$\bigwedge^{}_{}$ Hacettepe Journal of Mathematics and Statistics Volume 35 (2) (2006), 155 – 159

INFINITESIMAL AFFINE TRANSFORMATIONS IN THE TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD WITH RESPECT TO THE HORIZONTAL LIFT OF AN AFFINE CONNECTION

A. Gezer^{*†} and K. Akbulut^{*}

Received 28:02:2006 : Accepted 04:12:2006

Abstract

The main purpose of the present paper is to study properties of vertical infinitesimal affine transformation in the tangent bundle of a Riemannian manifold with respect to the horizontal lift of an affine connection, and to apply the results obtained to the study of fibre-preserving infinitesimal affine transformations in this setting.

Keywords: Lift, Tangent bundle, Infinitesimal affine transformation, Fibre-preserving transformation.

2000 AMS Classification: 53 B 05, 53 C 07, 53 A 45

1. Introduction

Let M_n be a Riemannian manifold with metric g whose components in a coordinate neighborhood U are g_{ji} , and denote by Γ_{ji}^h the Christoffel symbols formed with g_{ji} . If, in the neighborhood $\pi^{-1}(U)$ of the tangent bundle $T(M_n)$ over M_n , U being a neighborhood of M_n , then Hg has components given by

$${}^{H}g = \begin{pmatrix} \Gamma_{j}^{t}g_{ti} + \Gamma_{i}^{t}g_{jt} & g_{ji} \\ g_{ji} & 0 \end{pmatrix}$$

with respect to the induced coordinates (x^i, y^i) in $T(M_n)$, where $\Gamma_i^h = y^j \Gamma_{ji}^h$, Γ_{ji}^h being the components of the affine connection in M_n .

Let g be a pseudo-Riemannian metric. Then the horizontal lift ${}^{H}g$ of g with respect to ∇ is a pseudo-Riemannian metric in $T(M_n)$. Since ${}^{H}g$ is defined by ${}^{H}g = {}^{C}g - \gamma(\nabla g)$,

^{*}Department of Mathematics, Faculty of Art and Sciences, Atatürk University, 25240, Erzurum, Turkey. E-mail: (A. Gezer) agezer@atauni.edu.tr (K. Akbulut) kakbulut@atauni.edu.tr

[†]This paper is supported by TUBITAK grant number 105T551/TBAG-HD-112

where $\gamma(\nabla g)$ is a tensor field of type (0,2), which has components of the form $\gamma(\nabla g) = \begin{pmatrix} y^s \nabla_s g & 0 \\ 0 & 0 \end{pmatrix}$, we have that Hg and Cg coincide if and only if $\nabla g = 0$ [1, p.105].

If we write $ds^2 = g_{ji}dx^j dx^i$ the pseudo-Riemannian metric in M_n given by g, then the pseudo-Riemannian metric in $T(M_n)$ given by the Hg of g to $T(M_n)$ with respect to an affine connection ∇ in M_n is

(1)
$$ds^2 = 2g_{ji}\delta y^j dx^i,$$

where $\tilde{\delta}y^j = dy^j + \tilde{\Gamma}^j_{lk}y^l dx^k$ and $\tilde{\Gamma}^h_{ji} = \Gamma^h_{ij}$ are components of the connection $\tilde{\nabla}$ defined by $\tilde{\nabla}_X Y = \nabla_Y X + [X, Y], \ \forall X, Y \in T^0_0(M_n), [1, p.67].$

We shall now define the horizontal lift ${}^{H}\nabla$ of the affine connection ∇ in M_n to $T(M_n)$ by the conditions

(2)
$${}^{H}\nabla_{V_{X}}{}^{V}Y = 0, \qquad {}^{H}\nabla_{V_{X}}{}^{H}Y = 0, \\ {}^{H}\nabla_{H_{X}}{}^{V}Y = (\nabla_{X}Y)^{V}, \qquad {}^{H}\nabla_{H_{X}}{}^{H}Y = (\nabla_{X}Y)^{H}$$

for $X, Y \in \mathfrak{S}_0^1(M_n)$. From (2), the horizontal lift ${}^H \nabla$ of ∇ has components ${}^H \Gamma_{JI}^K$ such that

(3)
$${}^{H}\Gamma^{k}_{ij} = \Gamma^{k}_{ij}, {}^{H}\Gamma^{k}_{i\bar{j}} = {}^{H}\Gamma^{k}_{\bar{i}j} = {}^{H}\Gamma^{k}_{\bar{i}\bar{j}} = {}^{H}\Gamma^{\bar{k}}_{\bar{i}\bar{j}} = {}^{H}\Gamma^{\bar{k}}_{\bar{i}\bar{j}} = {}^{0},$$

with respect to the induced coordinates in $T(M_n)$, where Γ_{ij}^k are the components of ∇ in M_n .

Let g and ∇ be, respectively, a pseudo-Riemannian metric and an affine connection such that $\nabla g = 0$. Then ${}^{H}\nabla^{H}g = 0$, where ${}^{H}g$ is a pseudo-Riemannian metric. The connection ${}^{H}\nabla$ has nontrivial torsion even for the Riemannian connection ∇ determined by g, unless g is locally flat [1, p.111].

Let there be given an affine connection ∇ and a vector field $X \in \mathfrak{S}_0^1(M_n)$. Then the Lie derivative $L_X \nabla$ with respect to X is, by definition, an element of $\mathfrak{S}_2^1(M_n)$ such that

(4)
$$(L_X \nabla)(Y, Z) = L_X (\nabla_Y Z) - \nabla_Y (L_X Z) - \nabla_{[X,Y]} Z$$

for any $Y, Z \in \mathfrak{S}_0^1(M_n)$.

In a manifold M_n with affine connection ∇ , an infinitesimal affine transformation $x^{h'} = x^h + X^h(x^1, \ldots, x^n) \Delta t$ defined by a vector field $X \in \mathfrak{S}^1_0(M_n)$ is called an *infinitesimal affine transformation* if $L_X \nabla = 0$, [1, p.67].

The main purpose of the present paper is to study the infinitesimal affine transformation in $T(M_n)$ with affine connection ${}^{H}\nabla$.

2. Vertical infinitesimal affine transformations in a tangent bundle with ${}^{H}\nabla$

From (4) we see that, in terms of the components $\Gamma^{\alpha}_{\gamma\beta}$ of ∇ , X is an infinitesimal affine transformation in the *m*-dimensional manifold M_n if and only if,

(5) $\partial_{\gamma}\partial_{\beta}X^{\alpha} + X^{\lambda}\partial_{\lambda}\Gamma^{\alpha}_{\gamma\beta} - \Gamma^{\lambda}_{\gamma\beta}\partial_{\lambda}X^{\alpha} + \Gamma^{\alpha}_{\lambda\beta}\partial_{\gamma}X^{\lambda} + \Gamma^{\alpha}_{\gamma\lambda}\partial_{\beta}X^{\lambda} = 0, \ \alpha, \beta, \ldots = 1, \ldots, m.$

Let there be given in M_n with metric g an affine connection ∇ with Christoffel symbols Γ_{ij}^k . Let $\tilde{X} = \tilde{X}^i \partial_i + \tilde{X}^{\bar{\imath}} \partial_{\bar{\imath}}$, where $\partial_i = \frac{\partial}{\partial x^i}$, $\partial_{\bar{\imath}} = \frac{\partial}{\partial y^i} = \frac{\partial}{\partial x^i}$, $\bar{\imath} = n + 1, \dots, 2n$ be a vector field in $T(M_n)$. Then, taking account of (3), we can easily see from (5) that \tilde{X}

156

is an infinitesimal affine transformations in $T(M_n)$ with ${}^{H}\nabla$ if and only if the following conditions (6)-(13) hold:

(6)
$$\partial_{j}\partial_{i}\tilde{X}^{h} + \tilde{X}^{k}\partial_{k}\Gamma^{h}_{ji} - (\Gamma^{k}_{ji}\partial_{k}\tilde{X}^{h} + \partial\Gamma^{k}_{ji}\partial_{\bar{k}}\tilde{X}^{h}) + \Gamma^{h}_{ki}\partial_{j}\tilde{X}^{k} + \Gamma^{h}_{jk}\partial_{i}\tilde{X}^{k} + y^{s}R^{k}_{sji}\partial_{\bar{k}}\tilde{X}^{h} = 0,$$

(7)
$$\partial_j \partial_{\bar{\imath}} \tilde{X}^h - \Gamma^k_{ji} \partial_{\bar{k}} \tilde{X}^h + \Gamma^h_{jk} \partial_{\bar{\imath}} \tilde{X}^k = 0,$$

(0) $\partial_i \tilde{\chi}^h - \Gamma^k_{ji} \partial_{\bar{\imath}} \tilde{\chi}^h + \Gamma^h_{jk} \partial_{\bar{\imath}} \tilde{\chi}^k = 0,$

(8)
$$\partial_{\bar{j}}\partial_i X^h - \Gamma^k_{ji}\partial_{\bar{k}}X^h + \Gamma^h_{ki}\partial_{\bar{j}}X^k = 0,$$

$$(9) \qquad \partial_{\bar{j}}\partial_{\bar{i}}\tilde{X}^{\bar{h}} = 0, \\ \partial_{j}\partial_{i}\tilde{X}^{\bar{h}} + (\tilde{X}^{\bar{k}}\partial_{k}\partial\Gamma^{h}_{ji} + \tilde{X}^{\bar{k}}\partial_{k}\Gamma^{h}_{ji}) - (\Gamma^{\bar{k}}_{ji}\partial_{k}\tilde{X}^{\bar{h}} + \partial\Gamma^{\bar{k}}_{ji}\partial_{\bar{k}}\tilde{X}^{\bar{h}}) + (\partial\Gamma^{h}_{ki}\partial_{j}\tilde{X}^{\bar{k}} \\ (10) \qquad + \Gamma^{h}_{ki}\partial_{i}\tilde{X}^{\bar{k}}) + (\partial\Gamma^{h}_{ik}\partial_{i}\tilde{X}^{\bar{k}} + \Gamma^{h}_{jk}\partial_{i}\tilde{X}^{\bar{k}}) - \tilde{X}^{\bar{k}}R^{h}_{kii} - y^{s}\tilde{X}^{\bar{k}}\partial_{k}R^{h}_{sii}$$

(11)
$$(11) + \tilde{X}^{k}\partial_{\bar{i}}\tilde{X}^{\bar{h}} + \tilde{X}^{k}\partial_{k}\Gamma^{h}_{ji} - \Gamma^{k}_{ji}\partial_{\bar{k}}\tilde{X}^{\bar{h}} + \Gamma^{h}_{ki}\partial_{j}\tilde{X}^{k} + (\partial\Gamma^{h}_{jk}\partial_{\bar{i}}\tilde{X}^{k} + \Gamma^{h}_{jk}\partial_{\bar{i}}\tilde{X}^{\bar{k}}) - u^{s}R^{h}_{sjk}\partial_{\bar{i}}\tilde{X}^{\bar{k}} = 0,$$
$$(11)$$

(12)
$$\partial_{\bar{j}}\partial_{i}\tilde{X}^{\bar{h}} + \tilde{X}^{k}\partial_{k}\Gamma^{h}_{ji} - \Gamma^{k}_{ji}\partial_{\bar{k}}\tilde{X}^{\bar{h}} + (\partial\Gamma^{h}_{ki}\partial_{\bar{j}}\tilde{X}^{k} + \Gamma^{h}_{ki}\partial_{\bar{j}}\tilde{X}^{\bar{k}}) + \Gamma^{h}_{jk}\partial_{i}\tilde{X}^{k} - y^{s}R^{h}_{ski}\partial_{\bar{j}}\tilde{X}^{k} = 0,$$

(13)
$$\partial_{\bar{j}}\partial_{\bar{\imath}}\tilde{X}^{\bar{h}} - \Gamma^{h}_{ki}\partial_{\bar{\jmath}}\tilde{X}^{k} + \Gamma^{h}_{jk}\partial_{\bar{\imath}}\tilde{X}^{k} = 0$$

Let \tilde{X} be a vertical infinitesimal affine transformation in $T(M_n)$. Then \tilde{X} has components $\begin{pmatrix} 0\\ \tilde{X}^{\bar{h}} \end{pmatrix}$ with respect to the induced coordinates. Thus, from (13), we have $\partial_{\bar{j}}\partial_{\bar{\iota}}\tilde{X}^{\bar{h}} = 0$, i.e.,

(14)
$$\tilde{X}^{\bar{h}} = C^h_i y^i + D^h,$$

where C_i^h and D^h depend only on the variables x^h . Since \tilde{X} is a vector field in $T(M_n)$, $C = C_i^h \partial_h \otimes dx^i$ and $D = D^h \partial_h$ are defined elements of $\mathfrak{S}_1^1(M_n)$ and $\mathfrak{S}_0^1(M_n)$, respectively.

2.1. Theorem. If \tilde{X} is a vertical infinitesimal affine transformation of $T(M_n)$ with ${}^{H}\nabla$, then

- (a) $L_D \nabla + C(D \otimes R) = 0$, $D = \partial^h \frac{\partial}{\partial x^h}$, $D \in \mathfrak{S}^1_0(M_n)$ and $C(D \otimes R) = D^k R^h_{kji}$. (b) *C* is parallel with respect to ∇ , i.e., $\nabla C = 0$.
- (c) C(T(Y,Z)) = T(CY,Z) = T(Y,CZ), for any $Y,Z \in \mathfrak{S}_0^1(M_n)$, where T denotes the torsion tensor of ∇ , i.e. T is a pure tensor with respect to C.
- (d) $C(\nabla_Z T)(Y, W) = (\nabla_{CZ} T)(Y, W)$, for any $Y, Z, W \in \mathfrak{S}_0^1(M_n)$.
- (e) Conversely, if C and D satisfy the conditions (a), (b), (c) and (d) then the vector field

$$\tilde{X} = (C_i^h y^i + D^h) \frac{\partial}{\partial y^h} = \gamma C +^v D$$

is an infinitesimal affine transformation of $T(M_n)$ with connection ${}^{H}\nabla$, where γC is a vertical vector field which has components of the form $\gamma C = \begin{pmatrix} 0 \\ y^i C_i^h \end{pmatrix}$.

Proof. (a). Substituting (14) and $\tilde{X}^h = 0$ in (10), we have (15) $\partial_j \partial_i C_s^h + C_s^k \partial_k \Gamma_{ji}^h - \Gamma_{ij}^k \partial_k C_s^h - \partial_s \Gamma_{ji}^k C_k^h + \Gamma_{ki}^h \partial_j C_s^k + \Gamma_{jk}^h \partial_i C_s^k - C_s^k R_{kji}^h + R_{sji}^k C_k^h = 0,$ and

(16)
$$\partial_j \partial_i D^h + D^k \partial_k \Gamma^h_{ji} - \Gamma^k_{ji} \partial_k D^h + \Gamma^h_{ki} \partial_j D^k + \Gamma^h_{jk} \partial_i D^k - D^k R^h_{kji} = 0,$$

which means that $L_D \nabla + \mathcal{C}(D \otimes R) = 0.$

(b). Substituting (14) and $\tilde{X}^h = 0$ in (12), we obtain

(17) $\partial_i C_j^h - \Gamma_{ji}^k C_k^h + \Gamma_{ki}^h C_j^k = 0.$

Substituting (14) and $\tilde{X}^h = 0$ in (11), we obtain

(18) $\partial_j C_i^h - \Gamma_{ji}^k C_k^h + \Gamma_{jk}^h C_i^k = 0,$

which means that C is parallel in M_n .

(c). Interchanging i and j in (18), we have

 $\partial_i C_j^h - \Gamma_{ij}^k C_k^h + \Gamma_{ik}^h C_j^k = 0,$

and subtracting the resulting equation from (17), we have

(19)
$$T_{ji}^k C_k^h = T_{ki}^h C_j^k$$

that is,

(20) C(T(Y,Z)) = T(CY,Z)

for any $Y, Z \in \mathfrak{F}_0^1(M_n)$. From (19), we obtain T(Y, CZ) = -T(CZ, X) = C(T(Z, Y)) = C(T(Y, Z)) and hence

C(T(Y,Z)) = T(CY,Z) = T(Y,CZ),

which is the formula (c).

(d). Using (17) and (18), we eliminate all partial derivatives of C_j^h from (15). Then we obtain $C_k^h \nabla_j T_{li}^k = \nabla_k T_{li}^h C_j^k$, i.e. T is a ϕ -tensor with respect to C [3].

(e). If we assume that the conditions (a), (b), (c) and (d) are established, then we see that \tilde{X} , given in (e), is an infinitesimal affine transformation. Consequently, the proof is complete.

2.2. Theorem. Let C be as in Theorem 2.1. If X is an infinitesimal affine transformation of M_n with affine connection ∇ , and $R(X, Y, Z; \xi)$ is pure with respect to X and ξ , then so is CX.

3. Fibre-preserving infinitesimal affine transformation with ${}^{H}\nabla$

A transformation of $T(M_n)$ is said to be *fibre-preserving* if it sends each fibre of $T(M_n)$ into a fibre. An infinitesimal transformation of $T(M_n)$ is said to be *fibre-preserving* if it generates a local 1-parameter group of fibre-preserving transformations. An infinitesimal transformation \tilde{X} with components $\begin{pmatrix} \tilde{X}^h \\ \tilde{X}\bar{h} \end{pmatrix}$ is fibre-preserving if and only if \tilde{X}^h (*i.e.* 1.0 and 0.1 are the state of the second seco

 \tilde{X}^h (h = 1, 2, ..., n) depend only on the variables $x^1, ..., x^n$ with respect to the induced coordinates (x^h, y^h) in $T(M_n)$. From

(21)
$$\begin{cases} x^{h'} = x^h + \tilde{X}^h(x^1, \dots, x^n)\Delta t \\ x^{\bar{h}'} = x^{\bar{h}} + \tilde{X}^{\bar{h}}(x^1, \dots, x^n, x^{n+1}, \dots, x^{2n})\Delta t \end{cases}$$

we see that a fibre-preserving infinitesimal transformation \tilde{X} with components $\begin{pmatrix} X^h \\ \tilde{X}^{\bar{h}} \end{pmatrix}$ induces an infinitesimal transformation X with components \tilde{X}^h in the base space M_n .

Since $\partial \Gamma_{ii}^k \partial_{\bar{k}} \tilde{X}^h = 0$ and $y^s R_{sii}^k \partial_{\bar{k}} \tilde{X}^h = 0$, then from (6) we have:

158

3.1. Theorem. If \tilde{X} is a fibre-preserving infinitesimal transformation of $T(M_n)$ with horizontal lift ${}^{H}\nabla$ of a affine connection ∇ in M_n to $T(M_n)$, then the infinitesimal transformation X induced on M_n by \tilde{X} is also affine with respect to ∇ .

3.2. Theorem. Let ∇ be an affine connection in M_n . Then,

$$(L^H_C{}_X\nabla)(^CY,^CZ) = {}^C(L_X\nabla)(^CY,^CZ) + \gamma(L_XR)(,Y,Z)$$

for any $X \in \mathfrak{S}^1_0(M_n)$.

Proof. Our proposition follows from the following computations:

$$(L_{C_X}^H \nabla) ({}^C Y, {}^C Z) = L_{C_X} ({}^H \nabla_{C_Y}^C Z) - {}^H \nabla_{C_Y} (L_{C_X}^C Z) - {}^H \nabla_{[{}^C X, {}^C Y]}^C Z$$

$$= L_{C_X} [{}^C (\nabla_Y Z) - \gamma (R(, Y)Z)] - {}^H \nabla_{C_Y}^C [X, Z] - {}^H \nabla_{C}^C _{[X,Y]} Z$$

$$= [{}^C X, {}^C \nabla_X Y] - [{}^C X, \gamma (R(, Y)Z)] - {}^C (\nabla_Y [X, Z])$$

$$+ \gamma (R(, Y) [X, Z]) - {}^C (\nabla_{[X,Y]} Z) + \gamma R([X, Y]Z)]$$

$$= {}^C (L_X \nabla_X Y) - {}^C (\nabla_Y (L_X Z)) - {}^C (\nabla_{[X,Y]} Z)$$

$$- \gamma (L_X R(, Y)Z) + \gamma (R(, Y) [X, Z]) + \gamma (R(, [X, Y])Z)$$

$$= {}^C (L_X \nabla) ({}^C Y, {}^C Z) + \gamma (-L_X R(, Y)Z + R(, Y) [X, Z]$$

$$+ R(, [X, Y])Z)$$

$$= {}^C (L_X \nabla) ({}^C Y, {}^C Z) + \gamma (L_X R) (, Y, Z),$$

where R(, X)Y denotes a tensor field W of type (1,1) in M_n such that W(Z) = R(Z, X)Y for any $Z \in \mathfrak{S}_0^1(M_n)$.

Let \tilde{X} and X be as in Theorem 3.1. From Theorem 3.2 we see that, if X is an infinitesimal automorphism with respect to W [3], then ${}^{c}X$ is an infinitesimal affine transformation of $T(M_n)$ with ${}^{H}\nabla$. Since ${}^{c}X$ has the components $\begin{pmatrix} X^h \\ \partial X^h \end{pmatrix}$, it follows that $\tilde{X} - {}^{c}X$ is a vertical infinitesimal affine transformation in $T(M_n)$ with ${}^{H}\nabla$. Thus we have

3.3. Theorem. If \tilde{X} is a fibre-preserving infinitesimal affine transformation of $T(M_n)$ with lift ${}^{H}\nabla$, and X is an infinitesimal automorphism with respect to W, then $\tilde{X} = {}^{c}X + {}^{v}D + \gamma C$, where D and C are tensor fields of type (1,0) and (1,1), respectively, satisfying conditions (a), (b) and (c) of Theorem 2.1

Acknowledgement. The authors are grateful to Professor A. A. Salimov for his valuable suggestions.

References

- [1] Yano K. and Ishihara, S. Tangent and cotangent bundles (Marcel Dekker, New York, 1973).
- [2] Magden A. and Salimov, A.A. Horizontal lifts of tensor fields to sections of the tangent bundle. (in Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 3, 77–80, 2001.
- [3] Kobayashi S. and Nomizu K. Foundations of Differential Geometry (Wiley-Inter Science Publications, New York, 1963).