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Abstract

Ranked set sampling is a more efficient sampling technique than simple
random sampling for estimating the population mean when the mea-
surement of the sampling units according to the variable of interest is
expensive or difficult, but ranking them is relatively cheap and easy.
In this study, the best linear unbiased estimators in the class of linear
combinations of the ranked set sample values are obtained for multiple
linear regression models with replicated observations. During the sam-
ple selection procedure of ranked set sampling, it is assumed that the
ranking is done according to a concomitant variable. The estimators
obtained from the ranked set sampling and simple random sampling
with the same sample size are compared with respect to the relative
efficiency.
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1. Introduction

In many environmental, ecological, agricultural and medical studies, the measurement
of the variable of interest is generally expensive or difficult. Thus, in such fields, it is
natural to prefer a sampling technique that represents the population to the best level
possible while using the smallest sample size. A sampling technique suiting this purpose
was initially suggested by McIntyre [12] under the name Ranked Set Sampling (RSS).
McIntyre estimated the mean of pasture yields and indicated that RSS is a more efficient
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sampling technique than Simple Random Sampling (SRS) for estimating the population
mean.

In the RSS technique, the sample selection procedure is composed of two stages. In
the first stage of sample selection, m random samples of size m are drawn from the
population with replacement by SRS. Each of these samples is called a “set”, and each
set is roughly ranked with respect to the variable of interest Y from the lowest value to
the highest value. Ranking of the units is done with a low-level measurement such as
using previous experiences, visual measurement or using a concomitant variable. At the
second stage; the first unit from the first set, the second unit from the second set, and
generally the mth unit from the mth set are taken and measured with respect to Y at a
desired level. The resulting sample Y(1),Y(2), . . . , Y(m) constitute a ranked set sample with

size m. Here, Y(i) denotes the ith order statistic in the ith set for i = 1, 2, . . . ,m based on
the assumption of no ranking error. So, Y(1),Y(2), . . . , Y(m) are all independent but not
identically distributed. This sample selection procedure may be repeated r times until
one reaches the desired sample size n. After the rth cycle, the estimator of the population
mean, which is generated from a ranked set sample of size n = mr, is obtained as in [12],

(1) Y RSS =
1

mr

m∑

i=1

r∑

j=1

Y(i)j .

Takahasi and Wakimoto [18] proved that Y RSS is an unbiased estimator of the population

mean which is more efficient than the simple random sample mean Y SRS. Furthermore,
Dell and Clutter [7] showed that Y RSS is an unbiased estimator of the population mean

regardless of ranking errors, and that is more efficient than Y SRS unless the ranking is
so poor as to yield a random sample.

As is seen from (1), Y RSS gives equal weight to all ranked set sample units. In
recent years, Stokes [17], Sinha et al.[15], Barnett and Moore [5], Barnett and Barreto
[3], Barnett and Barreto [4], Gang and Al-Saleh [8] and Balakrishnan and Li [2] have
considered more general linear combinations of ranked set sample units. They considered
best linear unbiased estimators (BLUEs) for the class of linear combinations of ranked set
sample values, namely optimal L-estimators. In these studies, generally location and scale
parameters of the selected distributions were estimated. However, Barnett and Barreto
[3] were the first to estimate the regression parameters by using optimal L-estimators.
They considered a simple linear regression model with replicated observations when the
dependent variable is normally distributed and ranking is assumed to be perfect. This
model is compared with the simple linear regression model with respect to Relative
Efficiency (RE). It is remarked that the optimal L-estimators of slope and intercept
parameters based on RSS are more efficient than the estimators based on SRS. Besides,
the residual variance is also more efficient than the estimators based on SRS except in
the cases where the number of replicated observations is smaller than 6.

In this study, we extend the work of Barnett and Barreto [3] by introducing the optimal
L-estimators of multiple linear regression model parameters based on the assumption of
ranking by a concomitant variable. We compare this model with the traditional multiple
linear regression model by means of RE. Also, we calculate the RE values relating to
residual variance by using the uniformly minimum variance unbiased estimator of σ for
the normal distribution, while Barnett and Barreto [3] gives an approximate variance
formulation for the σ̂ under SRS.
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2. BLUE’s in the case of concomitant ranking

Let the independent variables X1, X2, . . . , Xp constitute the regression model for c
different predetermined values (Xl = xlj , l = 1, 2, . . . , p; j = 1, 2, . . . , c), thus the condi-
tional mean and variance of the dependent variable Y are defined respectively by;

(2)
E(Y/Xl = xlj) = β0 + β1x1j + β2x2j + · · ·+ βpxpj

Var(Y/Xl = xlj) = σ2
Icxc.

To obtain optimal L-estimators for the model parameters, Y is observed more than once
at each set of c distinct values of the independent variables. Suppose that Y is observed
from a ranked set sample with size m for the jth value set of the independent variables
(x1j , x2j , . . . , xpj) for j = 1, 2, . . . , c. To obtain the ranked set sample, the sample se-
lection procedure mentioned in Section 1 can be applied. Using this sample selection
procedure, Özdemir [13] obtained optimal L-estimators of the multiple linear regression
model parameters based on the assumption of no ranking error. In applications, units
are generally ranked in RSS by visual techniques, or by using a concomitant variable,
which is cheap and easy. Since the units are not ranked with exact measurements of the
variable of interest Y , it is possible to have a ranking error. The most important studies
of ranking error were made by Dell and Clutter [7], David and Levine [6], Ridout and
Cobby [14] and Stokes [16]. In these studies, Stokes [16] used the simple linear regression
model to estimate the population mean in the case of ranking according to a concomitant
variable. We use this approach of Stokes [16] to take into account the effect of ranking
according to a concomitant variable to the multiple linear regression model.

Let the concomitant variable, which will be used for the ranking of Y , be defined as a
variable W with mean µW and variance σ2

W . Then, in the sample selection procedure in
RSS, units are ranked according to the concomitant variable W and the selected units are
measured with respect to variable Y . The order statistic Y[i] for the dependent variable
Y which corresponds to the order statistic W(i) for i = 1, 2, . . . ,mi s called the induced
order statistic, and the conditional mean of Y[i] is given as follows [16];

(3) E(Y[i]/W(i)) = µy + ρ
σy
σW

(W(i) − µW ),

where ρ is the correlation coefficient between Y and W . For the general case of a

continuous random variable W with a distribution function F [ (w−µW )
σW

], the standardized

variable Ui =
Wi−µW

σW
, has a parameter-free (and hence completely known) distribution

with F (u; 0, 1) and the ith order statistic for Ui is U(i) =
W(i)−µW

σW
. Then, the mean

and the variance of U(i) from such a distribution is given by E(U(i)) = ηi, Var(U(i)) =
Var(W(i))

σ2
W

= τi, respectively [1]. So, the mean and the variance of Y[i] are obtained as;

E(Y[i]) = E(E(Y[i]/W(i))) = µy + ρσyηi,(4)

Var(Y[i]) = σ2
y[(1− ρ2) + ρ2τi].(5)

Let U[i] =
Y[i]−µy

σy
be the ith induced order statistic of a ranked set sample from a

standardized distribution F (u; 0, 1). Then, the mean and the variance of U[i] are written
using (4) and (5) as follows,

E(U[i]) =
E(Y[i])− µy

σy
= ρηi(6)

Var(U[i]) =
Var(Y[i])

σ2
y

= (1− ρ2) + ρ2τi.(7)
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For estimating the model parameters in the multiple regression model given in (2), m
observations from Yij , (i = 1, 2, . . . ,m, j = 1, 2, . . . , c) are taken using RSS at each
value set of (x1j , x2j , . . . , xpj) based on the assumption of ranking Y with respect to
the concomitant variable W . Then, the ith induced order statistic at the jth value set
(x1j , x2j , . . . , xpj) obtained by ranked set sampling from the standardized distribution
F (u; 0, 1) takes the form;

(8) U[i]j =
Y[i]j − (β0 + β1x1j + β2x2j + · · ·+ βpxpj)

σ
,

where Y[i]j is the ith induced order statistic of the variable Y for the jth value set of
(x1j , x2j , . . . , xpj). So, the mean and the variance of U[i]j are obtained from (6) and (7)
as,

E(U[i]j) = E(U[i]) = ρηi,(9)

Var(U[i]j) = Var(U[i]) = (1− ρ2) + ρ2τi,(10)

where the subscript j disappear since the m samples are of equal size in the replications.
Using (8), (9) and (10), the mean and the variance of Y[i]j can be written as,

E(Y[i]j) = β0 + β1x1j + β2x2j + · · ·+ βpxpj + σρηi(11)

Var(Y[i]j) = σ2Var(U[i]j) = σ2[(1− ρ2) + ρ2τi].(12)

Thus, the matrix form for this model is;

(13) Y = XB+ε

where,

(14) Y =




Y[1]1

Y[2]1

...
Y[m]1

Y[1]2

Y[2]2

...
Y[m]2

...
Y[1]c

Y[2]c

...
Y[m]c




X =




1 x11 x21 · · · xp1 η1

1 x11 x21 · · · xp1 η2

...
...

...
. . .

...
...

1 x11 x21 · · · xp1 ηm
1 x12 x22 · · · xp2 η1

1 x12 x22 · · · xp2 η2

...
...

...
. . .

...
...

1 x12 x22 · · · xp2 ηm
...

...
...

...
...

...
1 x1c x2c · · · xpc η1

1 x1c x2c · · · xpc η2

...
...

...
. . .

...
...

1 x1c x2c · · · xpc ηm




B =




β0

β1

...
βp
σ




ε =




ε[1]1
ε[2]1
...

ε[m]1

ε[1]2
ε[2]2
...

ε[m]2

...
ε[1]c
ε[2]c
...

ε[m]c




with ε a random error vector having E(ε) = 0 and

(15) Var(ε) = Var(Y) = σ2
V,

where V = (1−ρ2)Inxn+ρ2D and D = diag(τ1, τ2, . . . τm, τ1, τ2, . . . τm, . . . , τ1, τ2, . . . τm).
So, in the case of ranking error, using the generalized least square technique based on
order statistics suggested by Llyod [11], the BLUE of the parameter vector B is given by,

(16) B̂ = (X′
V

−1
X)−1

X
′
V

−1
Y,

with variance covariance matrix

(17) Var(B̂) = σ2(X′
V

−1
X)−1.



Best Linear Unbiased Estimators 69

3. The relative efficiencies of the BLUEs

In this section, we compare the efficiencies of BLUEs obtained by RSS and SRS using
the RE measure. To calculate the RE values of the BLUEs, firstly the variance covariance

matrix of B̂ in RSS is established. We assume that the dependent variable Y has a normal
distribution. Then,

∑m

i=1 ρηi = ρ
∑m

i=1 ηi = 0 and
∑m

i=1
ρηi

(1−ρ2)+ρ2τi
= 0 are satisfied.

Hence, the matrix of (X′V−1X)−1 in (17) can be partitioned as follows,

(18) (X′
V

−1
X)−1 =

[
C−1

11 C12

C21 C−1
22

]

where,

C−1
11 =

(
m∑

i=1

1

(1− ρ2) + ρ2τi

)−1




c
∑c

j=1 x1j

∑c

j=1 x2j · · · ∑c

j=1 xpj∑c

j=1 x2
1j

∑c

j=1 x1jx2j · · ·
∑c

j=1 x1jxpj∑c

j=1 x2
2j · · ·

∑c

j=1 x2jxpj
. . . · · ·

sym
∑c

j=1 x2
pj




−1

(19)

C−1
22 =

1

c
m∑
i=1

ρ2η2
i

(1− ρ2) + ρ2τi

(20)

C21 = C′
12 =

[
0 0 0 · · · 0

]
.(21)

For the same sample size n, and assuming that Y is obtained using SRS with the same
number of replications for each value set of the independent variables with RSS, the
multiple linear regression model is defined in matrix form as follows,

(22) Y
∗= X

∗
B
∗+ε

∗

where,

(23) Y
∗=




Y11

Y21

...
Ym1

Y12

Y22

...
Ym2

...
Y1c

Y2c

...
Ymc




X
∗=




1 x11 x21 · · · xp1
1 x11 x21 · · · xp1
...

...
...

. . .
...

1 x11 x21 · · · xp1
1 x12 x22 · · · xp2
1 x12 x22 · · · xp2
...

...
...

. . .
...

1 x12 x22 · · · xp2
...

...
...

...
...

1 x1c x2c · · · xpc
1 x1c x2c · · · xpc
...

...
...

. . .
...

1 x1c x2c · · · xpc




B
∗=




β0

β1

...
βp


 ε∗=




ε11
ε21
...

εm1

ε12
ε22
...

εm2

...
ε1c
ε2c
...

εmc




.

In this model, ε∗ is the random error vector with E(ε∗) = 0 and Var(ε∗) = σ2I. Using

the least square estimation technique, B̂∗ and its variance are given respectively by;

B̂
∗ = (X∗′

X
∗)−1

X
∗′
Y,(24)

Var(B̂∗) = σ2(X∗′
X

∗)−1.(25)
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Here, B̂∗ is the BLUE estimator of the parameter vector B based on SRS. Then, the
matrix of (X∗′

X∗)−1 can be written as follows:

(26) (X∗′
X

∗)−1 =

m∑
i=1

1

(1− ρ2) + ρ2τi
mC−1

11 .

So, the RE of B̂ relative to B̂∗ can be obtained by dividing the diagonal elements of the
matrix σ2(X∗′

X∗)−1 by the first (p+1) diagonal elements of the matrix σ2(X′V−1X)−1.
As seen from (18), the first (p + 1)x1 part of σ2(X′V−1X)−1 is σ2C−1

11 . So, using (19)

and (26), the RE of B̂ relative to B̂∗ is given by;

(27) RE(β̂∗l , β̂l) =
Var(β̂∗l )

Var(β̂l)
=

m∑
i=1

1

(1− ρ2) + ρ2τi

m
, l = 0, 1, 2, . . . , p.

Let σ̂ be the estimator of σ for RSS and σ̂∗ the estimator of σ for SRS. To find the RE of
σ̂ relative to σ̂∗, it is necessary to derive variance formula for σ̂∗. Barnett and Barreto [3]
considered the variance of σ̂∗ using the Rao-Cramer lower-bound variance from Kendall
and Stuart [10]. The least square estimation of σ̂∗ can be defined as;

(28) σ̂∗ =

√√√√ 1

mc− (p+ 1)

c∑

j=1

m∑

i=1

(Yij − β̂0 − β̂1x1j − β̂2x2j − · · · − β̂pxpj ,

which is asymptotically unbiased for σ. In this study, based on the assumption of normal
distribution, the estimator σ̂UMVU, which is a uniformly minimum variance unbiased
estimator of σ under SRS, will be used [9] and it is written as,

(29) σ̂UMVU =

√
mc− (p+ 1)Γ

(
mc− (p+ 1)

2

)

√
2Γ

(
mc− (p+ 1) + 1

2

) σ̂∗.

The variance of σ̂UMVU is defined as;

(30) Var(σ̂UMVU) = σ2



mc− (p+ 1)

2




Γ

(
mc− (p+ 1)

2

)

Γ

(
mc− (p+ 1) + 1

2

)




2

− 1


 .

Also, the RE of σ̂ relative to σ̂UMVU is obtained by dividing (30) by the (p+2)nd diagonal
element of σ2(X ′V −1X)−1, which is σ2C−1

22 , and so RE(σ̂, σ̂UMVU) is given by,

(31)

RE(σ̂, σ̂UMVU) =
Var(σ̂UMVU)

Var(σ̂)

= c
m∑

i=1

ρ2η2
i

(1− ρ2) + ρ2τi

×



mc− (p+ 1)

2




Γ

(
mc− (p+ 1)

2

)

Γ

(
mc− (p+ 1) + 1

2

)




2

− 1


 .

As can be seen from (27) and (31), the value of RE(β̂∗l , β̂l) depends only on |ρ|, τi and m,
but the value of RE(σ̂, σ̂UMVU) depend on |ρ|, τi, ηi,m, c and p. The values calculated
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for RE(β̂∗l , β̂l) with |ρ| = 1.00, 0.90, 0.70, 0.50, 0.30, 0.10, and m = 2(1)10 are given in
Table 1.

Table 1. The RE values of β̂∗l relative to β̂l for l = 0, 1, 2, . . . , p.

RE
(
β̂∗l , β̂l

)

|ρ|

m 1, 00 0, 90 0,70 0,50 0,30 0, 10

2 1,4669 1,3474 1,1848 1,0865 1,0295 1,0032

3 1,9345 1,6388 1,3069 1,1358 1,0449 1,0048

4 2,4040 1,8873 1,3940 1,1679 1,0545 1,0058

5 2,8751 2,1018 1,4596 1,1907 1,0611 1,0064

6 3,3475 2,2890 1,5107 1,2076 1,0659 1,0069

7 3,8211 2,4538 1,5519 1,2208 1,0695 1,0073

8 4,2955 2,6000 1,5858 1,2314 1,0724 1,0076

9 4,7706 2,7308 1,6143 1,2400 1,0748 1,0078

10 5,2463 2,8485 1,6385 1,2473 1,0767 1,0080

Table 2. The RE values of σ̂ relative to σ̂UMVU.

RE
(
σ̂, σ̂UMVU

)

p = 1

c = 2 c = 10

|ρ| |ρ|

m 1,00 0, 90 0, 70 0,50 0, 30 0,10 1,00 0, 90 0, 70 0,50 0, 30 0,10

2 0,5103 0,3797 0,2020 0,0945 0,0322 0,0035 0.2629 0,1956 0,1040 0,0487 0,0166 0,0018

3 0,6747 0,4754 0,2359 0,1061 0,0354 0,0038 0,4612 0,3250 0,1612 0,0725 0,0242 0,0026

4 0,8303 0,5561 0,2610 0,1141 0,0375 0,0040 0,6356 0,4257 0,1998 0,0873 0,0287 0,0031

5 0,9800 0,6256 0,2804 0,1200 0,0390 0,0041 0,7976 0,5092 0,2282 0,0976 0,0317 0,0034

6 1,1258 0,6867 0,2960 0,1245 0,0401 0,0042 0,9521 0,5808 0,2503 0,1053 0,0340 0,0036

7 1,2691 0,7411 0,3089 0,1281 0,0410 0,0043 1,1019 0,6435 0,2682 0,1113 0,0356 0,0038

8 1,4105 0,7901 0,3197 0,1311 0,0418 0,0044 1,2484 0,6993 0,2829 0,1160 0,0370 0,0039

9 1,5505 0,8346 0,3289 0,1336 0,0424 0,0044 1,3925 0,7495 0,2954 0,1200 0,0380 0,0040

10 1,6895 0,8753 0,3370 0,1357 0,0429 0,0045 1,5348 0,7951 0,3061 0,1233 0,0389 0,0041

p = 6

c = 2 c = 10

|ρ| |ρ|

m 1,00 0, 90 0, 70 0,50 0, 30 0,10 1,00 0, 90 0, 70 0,50 0, 30 0,10

2 - - - - - - 0,3658 0,2722 0,1448 0,0677 0,0231 0,0025

3 - - - - - - 0,5625 0,3963 0,1967 0,0884 0,0295 0,0032

4 5,4789 3,6696 1,7224 0,7528 0,2474 0,0263 0,7326 0,4907 0,2303 0,1007 0,0331 0,0035

5 2,7133 1,7322 0,7764 0,3322 0,1080 0,0114 0,8908 0,5687 0,2549 0,1091 0,0355 0,0038

6 2,2978 1,4016 0,6042 0,2541 0,0819 0,0087 1,0424 0,6358 0,2741 0,1153 0,0372 0,0039

7 2,2035 1,2868 0,5363 0,2225 0,0713 0,0075 1,1897 0,6948 0,2895 0,1201 0,0385 0,0041

8 2,2134 1,2399 0,5016 0,2057 0,0655 0,0069 1,3342 0,7474 0,3024 0,1240 0,0395 0,0042

9 2,2698 1,2217 0,4815 0,1956 0,0620 0,0065 1,4766 0,7948 0,3133 0,1272 0,0403 0,0042

10 2,3508 1,2178 0,4689 0,1888 0,0596 0,0062 1,6176 0,8380 0,3226 0,1299 0,0410 0,0043
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In Table 2, the values ofRE(σ̂, σ̂UMV U ) are given for |ρ| = 1.00, 0.90, 0.70, 0.50, 0.30, 0.10,
m = 2(1)10 at c = 2 and 10; p = 1 and 6.

Based on the assumption of a normal distribution, τi and ηi denote respectively the
mean and the variance of the ith order statistic from the standard normal distribution.
These values are taken from Arnold et al. [1] for m = 2(1)10.

4. Conclusion

As presented in Table 1, the values of RE(β̂∗l , β̂l) are equal for the same values of m,
and they increase as the set size m increases for all values of |ρ|. Because there is no
ranking error, the RE values have a maximum at |ρ| = 1, 00. In addition, when |ρ| is
decreasing, the RE values converge to 1 and consequently the efficiency of RSS relative
to SRS decreases.

In Table 2, the following comments can be listed;

• For p = 6 and c = 2, the values of RE(σ̂, σ̂UMVU) cannot be calculated at m = 2
and m = 3, since n ≥ (p+ 1) is not valid.

• For p = 1, which is the same as the simple regression model, the values of
RE(σ̂, σ̂UMVU) increase with m for fixed values of c and |ρ|.

• For p = 1 and |ρ| = 1, 00, the value of RE(σ̂, σ̂UMVU) exceeds 1 when m > 5 and
c = 2, and when m > 6 and c = 10.

• For fixed values of c and m, when p increases the value of RE(σ̂, σ̂UMVU) also
increases.

• The values of RE reach a maximum for |ρ| > 0.7, p = 6, c = 2 and m =
4. However, on increasing the value of m, RE(σ̂, σ̂UMVU) decrease rapidly, for
example from 5, 4789 to 2, 7133.

Finally, RE(β̂∗l , β̂l) and RE(σ̂, σ̂UMVU) take their highest values at |ρ| = 1, 00, because

of the lack of ranking error. When |ρ| approaches 0.1, RE(β̂∗l , β̂l) converge to 1 but
RE(σ̂, σ̂UMVU) converges to 0. In addition, estimation of the parameter σ is negatively
affected by ranking error much more than the estimation of the parameter vector B.

Although, RSS is not such an effective technique for estimating the parameter σ, it is
a more efficient technique than SRS for estimating the parameter vector B for all values
of |ρ| considered.
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