =1, that is w = v.

Proof. Let I, be ambiguous. Then
2P 2kv+2 v+1

5_2kv—v+1_ 2kv —v+1
must be an integer. It is easily seen that it is an integer for k£ = 1. Indeed, for £k = 1 we
have
2P: 2kv + 2 _ v+ 1 :1+v+1
Q 2kv —v+1 2kv —v+1 v+1
Conversely let us assume that £k = 1. Then
2P 2kv+2 2v+2
Q 2kv—v+1 v+l

Therefore I, is ambiguous. ]

=2¢cZ.

=2¢€Z.




Indefinite Binary Quadratic Forms and Quadratic Ideals 33
3.3. Theorem. The continued fraction expansion of v is (1,2k — 1,2kv,2k), and the
cycle of I, is
I = [2kv — v+ 1, kv + 1+ k202 + 1]

~ I = v, kv — v+ k202 + 0]

~ 12 =1, kv + VE20? + 0]

~ I = [, kv + k202 + 0]
Proof. Let I, = I9 = [2kv — v + 1, kv + 1 + vk2v2 + v]. Then by (1.8), we get

I Po+vD]  [kv+1+VE22+v
0= Qo o 2kv —v+1

=1,

and hence
Pr=moQo—Po=1.2kv—v+1)—(kv+1)=kv—v
01 = D — P} _ E*0? + v — (kv —v)? :v(2kva+1) .
Qo 2kv—v+1 2kv —v+1
For i =1 we have

{Pl—k\/ﬁ] {kv—v—l— k2v2 + v
m1 =

Q = v :2k—1,
1

and hence
P,=miQ1— P =(2k—1)v— (kv—v) =kv
Qs = D — P} _ E*0? 4 v — k%0? 1
Q1 v
For i = 2 we have
P,++vD kv + Vk?2v2 + v
mo = = = 2kv,
Q2 1

and hence
Pg :mgQQ—PQZQk"U.l—k"U:IC’U
_ D — P} B 20?4+ v — k%0? _

Qs 0 1

For 1 = 3 we have

Py ++vVD kv + Vk2v2 +v
— = =2k,
Qs
and hence
P4:TI’L3Q3—P3:2]€’U—/‘JU:]€U
Qu= D— P} _ E*0? + v — k%0? .
Qs v
For 1 = 4 we have
Py++D kv + Vk2v?2 +v
my = Q = :2kU:m2'
4

Therefore, the continued fractional expansion of 7 is (1,2k — 1, 2kv, 2k), and hence the
cycle of I, is I = 2kv — v + Lkv + 1 + VK202 + 0] ~ I = [v,kv — v + VE202 + 0] ~
I2 = [1,kv+ VE202 +v] ~ I3 = [v, kv + VE20? + 0], O



34 A. Tekcan

3.4. Example. Let v = 3 and k = 3. Then the continued fraction expansion of v =

10 +v84 .
16

is (1,5,18,6), and the cycle of I, = [16,10 + v/84] is

19 =116,10 + V84] ~ I} = [3,6 + V/84] ~ I> = [1,9 + V84] ~ I3 = [3,9 + V/84].

3.5. Theorem. F, is not reduced.

Proof. Note that 2kv + 1 > v. Then

2kv+1>v < 8kv+4 > 4v

— 4k%0® + 8kv +4 > 4k%v* + v

— (2kv+2)% > 4K +1)
— (2kv+2)° >4D

= (2kv+2)*>A

— 2kv+2>VA

— b>VA.

Therefore, F, is not reduced.

O

If a quadratic form F = (a,b,c) of discriminant A is not reduced, then we can get

it reduced by using the following reduction algorithm:

non-reduced form of discriminant A, let

sign(c;) [%} if |ci| > VA,

sign(c;) [bg\rc\i/lz] if e;| < VA,
and let

(35) Ri+1(F) = (Ci, —b; + 2sici, CiS? — bis; + ai)

Let FF = Fy = (ao,bo,CO) be a

for i > 0. The number s; is called the reducing number, and the form R*(F) is called
the reduction of F. If R (F) is not reduced, then we apply the reduction algorithm again
and hence we get R*(F). If R*(F) is not reduced, then we apply the reduction algorithm
again and hence we get R*(F). After a finite number of steps j > i, the form RI(F)
is reduced. The form R’(F) is called the reducing type of ' (for further details see [1,

p.90]).

We proved in Theorem 3.5 that the form F., = (2kv —v+1,2kv +2,1) is not reduced.
But we can get a reducing type of F, as we mentioned above. For i = 0, we have

2|Co‘
2kv 4+ 2 + /4(k?v2 4+ v)

s0 = sign(co) [M}

= [karlJr k2v2+v]
=2kv+1
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by (3.4), and hence
R (F,y) = (co, —bo + 2s0co, cose — boso + ap)
(1, —(2kv +2) + 2(2kv + 1),
- (2kv +1)> — (2kv + 2)(2kv + 1) + 2kv — v + 1)
= (1,2kv, —v)
by (3.5). Note that the form R'(F,) is reduced. Therefore we have proved:

3.6. Theorem. The reducing type of F., is R*(F,) = (1, 2kv, —v).

38.7. Theorem. The cycle of R*(F,) = (1,2kv, —v) is the cycle
R'(FY) = (1,2kv, —v) ~ R'(F}) = (v, 2kv, —1)

of length 2.

Proof. Let R! (FW) =R! (Ff,)) = (1, 2kv, —v). For i = 0, we have

o — {b0+\/Z} _ 2kv + \/4(k2v2 + v) _ [kv—i— Kool o
2|co] 2| — | v '
and hence
Rl(Fi) = (a1,b1,c1)
= (|eo|, —bo + 2s0|co|, —ao — boso — 003(2))
= (| —v|, —2kv 4 2(2k)| — v|, =1 — 2kv(2k) — (—v)(2k)?)
= (v, 2kv, —1).

For ¢ = 1, we have

81 = {blg‘;f} = 2ot \2/|4_(k12|1)2 =l = {kv +V k%02 + U] = 2kv,
and hence
R'(F2) = (a2, b2, ¢2)
= (lex|, —=b1 + 2s1]e1|, —ar — bisy — c1s7)
= (| = 1], —2kv + 2(2kv)| — 1|, —v — 2kv(2kv) — (=1)(2kv)?)
= (1,2kv, —v)
- R,

Therefore, the cycle of R'(F,) is completed and is
RY(FY)) = (1,2kv, —v) ~ R'(F}) = (v, 2kv, -1).
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