SOME REMARKS ON INDEFINITE BINARY QUADRATIC FORMS AND QUADRATIC IDEALS

Ahmet Tekcan*

Received 07:11:2006 : Accepted 25:01:2007

Abstract

Let δ denote a real quadratic irrational with trace $t = \delta + \overline{\delta}$ and norm $n = \delta \overline{\delta}$. Given a real quadratic irrational $\gamma \in \mathbb{Q}(\delta)$, there are rational integers P and Q such that $\gamma = \frac{P+\delta}{Q}$ with $Q|(\delta + P)(\overline{\delta} + P)$. Hence for each $\gamma = \frac{P+\delta}{Q}$, there is a corresponding ideal $I_{\gamma} = [Q, P + \delta]$, and an indefinite binary quadratic form $F_{\gamma}(x, y) = Q(x + \delta y)(x + \overline{\delta} y)$ of discriminant $\Delta = t^2 - 4n$.

In the first section, we give some preliminaries from binary quadratic forms and ideals. In the second section, we obtain some properties of I_{γ} and F_{γ} for $\delta = \sqrt{D}$, where $D \neq 1$ is the Extended-Richaud-Degert type (ERD-type), that is, $D = w^2 + v$ for positive integers w and v such that v|4w. In the third section, we obtain some properties of a special family of ideals I_{γ} and indefinite quadratic forms F_{γ} for $\gamma = \frac{w+1+\sqrt{D}}{2w-v+1}$.

Keywords: ERD-type, Ideal, Indefinite quadratic form, Quadratic irrational, Cycle of an ideal, Cycle of a form, Ambiguous form.

2000 AMS Classification: 11E20, 11E25, 11E76, 11J70.

1. Introduction.

A real binary quadratic form (or just a form) F is a polynomial in two variables x, y of the type

(1.1)
$$F = F(x, y) = ax^{2} + bxy + cy^{2}$$

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discriminant of F is defined by the formula $b^2 - 4ac$ and is denoted by Δ . If gcd(a, b, c) = 1, then F is called *primitive*. A quadratic form F of discriminant Δ is called *indefinite* if $\Delta > 0$, and

^{*}Uludag University, Faculty of Science, Department of Mathematics, Görükle, 16059 Bursa, Turkey. E-mail: tekcan@uludag.edu.tr

is called reduced if $|\sqrt{\Delta} - 2|a|| < b < \sqrt{\Delta}$ (for further details on binary quadratic forms see [1,2,3]).

There is a strong connection between binary quadratic forms and the extended modular group $\overline{\Gamma}$. Gauss (1777-1855) defined the group action of $\overline{\Gamma}$ on the set of forms as follows:

(1.2)
$$gF(x,y) = (ar^{2} + brs + cs^{2})x^{2} + (2art + bru + bts + 2csu)xy + (at^{2} + btu + cu^{2})y^{2}$$

for $g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \overline{\Gamma}$ and F = (a, b, c). Two forms F and G are called *equivalent* iff there exists a $g \in \overline{\Gamma}$ such that gF = G. If det g = 1, then F and G are called *properly equivalent*. If det g = -1, then F and G are called *improperly equivalent*. A quadratic form F is said to be *ambiguous* if it is improperly equivalent to itself (see [7] for the connection between the extended modular group and binary quadratic forms).

Let F = (a, b, c) be an indefinite reduced quadratic form of discriminant Δ . Then the cycle of F is given by the following theorem.

1.1. Theorem. [1, Sec: 6.10, p.106] Let F = (a, b, c) be an indefinite reduced quadratic form of discriminant Δ . Then the cycle of F of length l is $F_0 \sim F_1 \sim F_2 \sim \cdots \sim F_{l-1}$, where $F_0 = F = (a_0, b_0, c_0)$,

(1.3)
$$s_i = |s(F_i)| = \left[\frac{b_i + \sqrt{\Delta}}{2|c_i|}\right]$$

and

(1.4)
$$F_{i+1} = (a_{i+1}, b_{i+1}, c_{i+1}) \\ = (|c_i|, -b_i + 2s_i|c_i|, -(a_i + b_i s_i + c_i s_i^2))$$

for $0 \leq i \leq l-2$.

Mollin [4, p.4] considers the arithmetic of ideals in his book. Let $D \neq 1$ be a square free integer and let $\Delta = \frac{4D}{r^2}$, where r = 2 if $D \equiv 1 \pmod{4}$, and r = 1, otherwise. If we set $\mathbb{K} = \mathbb{Q}(\sqrt{D})$, then \mathbb{K} is called a *quadratic number field of discriminant* Δ and O_{Δ} is the ring of integers of the quadratic field \mathbb{K} of discriminant Δ . Let $I = [\alpha, \beta]$ denote the \mathbb{Z} -module $\alpha \mathbb{Z} \oplus \beta \mathbb{Z}$, i.e., the additive abelian group, with basis elements α and β consisting of $\{\alpha x + \beta y : x, y \in \mathbb{Z}\}$. Note that $O_{\Delta} = \left[1, \frac{1 + \sqrt{D}}{r}\right]$. In this case $w_{\Delta} = \frac{r - 1 + \sqrt{D}}{r}$ is called the *principal surd*. Every principal surd $w_{\Delta} \in O_{\Delta}$ can be

 $w_{\Delta} = \frac{r-1+\sqrt{D}}{r}$ is called the *principal surd*. Every principal surd $w_{\Delta} \in O_{\Delta}$ can be uniquely expressed as $w_{\Delta} = x\alpha + y\beta$, where $x, y \in \mathbb{Z}$ and $\alpha, \beta \in O_{\Delta}$. We call α, β an *integral basis for* \mathbb{K} .

If $\frac{\alpha\overline{\beta} - \beta\overline{\alpha}}{\sqrt{\Delta}} > 0$, then α and β are called *ordered basis elements*. Recall that two bases an ideal are ordered if and only if they are equivalent under an element of $\overline{\Gamma}$. If L has

of an ideal are ordered if and only if they are equivalent under an element of $\overline{\Gamma}$. If I has ordered basis elements, then we say that I is *simply ordered*. If I is ordered, then

$$F(x,y) = \frac{N(\alpha x + \beta y)}{N(I)}$$

is a quadratic form of discriminant Δ . In this case we say that F belongs to I, and write $I \to F$. Conversely, let us assume that

$$G(x, y) = Ax^{2} + Bxy + Cy^{2} = d(ax^{2} + bxy + cy^{2})$$

is a quadratic form, where $d = \pm \gcd(A, B, C)$ and $b^2 - 4ac = \Delta$. If $B^2 - 4AC > 0$, then we get d > 0 and if $B^2 - 4AC < 0$, then we choose d such that a > 0. If

$$I = [\alpha, \beta] = \begin{cases} \left[a, \frac{b - \sqrt{\Delta}}{2}\right] & \text{for } a > 0\\ \left[a, \frac{b - \sqrt{\Delta}}{2}\right] \sqrt{\Delta} & \text{for } a < 0 \text{ and } \Delta > 0 \end{cases}$$

then I is an ordered O_{Δ} -ideal. Note that if a > 0, then I is primitive and if a < 0, then $\frac{I}{\sqrt{\Delta}}$ is primitive. Thus to every form G, there corresponds an ideal I to which G belongs and we write $G \to I$. Hence we have a correspondence between ideals and quadratic forms (for further details see [4, p. 350]).

1.2. Theorem. [4, Sec:1.2, p.9] If $I = [a, b + cw_{\Delta}]$, then I is a non-zero ideal of O_{Δ} if and only if

 $c|b, c|a \text{ and } ac|N(b+cw_{\Delta}).$

Let δ denote a real quadratic irrational integer with trace $t = \delta + \overline{\delta}$ and norm $n = \delta \overline{\delta}$. Given a real quadratic irrational $\gamma \in \mathbb{Q}(\delta)$, there are rational integers P and Q such that $\gamma = \frac{P+\delta}{Q}$ with $Q \mid (\delta + P)(\overline{\delta} + P)$. Hence for each $\gamma = \frac{P+\delta}{Q}$ there is a corresponding \mathbb{Z} -module

(1.5) $I_{\gamma} = [Q, P + \delta],$

(in fact, this module is an ideal by Theorem 1.2), and an indefinite quadratic form

(1.6) $F_{\gamma}(x,y) = Q(x+\delta y)(x+\overline{\delta}y)$

of discriminant $\Delta = t^2 - 4n$.

The ideal I_{γ} in (1.5) is said to be *reduced* if and only if

(1.7) $P + \delta > Q$ and $-Q < P + \overline{\delta} < 0$,

and is said to be *ambiguous* if and only if it contains both $\frac{P+\delta}{Q}$ and $\frac{P+\delta}{Q}$, hence if and only if $\frac{2P}{Q} \in \mathbb{Z}$.

Let $\langle m_0, \overline{m_1 m_2 \dots m_{l-1}} \rangle$ denote the continued fraction expansion of $\gamma = \frac{P+\delta}{Q}$ with period length l = l(I). Then the cycle of I_{γ} is $I_{\gamma} = I_{\gamma}^0 \sim I_{\gamma}^1 \sim \dots \sim I_{\gamma}^{l-1}$, where

(1.8)
$$m_i = \left[\frac{P_i + \delta}{Q_i}\right], \ P_{i+1} = m_i Q_i - P_i \text{ and } Q_{i+1} = \frac{\delta^2 - P_{i+1}^2}{Q_i}$$

for $0 \le i \le l - 1$ (see also [5,6]).

2. Indefinite quadratic forms and ideals

Let $\gamma = \frac{P+\delta}{Q}$ be a quadratic irrational. If we take $\delta = \sqrt{D}$, then we have $I_{\gamma} = [Q, P + \sqrt{D}]$ and $F_{\gamma} = (Q, 2P, \frac{P^2 - D}{Q})$ of discriminant $\Delta = 4D$ by (1.5) and (1.6), respectively. In [8], we consider the cycle of ideals I_{γ} and cycles of indefinite quadratic forms F_{γ} for some specific values of D. In the present paper we obtain some properties of the ideals I_{γ} and indefinite quadratic forms F_{γ} for quadratic irrationals $\gamma = \frac{P+\sqrt{D}}{Q}$, where $D \neq 1$ is the Extended-Richaud-Degert type (ERD-type), that is, $D = w^2 + v$ for positive integers w and v such that v|4w.

Let w = kv for a positive integer $k \ge 1$. Then $D = k^2v^2 + v$ is the ERD-type since $\frac{4w}{v} = \frac{4kv}{v} = 4k$. Let Q = v and P = w = kv. Then

(2.1)
$$\gamma = \frac{kv + \sqrt{k^2v^2 + v}}{v}$$

is a quadratic irrational. Therefore

- (2.2) $I_{\gamma} = [v, kv + \sqrt{k^2 v^2 + v}]$
- is an ideal and
- (2.3) $F_{\gamma} = (v, 2kv, -1)$
- is an indefinite quadratic form of discriminant $\Delta=4(k^2v^2+v).$
- **2.1. Theorem.** The ideal I_{γ} in (2.2) is ambiguous and reduced.
- *Proof.* It is easily seen that $\frac{2P}{Q} = \frac{2kv}{v} = 2k \in \mathbb{Z}$. Therefore I_{γ} is ambiguous. Note that $k^2v^2 < k^2v^2 + v$. Therefore

$$k^2 v^2 < k^2 v^2 + v \iff P^2 < D \iff P < \sqrt{D} \iff P - \sqrt{D} < 0.$$

Since v + 2kv > 1, we have

$$\begin{split} 0 &< v + 2kv - 1 \\ \Longleftrightarrow 0 &< v^2 + 2kv^2 - v \\ \Leftrightarrow v &< v^2 + 2kv^2 \\ \Leftrightarrow k^2v^2 + v &< v^2 + 2kv^2 + k^2v^2 \\ \Leftrightarrow k^2v^2 + v &< (kv + v)^2 \\ \Leftrightarrow D &< (P + Q)^2 \\ \Leftrightarrow \sqrt{D} &< P + Q \\ \Leftrightarrow -Q &< P - \sqrt{D}. \end{split}$$

Hence we get $-Q < P - \sqrt{D} < 0$. Similarly it can be shown that $P + \sqrt{D} > Q$. Therefore I_{γ} is reduced by (1.7).

2.2. Theorem. The continued fraction expansion of γ is $\langle 2k, 2kv \rangle$, and the cycle of I_{γ} is the cycle

$$I_{\gamma}^{0} = [v, kv + \sqrt{k^{2}v^{2} + v}] \sim I_{\gamma}^{1} = [1, kv + \sqrt{k^{2}v^{2} + v}]$$

 $of \ length \ 2.$

Proof. Let $I = I_0 = [v, kv + \sqrt{k^2v^2 + v}]$. Then by (1.8), we have

$$m_0 = \left[\frac{P_0 + \sqrt{D}}{Q_0}\right] = \left[\frac{kv + \sqrt{k^2v^2 + v}}{v}\right] = 2k$$

and hence

$$P_1 = m_0 Q_0 - P_0 = 2k \cdot v - kv = kv,$$
$$Q_1 = \frac{D - P_1^2}{Q_0} = \frac{k^2 v^2 + v - k^2 r^2}{v} = 1.$$

For i = 1 we have

$$m_1 = \left[\frac{P_1 + \sqrt{D}}{Q_1}\right] = \left[\frac{kv + \sqrt{k^2v^2 + v}}{1}\right] = 2kv$$

and hence

$$P_{2} = m_{1}Q_{1} - P_{1} = 2kv.1 - kv = kv = P_{0}$$
$$Q_{2} = \frac{D - P_{2}^{2}}{Q_{1}} = \frac{k^{2}v^{2} + v - k^{2}v^{2}}{1} = v = Q_{0}$$

Therefore, the continued fraction expansion of γ is $\langle 2k, 2kv \rangle$, and the cycle of I_{γ} is $I_{\gamma}^{0} = [v, kv + \sqrt{k^{2}v^{2} + v}] \sim I_{\gamma}^{1} = [1, kv + \sqrt{k^{2}v^{2} + v}].$

2.3. Example. Let v = 5 and k = 7. Then the continued fraction expansion of $\gamma = \frac{35 + \sqrt{1230}}{5}$ is $\langle 14, 70 \rangle$, and the cycle of $I_{\gamma} = [5, 35 + \sqrt{1230}]$ is $I_{\gamma}^0 = [5, 35 + \sqrt{1230}] \sim I_{\gamma}^1 = [1, 35 + \sqrt{1230}].$

2.4. Theorem. The indefinite quadratic form F_{γ} in (2.3) is ambiguous and reduced.

Proof. Let $g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \overline{\Gamma}$ and $F_{\gamma} = (v, 2kv, -1)$. Then by (1.2), the system of equations

$$vr^{2} + 2kvrs - s^{2} = v$$
$$2vrt + 2kvru + 2kvts - 2su = 2kv$$
$$vt^{2} + 2kvtu - u^{2} = -1$$

has a solution for r = 1, s = 2kv, t = 0 and u = -1, i.e. $gF_{\gamma} = F_{\gamma}$. Hence F_{γ} is improperly equivalent to itself since det g = -1. So F_{γ} is ambiguous by definition.

Note that v, kv > 0. Therefore,

$$\begin{split} k^2 v^2 < k^2 v^2 + v & \Longleftrightarrow 4k^2 v^2 < 4(k^2 v^2 + v) \\ & \Leftrightarrow \sqrt{4k^2 v^2} < \sqrt{4(k^2 v^2 + v)} \\ & \Leftrightarrow 2kv < \sqrt{\Delta} \\ & \Leftrightarrow b < \sqrt{\Delta}. \end{split}$$

Since $k^2v^2 + v < k^2v^2 + 2kv^2 + v^2$, we have

$$\begin{split} k^2 v^2 + v < (kv+v)^2 \iff \sqrt{k^2 v^2 + v} < \sqrt{(kv+v)^2} \\ \iff \sqrt{k^2 v^2 + v} < kv + v \\ \iff 2\sqrt{k^2 v^2 + v} < 2kv + 2v \\ \iff \sqrt{4(k^2 v^2 + v)} < 2kv + 2v \\ \iff \sqrt{4(k^2 v^2 + v)} - 2v < 2kv \\ \iff \sqrt{4(k^2 v^2 + v)} - 2v < 2kv \\ \iff \sqrt{\Delta} - 2|a| < b. \end{split}$$

Hence $|\sqrt{\Delta} - 2|a|| < b < \sqrt{\Delta}$. Therefore, F_{γ} is reduced.

2.5. Theorem. The cycle of $F_{\gamma} = (v, 2kv, -1)$ is the cycle

$$F_{\gamma}^{0} = (v, 2kv, -1) \sim F_{\gamma}^{1} = (1, 2kv, -v)$$

of length 2.

Proof. Let $F_{\gamma}^0 = F_{\gamma} = (a_0, b_0, c_0) = (v, 2kv, -1)$. Then by (1.3), we get

$$s_0 = \left[\frac{b_0 + \sqrt{\Delta}}{2|c_0|}\right] = \left\lfloor\frac{2kv + \sqrt{4(k^2v^2 + v)}}{2|-1|}\right\rfloor = \left[kv + \sqrt{k^2v^2 + v}\right] = 2kv,$$

and hence

$$F_{\gamma}^{1} = (a_{1}, b_{1}, c_{1}) = (|c_{0}|, -b_{0} + 2s_{0}|c_{0}|, -a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2})$$
$$= (1, -2kv + 4kv, -v - 2kv.2kv + (2kv)^{2})$$
$$= (1, 2kv, -v)$$

A. Tekcan

by (1.4). For i = 1 we have

$$s_1 = \left[\frac{b_1 + \sqrt{\Delta}}{2|c_1|}\right] = \left[\frac{2kv + \sqrt{4(k^2v^2 + v)}}{2|-v|}\right] = \left[\frac{kv + \sqrt{k^2v^2 + v}}{v}\right] = 2k,$$

and hence

$$F_{\gamma}^{2} = (a_{2}, b_{2}, c_{2}) = (|c_{1}|, -b_{1} + 2s_{1}|c_{1}|, -a_{1} - b_{1}s_{1} - c_{1}s_{1}^{2})$$

= $(v, -2kv + 2.2k.v, -1 - 2kv.2k + v.4k^{2})$
= $(v, 2kv, -1)$
= F_{0} .

Therefore the cycle of F is $F_{\gamma}^0 = (v, 2kv, -1) \sim F_{\gamma}^1 = (1, 2kv, -v).$

3. A special family of ideals and quadratic forms

Let $D = w^2 + v$ be of ERD-type, and let w = kv for an integer $k \ge 1$. Let Q = 2kv - v + 1 and P = kv + 1. Then

(3.1)
$$\gamma = \frac{kv + 1 + \sqrt{k^2v^2 + v}}{2kv - v + 1}$$

is a quadratic irrational. Therefore

(3.2) $I_{\gamma} = [2kv - v + 1, kv + 1 + \sqrt{k^2v^2 + v}]$

is an ideal and

(3.3) $F_{\gamma} = (2kv - v + 1, 2kv + 2, 1)$

is an indefinite quadratic form of discriminant $\Delta = 4(k^2v^2 + v)$.

3.1. Theorem. I_{γ} is not reduced.

Proof. Note that 2kv + 1 > v. Hence

$$\begin{aligned} 2kv+1 > v \iff k^2v^2 + 2kv+1 > k^2v^2 + v \\ \iff P^2 > D \\ \iff P > \sqrt{D} \\ \iff P - \sqrt{D} > 0, \end{aligned}$$

which is a contradiction to (1.7). Therefore I_{γ} is not reduced.

3.2. Theorem. I_{γ} is ambiguous if and only if k = 1, that is w = v.

Proof. Let I_{γ} be ambiguous. Then

$$\frac{2P}{Q} = \frac{2kv+2}{2kv-v+1} = 1 + \frac{v+1}{2kv-v+1}$$

must be an integer. It is easily seen that it is an integer for k = 1. Indeed, for k = 1 we have

$$\frac{2P}{Q} = \frac{2kv+2}{2kv-v+1} = 1 + \frac{v+1}{2kv-v+1} = 1 + \frac{v+1}{v+1} = 2 \in \mathbb{Z}.$$

Conversely let us assume that k = 1. Then

$$\frac{2P}{Q} = \frac{2kv+2}{2kv-v+1} = \frac{2v+2}{v+1} = 2 \in \mathbb{Z}.$$

Therefore I_{γ} is ambiguous.

32

г		

3.3. Theorem. The continued fraction expansion of γ is $\langle 1, 2k - 1, \overline{2kv, 2k} \rangle$, and the cycle of I_{γ} is

$$\begin{split} I_{\gamma}^{0} &= [2kv - v + 1, kv + 1 + \sqrt{k^{2}v^{2} + v}] \\ &\sim I_{\gamma}^{1} = [v, kv - v + \sqrt{k^{2}v^{2} + v}] \\ &\sim I_{\gamma}^{2} = [1, kv + \sqrt{k^{2}v^{2} + v}] \\ &\sim I_{\gamma}^{3} = [v, kv + \sqrt{k^{2}v^{2} + v}]. \end{split}$$

Proof. Let $I_{\gamma} = I_{\gamma}^0 = [2kv - v + 1, kv + 1 + \sqrt{k^2v^2 + v}]$. Then by (1.8), we get

$$m_0 = \left[\frac{P_0 + \sqrt{D}}{Q_0}\right] = \left[\frac{kv + 1 + \sqrt{k^2v^2 + v}}{2kv - v + 1}\right] = 1,$$

and hence

$$P_1 = m_0 Q_0 - P_0 = 1.(2kv - v + 1) - (kv + 1) = kv - v$$
$$Q_1 = \frac{D - P_1^2}{Q_0} = \frac{k^2 v^2 + v - (kv - v)^2}{2kv - v + 1} = \frac{v(2kv - v + 1)}{2kv - v + 1} = v$$

For i = 1 we have

$$m_1 = \left[\frac{P_1 + \sqrt{D}}{Q_1}\right] = \left[\frac{kv - v + \sqrt{k^2v^2 + v}}{v}\right] = 2k - 1,$$

and hence

$$P_2 = m_1 Q_1 - P_1 = (2k - 1)v - (kv - v) = kv$$
$$Q_2 = \frac{D - P_2^2}{Q_1} = \frac{k^2 v^2 + v - k^2 v^2}{v} = 1.$$

For i = 2 we have

$$m_2 = \left[\frac{P_2 + \sqrt{D}}{Q_2}\right] = \left[\frac{kv + \sqrt{k^2v^2 + v}}{1}\right] = 2kv,$$

and hence

$$P_3 = m_2 Q_2 - P_2 = 2kv.1 - kv = kv$$
$$Q_3 = \frac{D - P_3^2}{Q_2} = \frac{k^2 v^2 + v - k^2 v^2}{1} = v.$$

For i = 3 we have

$$m_3 = \left[\frac{P_3 + \sqrt{D}}{Q_3}\right] = \left[\frac{kv + \sqrt{k^2v^2 + v}}{v}\right] = 2k,$$

and hence

$$P_4 = m_3Q_3 - P_3 = 2kv - kv = kv$$
$$Q_4 = \frac{D - P_4^2}{Q_3} = \frac{k^2v^2 + v - k^2v^2}{v} = 1.$$

For i = 4 we have

$$m_4 = \left[\frac{P_4 + \sqrt{D}}{Q_4}\right] = \left[\frac{kv + \sqrt{k^2v^2 + v}}{1}\right] = 2kv = m_2.$$

Therefore, the continued fractional expansion of γ is $\langle 1, 2k - 1, \overline{2kv, 2k} \rangle$, and hence the cycle of I_{γ} is $I_{\gamma}^{0} = [2kv - v + 1, kv + 1 + \sqrt{k^{2}v^{2} + v}] \sim I_{\gamma}^{1} = [v, kv - v + \sqrt{k^{2}v^{2} + v}] \sim I_{\gamma}^{2} = [1, kv + \sqrt{k^{2}v^{2} + v}] \sim I_{\gamma}^{3} = [v, kv + \sqrt{k^{2}v^{2} + v}].$

3.4. Example. Let v = 3 and k = 3. Then the continued fraction expansion of $\gamma = \frac{10 + \sqrt{84}}{16}$ is $\langle 1, 5, \overline{18, 6} \rangle$, and the cycle of $I_{\gamma} = [16, 10 + \sqrt{84}]$ is

$$I_{\gamma}^{0} = [16, 10 + \sqrt{84}] \sim I_{\gamma}^{1} = [3, 6 + \sqrt{84}] \sim I_{\gamma}^{2} = [1, 9 + \sqrt{84}] \sim I_{\gamma}^{3} = [3, 9 + \sqrt{84}].$$

3.5. Theorem. F_{γ} is not reduced.

Proof. Note that 2kv + 1 > v. Then

$$\begin{aligned} 2kv+1 > v &\iff 8kv+4 > 4v \\ &\iff 4k^2v^2+8kv+4 > 4k^2v^2+4v \\ &\iff (2kv+2)^2 > 4(k^2v^2+1) \\ &\iff (2kv+2)^2 > 4D \\ &\iff (2kv+2)^2 > \Delta \\ &\iff 2kv+2 > \sqrt{\Delta} \\ &\iff b > \sqrt{\Delta}. \end{aligned}$$

Therefore, F_{γ} is not reduced.

If a quadratic form F = (a, b, c) of discriminant Δ is not reduced, then we can get it reduced by using the following reduction algorithm: Let $F = F_0 = (a_0, b_0, c_0)$ be a non-reduced form of discriminant Δ , let

(3.4)
$$s_{i} = \begin{cases} \operatorname{sign}(c_{i}) \left[\frac{b_{i}}{2|c_{i}|}\right] & \text{if } |c_{i}| \geq \sqrt{\Delta}, \\ \\ \operatorname{sign}(c_{i}) \left[\frac{b_{i}+\sqrt{\Delta}}{2|c_{i}|}\right] & \text{if } |c_{i}| < \sqrt{\Delta}, \end{cases}$$

and let

(3.5)
$$R^{i+1}(F) = (c_i, -b_i + 2s_ic_i, c_is_i^2 - b_is_i + a_i)$$

for $i \geq 0$. The number s_i is called the *reducing number*, and the form $R^{i+1}(F)$ is called the *reduction* of F. If $R^1(F)$ is not reduced, then we apply the reduction algorithm again and hence we get $R^2(F)$. If $R^2(F)$ is not reduced, then we apply the reduction algorithm again and hence we get $R^3(F)$. After a finite number of steps $j \geq i$, the form $R^j(F)$ is reduced. The form $R^j(F)$ is called the *reducing type* of F (for further details see [1, p.90]).

We proved in Theorem 3.5 that the form $F_{\gamma} = (2kv - v + 1, 2kv + 2, 1)$ is not reduced. But we can get a reducing type of F_{γ} as we mentioned above. For i = 0, we have

$$s_0 = \operatorname{sign}(c_0) \left[\frac{b_0 + \sqrt{\Delta}}{2|c_0|} \right]$$
$$= \left[\frac{2kv + 2 + \sqrt{4(k^2v^2 + v)}}{2} \right]$$
$$= \left[kv + 1 + \sqrt{k^2v^2 + v} \right]$$
$$= 2kv + 1$$

by (3.4), and hence

$$R^{1}(F_{\gamma}) = (c_{0}, -b_{0} + 2s_{0}c_{0}, c_{0}s_{0}^{2} - b_{0}s_{0} + a_{0})$$

= $\binom{(1, -(2kv+2) + 2(2kv+1),}{(2kv+1)^{2} - (2kv+2)(2kv+1) + 2kv - v + 1)}$
= $(1, 2kv, -v)$

by (3.5). Note that the form $R^1(F_{\gamma})$ is reduced. Therefore we have proved:

3.6. Theorem. The reducing type of F_{γ} is $R^1(F_{\gamma}) = (1, 2kv, -v)$.

3.7. Theorem. The cycle of $R^1(F_{\gamma}) = (1, 2kv, -v)$ is the cycle

$$R^{1}(F_{\gamma}^{0}) = (1, 2kv, -v) \sim R^{1}(F_{\gamma}^{1}) = (v, 2kv, -1)$$

 $of \ length \ 2.$

Proof. Let
$$R^1(F_{\gamma}) = R^1(F_{\gamma}^0) = (1, 2kv, -v)$$
. For $i = 0$, we have

$$s_0 = \left[\frac{b_0 + \sqrt{\Delta}}{2|c_0|}\right] = \left[\frac{2kv + \sqrt{4(k^2v^2 + v)}}{2|-v|}\right] = \left[\frac{kv + \sqrt{k^2v^2 + v}}{v}\right] = 2k,$$

and hence

$$R^{1}(F_{\gamma}^{1}) = (a_{1}, b_{1}, c_{1})$$

= $(|c_{0}|, -b_{0} + 2s_{0}|c_{0}|, -a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2})$
= $(|-v|, -2kv + 2(2k)| - v|, -1 - 2kv(2k) - (-v)(2k)^{2})$
= $(v, 2kv, -1).$

For i = 1, we have

$$s_1 = \left[\frac{b_1 + \sqrt{\Delta}}{2|c_1|}\right] = \left[\frac{2kv + \sqrt{4(k^2v^2 + v)}}{2|-1|}\right] = \left[kv + \sqrt{k^2v^2 + v}\right] = 2kv,$$

and hence

$$\begin{aligned} R^{1}(F_{\gamma}^{2}) &= (a_{2}, b_{2}, c_{2}) \\ &= (|c_{1}|, -b_{1} + 2s_{1}|c_{1}|, -a_{1} - b_{1}s_{1} - c_{1}s_{1}^{2}) \\ &= (|-1|, -2kv + 2(2kv)| - 1|, -v - 2kv(2kv) - (-1)(2kv)^{2}) \\ &= (1, 2kv, -v) \\ &= R^{1}(F_{\gamma}^{0}). \end{aligned}$$

Therefore, the cycle of $R^1(F_{\gamma})$ is completed and is

$$R^{1}(F_{\gamma}^{0}) = (1, 2kv, -v) \sim R^{1}(F_{\gamma}^{1}) = (v, 2kv, -1).$$

References

- [1] Buchmann, J. Algorithms for Binary Quadratic Forms, (In preparation, accepted by Springer-Verlag).
- Buell, D. A. Binary Quadratic Forms, Clasical Theory and Modern Computations (Springer-Verlag, New York, 1989).
- [3] Flath, D. E. Introduction to Number Theory (Wiley, 1989).
- [4] Mollin, R. A. Quadratics (CRS Press, Boca Raton, New York, London, Tokyo, 1996).

A. Tekcan

- [5] Mollin, R. A. and Poorten, A. J. A note on symmetry and ambiguity, Bull. Austral. Math. Soc. 51, 215–233, 1995.
- [6] Mollin, R. A. and Cheng, K. Palindromy and ambiguous ideals revisited, Journal of Number Theory 74, 98–110, 1999.
- [7] Tekcan, A. and Bizim, O. The connection between quadratic forms and the extended modular group, Mathematica Bohemica 128 (3), 225–236, 2003.
- [8] Tekcan, A. On the cycles of indefinite quadratic forms and cycles of ideals, Hacettepe Journal of Mathematics and Statistics **35** (1), 63–70, 2006.

36