ON A THEOREM OF POSNER FOR 3-PRIME NEAR-RINGS WITH (σ, τ)-DERIVATION

Öznur Gölbaşı*

Received $05: 03: 2007$: Accepted $16: 05: 2007$

Abstract

The analog of Posner's theorem on the composition of two derivations in prime rings is proved for 3 -prime near-rings with d_{1} a (σ, τ)-derivation and d_{2} a derivation.

Keywords: 3 -prime near-rings, (σ, τ)-derivation, Commutativity.
2000 AMS Classification: 16 Y 30, $19 \mathrm{~W} 25,16 \mathrm{U} 80$.

1. Introduction

Let N be a zero-symmetric left near-ring, σ, τ two near-ring automorphisms of N. An additive mapping $d: N \rightarrow N$ is called a (σ, τ)-derivation if $d(x y)=\tau(x) d(y)+d(x) \sigma(y)$ holds for all $x, y \in N$.

For $x, y \in N$, the symbol $[x, y]$ will denote $x y-y x$, while the symbol (x, y) will denote the additive commutator $x+y-x-y$. Given $x, y \in N$, we write $[x, y]_{\sigma, \tau}=x \sigma(y)-\tau(y) x$; in particular, $[x, y]_{1,1}=[x, y]$ in the usual sense. As for terminology used here without mention, we refer to G.Pilz [5].

During the last couple of decades, a lot of work has been done on commutativity of prime rings with derivations. The study of derivations of near-rings was initiated by H. E. Bell and G. Mason in [3]. A well-known theorem due to Posner [6] states that if the composition of two derivations of a prime ring of characteristic not equal to two is again a derivation, then at least one of them must be zero. An analogue of this result in 3 -prime near-rings was obtained by Beidar et. al. (for reference see [1]). Bell and Argaç generalized this result for a nonzero semigroup ideal of N in [2]. It is our aim in this note to extend the result due to Beidar et. al. to (σ, τ)-derivations.

Throughout this paper N will denote a zero-symmetric and 3-prime left near-ring with multiplicative center Z. Moreover, d_{1} will be a (σ, τ)-derivation and d_{2} a derivation of N.

[^0]
2. Results

2.1. Lemma. [4, Lemma 2] Let d be a (σ, τ)-derivation on a near-ring N. Then

$$
(\tau(x) d(y)+d(x) \sigma(y)) \sigma(a)=\tau(x) d(y) \sigma(a)+d(x) \sigma(y) \sigma(a)
$$

for all $x, y \in N$.
2.2. Lemma. [4, Lemma 3] Let d be a nonzero (σ, τ)-derivation on a near-ring N and $a \in N$.
i) If $d(N) \sigma(a)=0$ then $a=0$.
ii) If $a d(N)=0$ then $a=0$.
2.3. Lemma. Let N be a 3 -prime near-ring, d_{1} a nonzero (σ, τ)-derivation and d_{2} a derivation of N such that $d_{1}(x) \sigma\left(d_{2}(y)\right)=-\tau\left(d_{2}(x)\right) d_{1}(y)$ for all $x, y \in N$. Then $(N,+)$ is abelian.

Proof. Let u, v be in N. Writing $u+v$ instead of y, we have:

$$
\begin{aligned}
0 & =d_{1}(x) \sigma\left(d_{2}(u+v)\right)+\tau\left(d_{2}(x)\right) d_{1}(u+v) \\
& =d_{1}(x) \sigma\left(d_{2}(u)\right)+d_{1}(x) \sigma\left(d_{2}(v)\right)+\tau\left(d_{2}(x)\right) d_{1}(u)+\tau\left(d_{2}(x)\right) d_{1}(v)
\end{aligned}
$$

Using the hypothesis, we get

$$
0=d_{1}(x) \sigma\left(d_{2}(u)\right)+d_{1}(x) \sigma\left(d_{2}(v)\right)-d_{1}(x) \sigma\left(d_{2}(u)\right)-d_{1}(x) \sigma\left(d_{2}(v)\right)
$$

and so,
(2.1) $\quad d_{1}(x) \sigma\left(d_{2}(u, v)\right)=0, \quad$ for all $x, u, v \in N$.

By Lemma $2.2(\mathrm{i})$, we obtain that $d_{2}(u, v)=0$ for all $u, v \in N$.
For any $w \in N$, we have $d_{2}(w u, w v)=0$. Using (2.1), we obtain that $d_{2}(w(u, v))=0$. This yields

$$
d_{2}(w)(u, v)=0, \quad \text { for all } w, u, v \in N
$$

By [3, Lemma 3 (iii)], we get $(u, v)=0$, for all $u, v \in N$.
2.4. Theorem. Let N be a 3 -prime near-ring with $2 N \neq\{0\}, d_{1}$ a (σ, τ)-derivation and d_{2} a derivation such that

$$
d_{1} \tau=\tau d_{1}, d_{1} \sigma=\sigma d_{1}, d_{2} \tau=\tau d_{2} \text { and } d_{2} \sigma=\sigma d_{2}
$$

If $d_{1}(x) \sigma\left(d_{2}(y)\right)=-\tau\left(d_{2}(x)\right) d_{1}(y)$ for all $x, y \in N$, then either $d_{1}=0$ or $d_{2}=0$.
Proof. Suppose that $d_{1} \neq 0$ and $d_{2} \neq 0$. We know that $(N,+)$ is abelian from Lemma 2.3. Now, for all $u, v \in N$ we take $x=u v$ in the given equation, obtaining

$$
\begin{aligned}
0 & =d_{1}(u v) \sigma\left(d_{2}(y)\right)+\tau\left(d_{2}(u v)\right) d_{1}(y) \\
& =\left(\tau(u) d_{1}(v)+d_{1}(u) \sigma(v)\right) \sigma\left(d_{2}(y)\right)+\tau\left(u d_{2}(v)+d_{2}(u) v\right) d_{1}(y)
\end{aligned}
$$

By the partial distributive law, for all $u, v, y \in N$ we get:

$$
0=\tau(u) d_{1}(v) \sigma\left(d_{2}(y)\right)+d_{1}(u) \sigma(v) \sigma\left(d_{2}(y)\right)+\tau(u) \tau\left(d_{2}(v)\right) d_{1}(y)+\tau\left(d_{2}(u)\right) \tau(v) d_{1}(y)
$$

and so,

$$
0=\tau(u)\left(d_{1}(v) \sigma\left(d_{2}(y)+\tau\left(d_{2}(v)\right) d_{1}(y)\right)+d_{1}(u) \sigma(v) \sigma\left(d_{2}(y)\right)+d_{2}(\tau(u)) \tau(v) d_{1}(y)\right.
$$

Using the hypothesis, we have

$$
\begin{equation*}
d_{1}(u) \sigma(v) \sigma\left(d_{2}(y)\right)+d_{2}(\tau(u)) \tau(v) d_{1}(y)=0, \quad \text { for all } y, u, v \in N \tag{2.2}
\end{equation*}
$$

Replacing y by $y t, t \in N$ in (2.2) and using (2.2), we have

$$
\begin{aligned}
0= & d_{1}(u) \sigma(v) \sigma\left(d_{2}(y t)\right)+d_{2}(\tau(u)) \tau(v) d_{1}(y t) \\
= & d_{1}(u) \sigma(v) \sigma(y) \sigma\left(d_{2}(t)\right)+d_{1}(u) \sigma(v) \sigma\left(d_{2}(y)\right) \sigma(t) \\
& \quad+d_{2}(\tau(u)) \tau(v) \tau(y) d_{1}(t)+d_{2}(\tau(u)) \tau(v) d_{1}(y) \sigma(t) \\
= & d_{1}(u) \sigma(v y) \sigma\left(d_{2}(t)\right)+d_{2}(\tau(u)) \tau(v y) d_{1}(t) \\
& \quad+d_{1}(u) \sigma(v) \sigma\left(d_{2}(y)\right) \sigma(t)+d_{2}(\tau(u)) \tau(v) d_{1}(y) \sigma(t)
\end{aligned}
$$

and using (2.2) gives

$$
\begin{equation*}
d_{1}(u) \sigma(v) \sigma\left(d_{2}(y)\right) \sigma(t)+d_{2}(\tau(u)) \tau(v) d_{1}(y) \sigma(t)=0, \quad \text { for all } u, v, y, t \in N \tag{2.3}
\end{equation*}
$$

Substituting $d_{1}(t)$ for t in (2.3), we get, for all $u, v, y, t \in N$.

$$
\begin{equation*}
d_{1}(u) \sigma(v) \sigma\left(d_{2}(y)\right) \sigma\left(d_{1}(t)\right)+d_{2}(\tau(u)) \tau(v) d_{1}(y) \sigma\left(d_{1}(t)\right)=0 \tag{2.4}
\end{equation*}
$$

Now if we take $\tau(y)$ instead of y in (2.4), we have, for all $u, v, y, t \in N$,

$$
\begin{equation*}
d_{1}(u) \sigma(v) \sigma\left(d_{2}(\tau(y))\right) \sigma\left(d_{1}(t)\right)+d_{2}(\tau(u)) \tau(v) d_{1}(\tau(y)) \sigma\left(d_{1}(t)\right)=0 \tag{2.5}
\end{equation*}
$$

Substituting $v d_{1}(y)$ and $\sigma(t)$ instead of v and y, respectively in (2.2), we obtain that, for all $u, v, y, t \in N$,

$$
\begin{equation*}
d_{1}(u) \sigma(v) \sigma\left(d_{1}(y)\right) \sigma\left(d_{2}(\sigma(t))\right)+d_{2}(\tau(u)) \tau(v) \tau\left(d_{1}(y)\right) d_{1}(\sigma(t))=0 \tag{2.6}
\end{equation*}
$$

Now, if we subtract (2.5) from (2.6) and use

$$
d_{1} \sigma=\sigma d_{1}, d_{1} \tau=\tau d_{1}
$$

we obtain that

$$
d_{1}(u) \sigma(v)\left(d _ { 1 } (\sigma (y)) \sigma \left(d_{2}(\sigma(t))-\sigma\left(d_{2}(\tau(y)) \sigma\left(d_{1}(t)\right)=0\right.\right.\right.
$$

and so
(2.7) $\quad d_{1}(N) N\left(\sigma\left(d_{1}(y) d_{2}(\sigma(t))-d_{2}(\tau(y)) d_{1}(t)\right)=0, \quad\right.$ for all $t, y \in N$.

Since N is a $3-$ prime near-ring and $d_{1} \neq 0$ we conclude that,

$$
d_{1}(y) d_{2}(\sigma(t))-d_{2}(\tau(y)) d_{1}(t)=0
$$

Using $d_{2} \sigma=\sigma d_{2}$ and the hypothesis, we get

$$
\begin{equation*}
d_{1}(y) \sigma\left(d_{2}(t)+d_{2}(t)\right)=0, \text { for all } y, t \in N \tag{2.8}
\end{equation*}
$$

By Lemma 2.2(i) and $d_{1} \neq 0$ we get,

$$
d_{2}(t)+d_{2}(t)=0, \text { for all } t \in N
$$

Hence $0=d_{2}(s t)+d_{2}(s t)=d_{2}(s)(t+t)$ for all $s, t \in N$, and so

$$
d_{2}(N)(t+t)=0, \text { for all } t \in N
$$

From [3, Lemma 3 (iii)], we have $t+t=0$ for all $t \in N$, which contradicts the hypothesis that $2 N \neq\{0\}$. This completes the proof.
2.5. Theorem. Let N be a 3 -prime near-ring with $2 N \neq\{0\}, d_{1} a(\sigma, \tau)$-derivation and d_{2} a derivation such that

$$
d_{1} \tau=\tau d_{1}, d_{1} \sigma=\sigma d_{1}, d_{2} \tau=\tau d_{2} \text { and } d_{2} \sigma=\sigma d_{2}
$$

If $d_{1} d_{2}$ acts as a (σ, τ)-derivation on N, then either $d_{1}=0$ or $d_{2}=0$.

Proof. Note that

$$
d_{2} d_{1}(x y)=\tau(x) d_{2} d_{1}(y)+d_{2} d_{1}(x) \sigma(y),
$$

and

$$
d_{2} d_{1}(x y)=d_{2}(\tau(x)) d_{1}(y)+\tau(x) d_{2} d_{1}(y)+d_{2} d_{1}(x) \sigma(y)+d_{1}(x) d_{2}(\sigma(y))
$$

Comparing these two expressions gives

$$
\tau\left(d_{2}(x)\right) d_{1}(y)+d_{1}(x) \sigma\left(d_{2}(y)\right)=0, \text { for all } x, y \in N
$$

From Theorem 2.4, we get $d_{1}=0$ or $d_{2}=0$.
2.6. Theorem. If N is a 3 -prime near-ring with d a nonzero (σ, τ)-derivation such that $d(x y)=d(y x)$ for all $x, y \in N$, then N is commutative near-ring.

Proof. By hypothesis,

$$
\begin{equation*}
\tau(x) d(y)+d(x) \sigma(y)=\tau(y) d(x)+d(y) \sigma(x), \text { for all } x, y \in N \tag{2.9}
\end{equation*}
$$

We substitute $y x$ for x, thereby obtaining

$$
\tau(y) \tau(x) d(y)+d(y x) \sigma(y)=\tau(y) d(y x)+d(y) \sigma(y) \sigma(x) .
$$

By the partial distributive law for $x, y \in N$ and using $d(y x)=d(x y)$ we get

$$
\begin{aligned}
\tau(y) \tau(x) d(y) & +\tau(y) d(x) \sigma(y)+d(y) \sigma(x) \sigma(y) \\
= & \tau(y) \tau(x) d(y)+\tau(y) d(x) \sigma(y)+d(y) \sigma(y) \sigma(x)
\end{aligned}
$$

and so,
(2.10) $\quad d(y) \sigma(x) \sigma(y)=d(y) \sigma(y) \sigma(x)$, for all $x, y \in N$.

Replacing x by $x z, z \in N$ we have:

$$
d(y) \sigma(x) \sigma(z) \sigma(y)=d(y) \sigma(y) \sigma(x) \sigma(z)=d(y) \sigma(x) \sigma(y) \sigma(z)
$$

and so

$$
d(y) N \sigma([z, y])=0, \text { for all } y, z \in N
$$

Since N is a 3 -prime near-ring, we obtain that $d(y)=0$ or $y \in Z$. Since d is a nonzero (σ, τ)-derivation on N, we have $y \in Z$. So, N is a commutative near-ring.
2.7. Theorem. Let N be 3 -prime $2-$ torsion free near-ring and d_{1} a nonzero $(\sigma, \tau)-$ derivation, d_{2} a nonzero derivation on N such that $d_{1} \tau=\tau d_{1}, d_{1} \sigma=\sigma d_{1}, d_{2} \tau=\tau d_{2}$ and $d_{2} \sigma=\sigma d_{2}$. If $d_{1}(x) \sigma\left(d_{2}(y)\right)=\tau\left(d_{2}(y)\right) d_{1}(x)$ for $x, y \in N$, then N is a commutative ring.

Proof. By hypothesis, we get

$$
\left[d_{1}(x), d_{2}(y)\right]_{\sigma, \tau}=0, \text { for all } x, y \in N
$$

From [4, Theorem 6], we obtain that $d_{1} d_{2}(N)=0$ or $d_{2}(N) \subset Z$.
Since d_{1} and d_{2} are nonzero derivations, we have $d_{2}(N) \subset Z$. This completes the proof by [3, Theorem 2].

References

[1] Beidar, K. I., Fong, Y. and Wang, X. K. Posner and Herstein Theorems for derivations of 3-prime near-rings, Communications in Algebra 24 (5), 1581-1589, 1996.
[2] Bell, H. E. and Argaç, N. Derivations, products of derivations and commutativity in nearrings, Algebra Colloquium 84, 399-407, 2001.
[3] Bell, H. E. and Mason G. On Derivations in Near-rings, Near-rings and Near-fields (NorthHolland Mathematical Studies 137, 1987).
[4] Gölbaşı, Ö. and Aydın, N. Results on prime near-rings with (σ, τ)-derivation, Mathematical Journal of Okayama University 46, 1-7, 2004.
[5] Pilz, G. Near-rings, 2nd Ed. (North Holland, Amsterdam, 1983).
[6] Posner, E. C. Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.

[^0]: *Cumhuriyet University, Faculty of Arts and Science, Department of Mathematics, 58140 Sivas, Turkey. E-mail: ogolbasi@cumhuriyet.edu.tr

