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Abstract

The main purpose of the present paper is to study properties of vertical
infinitesimal affine transformation in the tangent bundle of a Riemann-
ian manifold with respect to the horizontal lift of an affine connection,
and to apply the results obtained to the study of fibre-preserving infin-
itesimal affine transformations in this setting.
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1. Introduction

Let Mn be a Riemannian manifold with metric g whose components in a coordinate
neighborhood U are gji, and denote by Γhji the Christoffel symbols formed with gji. If, in

the neighborhood π−1(U) of the tangent bundle T (Mn) overMn, U being a neighborhood
of Mn, then

Hg has components given by

H
g =

(
Γtjgti + Γtigjt gji

gji 0

)

with respect to the induced coordinates (xi, yi) in T (Mn), where Γhi = yjΓhji, Γ
h
ji being

the components of the affine connection in Mn.

Let g be a pseudo-Riemannian metric. Then the horizontal lift Hg of g with respect
to ∇ is a pseudo-Riemannian metric in T (Mn). Since

Hg is defined by Hg =C g−γ(∇g),
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where γ(∇g) is a tensor field of type (0, 2), which has components of the form γ(∇g) =(
ys∇sg 0

0 0

)
, we have that Hg and Cg coincide if and only if ∇g = 0 [1, p.105].

If we write ds2 = gjidx
jdxi the pseudo-Riemannian metric in Mn given by g, then

the pseudo-Riemannian metric in T (Mn) given by the Hg of g to T (Mn) with respect to
an affine connection ∇ in Mn is

(1) ds
2 = 2gjiδ̃y

j
dx

i
,

where δ̃yj = dyj + Γ̃jlky
ldxk and Γ̃hji = Γhij are components of the connection ∇̃ defined

by ∇̃XY = ∇YX + [X,Y ] , ∀X,Y ∈ T 1
0 (Mn), [1, p.67 ].

We shall now define the horizontal lift H∇ of the affine connection ∇ in Mn to T (Mn)
by the conditions

(2)

H
∇V X

V
Y = 0, H

∇V X
H
Y = 0,

H
∇HX

V
Y = (∇XY )V , H

∇HX
H
Y = (∇XY )H ,

for X,Y ∈ =1
0(Mn). From (2), the horizontal lift H∇ of ∇ has components HΓKJI such

that

(3)

HΓkij = Γkij ,
H Γkij̄ =

H Γkı̄j =
H Γkı̄j̄ =

H Γk̄ı̄j̄ = 0,

HΓk̄ij = y
s
∂sΓ

k
ij − y

s
R
k
sij ,

H Γk̄ı̄j =
H Γk̄ij̄ = Γkij

with respect to the induced coordinates in T (Mn), where Γkij are the components of ∇
in Mn.

Let g and ∇ be, respectively, a pseudo-Riemannian metric and an affine connection
such that ∇g = 0. Then H∇Hg = 0, where Hg is a pseudo-Riemannian metric. The
connection H∇ has nontrivial torsion even for the Riemannian connection ∇ determined
by g, unless g is locally flat [1, p.111].

Let there be given an affine connection ∇ and a vector field X ∈ =1
0(Mn). Then the

Lie derivative LX∇ with respect to X is, by definition, an element of =1
2(Mn) such that

(4) (LX∇)(Y, Z) = LX(∇Y Z)−∇Y (LXZ)−∇[X,Y ]Z

for any Y, Z ∈ =1
0(Mn).

In a manifold Mn with affine connection ∇, an infinitesimal affine transformation

xh
′

= xh +Xh(x1, . . . , xn)∆t defined by a vector field X ∈ =1
0(Mn) is called an infini-

tesimal affine transformation if LX∇ = 0, [1, p.67 ].

The main purpose of the present paper is to study the infinitesimal affine transforma-
tion in T (Mn) with affine connection H∇.

2. Vertical infinitesimal affine transformations in a tangent

bundle with H∇

From (4) we see that, in terms of the components Γαγβ of ∇, X is an infinitesimal
affine transformation in the m-dimensional manifold Mn if and only if,

(5) ∂γ∂βX
α+X

λ
∂λΓ

α
γβ−Γλγβ∂λX

α+Γαλβ∂γX
λ+Γαγλ∂βX

λ = 0, α, β, . . . = 1, . . . ,m.

Let there be given in Mn with metric g an affine connection ∇ with Christoffel symbols
Γkij . Let X̃ = X̃i∂i + X̃ ı̄∂ı̄, where ∂i = ∂

∂xi , ∂ı̄ = ∂

∂yi = ∂
∂xı̄ , ı̄ = n + 1, . . . , 2n be a

vector field in T (Mn). Then, taking account of (3), we can easily see from (5) that X̃
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is an infinitesimal affine transformations in T (Mn) with
H∇ if and only if the following

conditions (6)–(13) hold:

∂j∂iX̃
h + X̃

k
∂kΓ

h
ji − (Γkji∂kX̃

h + ∂Γkji∂k̄X̃
h) + Γhki∂jX̃

k + Γhjk∂iX̃
k

+ y
s
R
k
sji∂k̄X̃

h = 0,
(6)

∂j∂ı̄X̃
h
− Γkji∂k̄X̃

h + Γhjk∂ı̄X̃
k = 0,(7)

∂j̄∂iX̃
h
− Γkji∂k̄X̃

h + Γhki∂j̄X̃
k = 0,(8)

∂j̄∂ı̄X̃
h = 0,(9)

∂j∂iX̃
h̄ + (X̃k

∂k∂Γ
h
ji + X̃

k̄
∂kΓ

h
ji)− (Γkji∂kX̃

h̄ + ∂Γkji∂k̄X̃
h̄) + (∂Γhki∂jX̃

k

+ Γhki∂jX̃
k̄) + (∂Γhjk∂iX̃

k + Γhjk∂iX̃
k̄)− X̃

k̄
R
h
kji − y

s
X̃
k
∂kR

h
sji

+ y
s
R
k
sji∂k̄X̃

h̄
− y

s
R
h
ski∂jX̃

k
− y

s
R
h
sjk∂iX̃

k = 0,

(10)

∂j∂ı̄X̃
h̄ + X̃

k
∂kΓ

h
ji − Γkji∂k̄X̃

h̄ + Γhki∂jX̃
k + (∂Γhjk∂ı̄X̃

k + Γhjk∂ı̄X̃
k̄)

− y
s
R
h
sjk∂ı̄X̃

k = 0,
(11)

∂j̄∂iX̃
h̄ + X̃

k
∂kΓ

h
ji − Γkji∂k̄X̃

h̄ + (∂Γhki∂j̄X̃
k + Γhki∂j̄X̃

k̄) + Γhjk∂iX̃
k

− y
s
R
h
ski∂j̄X̃

k = 0,
(12)

∂j̄∂ı̄X̃
h̄
− Γhki∂j̄X̃

k + Γhjk∂ı̄X̃
k = 0.(13)

Let X̃ be a vertical infinitesimal affine transformation in T (Mn). Then X̃ has components(
0

X̃ h̄

)
with respect to the induced coordinates. Thus, from (13), we have ∂j̄∂ı̄X̃

h̄ = 0,

i.e.,

(14) X̃
h̄ = C

h
i y

i +D
h
,

where Ch
i and Dh depend only on the variables xh. Since X̃ is a vector field in T (Mn),

C = Ch
i ∂h⊗dx

i andD = Dh∂h are defined elements of =1
1(Mn) and =

1
0(Mn), respectively.

2.1. Theorem. If X̃ is a vertical infinitesimal affine transformation of T (Mn) with
H∇,

then

(a) LD∇+ C(D ⊗R) = 0, D = ∂h ∂

∂xh , D ∈ =1
0(Mn) and C(D ⊗R) = DkRh

kji.

(b) C is parallel with respect to ∇, i.e., ∇C = 0.
(c) C(T (Y, Z)) = T (CY,Z) = T (Y,CZ), for any Y, Z ∈ =1

0(Mn), where T denotes
the torsion tensor of ∇, i.e. T is a pure tensor with respect to C.

(d) C(∇ZT )(Y,W ) = (∇CZT )(Y,W ), for any Y, Z,W ∈ =1
0(Mn).

(e) Conversely, if C and D satisfy the conditions (a), (b), (c) and (d) then the vector
field

X̃ = (Ch
i y

i +D
h)

∂

∂yh
= γC +v

D

is an infinitesimal affine transformation of T (Mn) with connection
H∇, where

γC is a vertical vector field which has components of the form γC =

(
0

yiCh
i

)
.

Proof. (a). Substituting (14) and X̃h = 0 in (10), we have

(15) ∂j∂iC
h
s +C

k
s ∂kΓ

h
ji−Γkji∂kC

h
s −∂sΓ

k
jiC

h
k+Γhki∂jC

k
s+Γhjk∂iC

k
s−C

k
sR

h
kji+R

k
sjiC

h
k = 0,

and

(16) ∂j∂iD
h +D

k
∂kΓ

h
ji − Γkji∂kD

h + Γhki∂jD
k + Γhjk∂iD

k
−D

k
R
h
kji = 0,
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which means that LD∇+ C(D ⊗R) = 0.

(b). Substituting (14) and X̃h = 0 in (12), we obtain

(17) ∂iC
h
j − ΓkjiC

h
k + ΓhkiC

k
j = 0.

Substituting (14) and X̃h = 0 in (11), we obtain

(18) ∂jC
h
i − ΓkjiC

h
k + ΓhjkC

k
i = 0,

which means that C is parallel in Mn.

(c). Interchanging i and j in (18), we have

∂iC
h
j − ΓkijC

h
k + ΓhikC

k
j = 0,

and subtracting the resulting equation from (17), we have

(19) T
k
jiC

h
k = T

h
kiC

k
j ,

that is,

(20) C(T (Y, Z)) = T (CY,Z)

for any Y, Z ∈ =1
0(Mn). From (19), we obtain T (Y,CZ)) = −T (CZ,X) = C(T (Z, Y )) =

C(T (Y, Z)) and hence

C(T (Y, Z)) = T (CY,Z) = T (Y,CZ),

which is the formula (c).

(d). Using (17) and (18), we eliminate all partial derivatives of Ch
j from (15). Then

we obtain Ch
k∇jT

k
li = ∇kT

h
liC

k
j , i.e. T is a φ-tensor with respect to C [3].

(e). If we assume that the conditions (a), (b), (c) and (d) are established, then we see

that X̃, given in (e), is an infinitesimal affine transformation. Consequently, the proof is
complete. ¤

2.2. Theorem. Let C be as in Theorem 2.1. If X is an infinitesimal affine transforma-

tion of Mn with affine connection ∇, and R(X,Y, Z; ξ) is pure with respect to X and ξ,

then so is CX.

3. Fibre-preserving infinitesimal affine transformation with H∇

A transformation of T (Mn) is said to be fibre-preserving if it sends each fibre of T (Mn)
into a fibre. An infinitesimal transformation of T (Mn) is said to be fibre-preserving
if it generates a local 1-parameter group of fibre-preserving transformations. An in-

finitesimal transformation X̃ with components

(
X̃h

X̃ h̄

)
is fibre-preserving if and only if

X̃h (h = 1, 2, . . . , n) depend only on the variables x1, . . . , xn with respect to the induced
coordinates (xh, yh) in T (Mn). From

(21)




xh

′

= xh + X̃h(x1, . . . , xn)∆t

xh̄
′

= xh̄ + X̃ h̄(x1, . . . , xn, xn+1, . . . , x2n)∆t

we see that a fibre-preserving infinitesimal transformation X̃ with components

(
X̃h

X̃ h̄

)

induces an infinitesimal transformation X with components X̃h in the base space Mn.

Since ∂Γkji∂k̄X̃
h = 0 and ysRk

sji∂k̄X̃
h = 0, then from (6) we have:
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3.1. Theorem. If X̃ is a fibre-preserving infinitesimal transformation of T (Mn) with
horizontal lift H∇ of a affine connection ∇ in Mn to T (Mn), then the infinitesimal

transformation X induced on Mn by X̃ is also affine with respect to ∇.

3.2. Theorem. Let ∇ be an affine connection in Mn. Then,

(LHCX∇)(CY,C Z) =C (LX∇)(CY,C Z) + γ(LXR)( , Y, Z)

for any X ∈ =1
0(Mn).

Proof. Our proposition follows from the following computations:

(LHCX∇)(CY,C Z) = LCX(H∇C
CY Z)−

H
∇CY (L

C
CXZ)−

H
∇
C
[CX,CY ]Z

= LCX [C(∇Y Z)− γ(R( , Y )Z)]−H ∇C
CY [X,Z]−H ∇C

C [X,Y ]Z

= [CX,C ∇XY ]− [CX, γ(R( , Y )Z)]−C (∇Y [X,Z])

+ γ(R( , Y ) [X,Z])−C (∇[X,Y ]Z) + γR([ X,Y ]Z)]

=C (LX∇XY )−C (∇Y (LXZ))−
C (∇[X,Y ]Z)

− γ(LXR( , Y )Z) + γ(R( , Y ) [X,Z]) + γ(R( , [X,Y ])Z)

=C (LX∇)(CY,C Z) + γ(−LXR( , Y )Z +R( , Y ) [X,Z]

+R( , [X,Y ])Z)

=C (LX∇)(CY,C Z) + γ(LXR)( , Y, Z),

where R( , X)Y denotes a tensor field W of type (1, 1) in Mn such that W (Z) =
R(Z,X)Y for any Z ∈ =1

0(Mn). ¤

Let X̃ and X be as in Theorem 3.1. From Theorem 3.2 we see that, if X is an
infinitesimal automorphism with respect to W [3], then cX is an infinitesimal affine

transformation of T (Mn) with H∇. Since cX has the components

(
Xh

∂Xh

)
, it follows

that X̃ −c X is a vertical infinitesimal affine transformation in T (Mn) with H∇. Thus
we have

3.3. Theorem. If X̃ is a fibre-preserving infinitesimal affine transformation of T (Mn)

with lift H∇, and X is an infinitesimal automorphism with respect to W , then X̃ =c

X +v D + γC, where D and C are tensor fields of type (1, 0) and (1, 1), respectively,
satisfying conditions (a), (b) and (c) of Theorem 2.1
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