$\bigwedge^{\rm Hacettepe}$ Journal of Mathematics and Statistics Volume 35 (2) (2006), 161–172

NOTIONS OF OPENNESS AND CLOSEDNESS FOR MAPS BETWEEN L-FUZZY CLOSURE SPACES

Ahmed. M. Zahran^{*}, Mohammed Azab Abd-Allah^{*} and Abd El-Nasser G. Abd El-Rahman[†]

Received 21:03:2006 : Accepted 25:12:2006

Abstract

In this paper the authors introduce and characterize r-open, r-semiopen sets (resp. r-closed, r-semiclosed sets) and open, semiopen and semicontinuous maps (resp. closed, semiclosed maps) in L-fuzzy closure spaces.

Keywords: Open map, Closed map, Continuous map, Semiconen map, Semiclosed map, Semicontinuous map.

2000 AMS Classification: Primary 54 A 40. Secondary 03 E 72, 54 C 10.

1. Introduction

Chang introduced fuzzy topological spaces in [1]. In a Chang fuzzy topological space, each fuzzy set is either open or not. Later Chang's idea was developed by Goguen [8] who replaced the lattice [0, 1] by a more general lattice L.

An essentially more general notion of fuzzy topology, in which each fuzzy set has a certain degree of openness, was introduced by Šostak [13], and independently by Ramadan [12], Chattopadhyay, Hazra and Sammanta [3, 2].

Mashhour [7] introduced fuzzy closure spaces in the sense of Chang. On the other hand, *L*-closure operators corresponding to *L*-topological spaces (originally called *L*-fuzzy topological spaces by Chang [1] and Goguen [8]) in the case of a general lattice *L* were first considered by Ghanim and Hasan in [6]. Klein [11] used fuzzy closure operators to describe *L*-topological spaces, Šostak [15] applied *L*-fuzzy closure operators to describe *L*-fuzzy topologies in the sense of [14], and Chattopadhyay and Sammanta [4] in the

^{*}Department of Mathematics, Faculty of Science, Al Azhar University, Assuit, Egypt.

E-mail: (A. M. Zahran) zahran15@hotmail.com (M. Azab. Abd-Allah) mazab57@yahoo.com [†]Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt. Email: gareeb_nasser@yahoo.com

case of L = [0, 1]. Kim [9, 10], defined subspaces and products of fuzzy closure spaces and L-fuzzy closure spaces, respectively.

In this paper we introduce open and closed maps (resp. semiopen, semiclosed and semicontinuous maps), and give some characterization theorems.

2. Preliminaries

Throughout this paper let X be a non-empty set and $(L, \leq, \lor, \land, ')$ a complete, completely distributive lattice with an order reversing involution '. The smallest and largest elements in L will be denoted by 0 and 1, respectively. Let $L_0 = L \setminus \{0\}$.

If a < b or b < a for each $a, b \in L$ then L is called a *chain*. A lattice L is called *order* dense if for each $a, b \in L$ such that a < b, there exists $c \in L$ such that a < c < b.

Note that $(L^X, \leq, \lor, \land, ')$ is a complete, completely distributive lattice with an order reversing involution ' if L is, the operations are defined point-wise and $\underline{0}, \underline{1}$ denotes the smallest and largest elements of \hat{L}^X . The elements of \hat{L}^X are called *L*-fuzzy sets. All undefined notations are standard notations of L-fuzzy set theory.

2.1. Definition. [3, 2, 12] Let $\mathcal{T}: L^X \to L$ be a mapping. Then \mathcal{T} is said to be an L-fuzzy topology on X if it satisfies the following conditions:

(1) $\mathfrak{T}(\underline{0}) = \mathfrak{T}(\underline{1}) = 1.$

(2) $\mathfrak{T}(\mu \wedge \nu) \geq \mathfrak{T}(\mu) \wedge \mathfrak{T}(\nu).$

(3) $\mathfrak{T}(\bigvee_{i\in\Gamma}\mu_i) \ge \bigwedge_{i\in\Gamma}\mathfrak{T}(\mu_i).$

The pair (X, \mathcal{T}) is called an *L*-fuzzy topological space.

If T_1, T_2 are L-fuzzy topologies on X, we say T_1 is finer than T_2 (T_2 is coarser than \mathfrak{T}_1) if $\mathfrak{T}_2(\lambda) \leq \mathfrak{T}_1(\lambda)$ for each $\lambda \in L^X$.

2.2. Definition. [3, 2, 12] Let $\mathcal{F}: L^X \to L$ be a mapping. Then \mathcal{F} is said to be an L-fuzzy cotopology on X if it satisfies the following conditions:

(1) $\mathfrak{F}(\underline{0}) = \mathfrak{F}(\underline{1}) = 1.$

(2) $\mathfrak{F}(\lambda_1 \vee \lambda_2) \geq \mathfrak{F}(\lambda_1) \wedge \mathfrak{F}(\lambda_2).$

(3) $\mathfrak{F}(\bigwedge_{i\in\Gamma}\lambda_i) \ge \bigwedge_{i\in\Gamma}\mathfrak{F}(\lambda_i).$

The pair (X, \mathcal{F}) is called an *L*-fuzzy cotopological space.

2.3. Proposition. [3, 2, 12] Let \mathcal{T} be an L-fuzzy topology on X and $\mathcal{T}': L^X \to L$ the mapping defined by

 $\mathfrak{T}'(\lambda) = \mathfrak{T}(\lambda'),$

Then (X, \mathcal{T}') is an L-fuzzy cotopological space.

2.4. Definition. [3, 2, 12] Let $(X, \mathcal{T}_1), (Y, \mathcal{T}_2)$ be L-fuzzy topological spaces. Then the map $f: (X, \mathfrak{T}_1) \to (Y, \mathfrak{T}_2)$ is called *LF-continuous* iff

 $\mathfrak{T}_2(\nu) \leq \mathfrak{T}_1(f^{-1}(\nu))$ for every $\nu \in L^Y$.

2.5. Lemma. [5] If $f: X \to Y$ we have the following properties for the direct and inverse images of L-fuzzy sets. Here $\mu, \mu_i \in L^X$ and $\nu, \nu_i \in L^Y$.

- (1) $\nu \ge f(f^{-1}(\nu))$, with equality if f is surjective. (2) $\mu \le f^{-1}(f(\mu))$, with equality if f is injective. (3) $f^{-1}(\nu') = f^{-1}(\nu)'$. $(5) f^{-1}(\bigvee_{i\in\Gamma} \nu_i) = \bigvee_{i\in\Gamma} f^{-1}(\nu_i).$ $(4) f^{-1}(\bigvee_{i\in\Gamma} \nu_i) = \bigvee_{i\in\Gamma} f^{-1}(\nu_i).$ $(5) f^{-1}(\bigwedge_{i\in\Gamma} \nu_i) = \bigwedge_{i\in\Gamma} f^{-1}(\nu_i).$ $(6) f(\bigvee_{i\in\Gamma} \mu_i) = \bigvee_{i\in\Gamma} f(\mu_i).$ $(7) f(\bigwedge_{i\in\Gamma} \mu_i) \leq \bigwedge_{i\in\Gamma} f(\mu_i), \text{ with equality if } f \text{ is injective.}$

3. L-fuzzy closure spaces

3.1. Definition. [4] An operator $C: L^X \times L_0 \to L^X$ is called an *L*-fuzzy closure operator if it satisfies the following conditions:

- (1) $C(\underline{0},r) = \underline{0}.$
- (2) $\lambda \leq C(\lambda, r)$ for each $\lambda \in L^X$.
- (3) $C(\lambda \lor \mu, r) = C(\lambda, r) \lor C(\mu, r)$ for every $r \in L_0$.
- (4) $C(\lambda, r) \le C(\mu, r)$ if $\lambda \le \mu$.
- (5) $C(\lambda, r) \le C(\lambda, r^*)$ if $r \le r^*$.

The pair (X, C) is then called an *L*-fuzzy closure space. It is called topological if it also satisfies the condition

$$C(C(\lambda, r), r) = C(\lambda, r) \ \forall \lambda \in L^{X}, \ r \in L_{0}.$$

Let C_1 and C_2 be *L*-fuzzy closure operators on *X*. Then C_1 is called *finer* than C_2 (C_2 is *coarser* than C_1) if $C_1(\lambda, r) \leq C_2(\lambda, r)$ for all $\lambda \in L^X$, $r \in L_0$.

3.2. Proposition. [4] Let (X, \mathfrak{F}) be an L-fuzzy cotopological space. Define the map $C_{\mathfrak{F}} \colon L^X \times L_0 \to L^X$ by

$$C_{\mathcal{F}}(\lambda, r) = \bigwedge \big\{ \mu \in L^X \mid \mu \ge \lambda, \ \mathcal{F}(\mu) \ge r \big\}.$$

Then $(X, C_{\mathcal{F}})$ is a topological L-fuzzy closure space and if $r = \bigvee \{s \in L \mid C_{\mathcal{F}}(\lambda, s) = \lambda\}$ then $C_{\mathcal{F}}(\lambda, r) = \lambda$.

3.3. Proposition. [4] Let (X, C) be L-fuzzy closure space. Define a map $\mathfrak{T}_C \colon L^X \to L$ by

$$\mathcal{F}_C(\lambda) = \bigvee \left\{ r \in L_0 \mid C(\lambda, r) = \lambda \right\}$$

Then:

- (1) (X, \mathfrak{F}_C) is an L-fuzzy cotopological space.
- (2) We have $C = C_{\mathcal{F}_C}$ iff the L-fuzzy closure space (X, C) satisfies the following conditions:
 - a It is topological.

b If
$$r = \bigvee \{s \in L \mid C(\lambda, s) = \lambda\}$$
 then $C(\lambda, r) = \lambda$.

3.4. Theorem. [4] Let (X, \mathfrak{F}) be an L-fuzzy cotopological space. If $(X, C_{\mathfrak{F}})$ is the corresponding L-fuzzy closure space, then $\mathfrak{F}_{C_{\mathfrak{F}}}$ is an L-fuzzy cotopology on X such that $\mathfrak{F}_{C_{\mathfrak{F}}} = \mathfrak{F}$.

4. r-open and r-closed sets in L-fuzzy closure spaces

4.1. Definition. Let (X, C) be an *L*-fuzzy closure space. An *L*-fuzzy set $\lambda \in L^X$ is said to be *r*-closed if $C(\lambda, r) = \lambda$ and *r*-open if λ' is *r*-closed.

4.2. Proposition. We have the following:

- (1) (a) A finite union of r-closed sets is r-closed.
 - (b) An arbitrary intersection of r-closed sets is r-closed.
- (2) (a) A finite intersection of r-open sets is r-open.
 (b) An arbitrary union of r-open sets is r-open.

Proof. (1) (a) Let $\{\mu_i \mid i \in \Gamma\}$ be a finite set of r-closed sets, then

$$C(\bigvee_{i\in\Gamma}\mu_i,r) = \bigvee_{i\in\Gamma}C(\mu_i,r) = \bigvee_{i\in\Gamma}\mu_i.$$

(1) (b) Let $\{\mu_i \mid i \in \Gamma\}$ be an arbitrary set of *r*-closed sets. Since $\bigwedge_{i \in \Gamma} \mu_i \leq \mu_i$ we have $C(\bigwedge_{i \in \Gamma} \mu_i, r) \leq C(\mu_i, r) = \mu_i$ for each $i \in \Gamma$. Hence, $C(\bigwedge_{i \in \Gamma} \mu_i, r) \leq \bigwedge_{i \in \Gamma} \mu_i$, which is sufficient to prove that $\bigwedge_{i \in \Gamma} \mu_i$ is *r*-closed.

(2) This follows from (1) by applying the involution '.

4.3. Definition. Let (X, C) be an *L*-fuzzy closure space. The map $\mathfrak{I}_C : L^X \times L_0 \to L^X$ defined by:

$$\mathfrak{I}_C(\lambda, r) = (C(\lambda', r))', \ \lambda \in L^X, \ r \in L_0$$

is called the *L*-fuzzy interior operator associated with C. For $\lambda \in L^X$, $\mathfrak{I}_C(\lambda, r)$ will be called the *C*-interior of λ .

4.4. Proposition. Let (X, C) be an L-fuzzy closure space. Then the C-interior operator \mathfrak{I}_C has the following properties:

(1) $\mathfrak{I}_C(\underline{1},r) = \underline{1}.$

(2) $\mathfrak{I}_C(\lambda, r) \leq \lambda$ for every $\lambda \in L^X$.

- (3) $\exists_C(\lambda \land \mu, r) = \exists_C(\lambda, r) \land \exists_C(\mu, r) \text{ for every } \lambda, \mu \in L^X, r \in L_0.$ (4) $\exists_C(\lambda, r) \leq \exists_C(\mu, r) \text{ if } \lambda \leq \mu.$
- (5) $\exists_C(\lambda, s) \leq \exists_C(\lambda, r) \text{ if } r \leq s.$

Proof. Straightforward.

One may easily verify the following statements:

- (a) For $\mu \in L^X$, μ is *r*-open iff $\mathfrak{I}_C(\mu, r) = \mu$.
- (b) μ is *r*-closed iff μ' is *r*-open.

4.5. Definition. A map $\mathfrak{I}: L^X \times L_0 \to L^X$ is said to be an *interior operator* if it satisfies the conditions (1)–(5).

4.6. Proposition. Let \mathfrak{I} be an interior operator and define $C_{\mathfrak{I}} \colon L^X \times L_0 \to L^X$ by

$$C_{\mathfrak{I}}(\mu, r) = (\mathfrak{I}(\mu', r))'$$

for every $\mu \in L^X$. Then $C_{\mathfrak{I}}$ is an L-fuzzy closure operator and $\mathfrak{I}_{C_{\mathfrak{I}}} = \mathfrak{I}$.

Proof. We first verify conditions (1)-(5).

(1). $C_{\mathfrak{I}}(\underline{0},r) = (\mathfrak{I}(\underline{0}',r))' = (\mathfrak{I}(\underline{1},r))' = (\underline{1}') = \underline{0}.$ (2). $C_{\mathfrak{I}}(\mu,r) = (\mathfrak{I}(\mu',r))'$ since $\mathfrak{I}(\mu',r) \leq \mu'$, then $\mu \leq (\mathfrak{I}(\mu',r))', \mu \leq C_{\mathfrak{I}}(\mu,r).$ (3). $C_{\mathfrak{I}}(\lambda \lor \mu,r) = \mathfrak{I}((\lambda \lor \mu)',r))' = \mathfrak{I}((\lambda' \land \mu')',r)'$ $= (\mathfrak{I}(\lambda',r) \land \mathfrak{I}(\mu',r))' = \mathfrak{I}(\lambda',r)' \lor \mathfrak{I}(\mu',r)'$ $= C_{\mathfrak{I}}(\lambda,r) \lor C_{\mathfrak{I}}(\mu,r).$

(4). If $\lambda \leq \mu$ then $\mu' \leq \lambda'$, so $\mathfrak{I}(\mu', r) \leq \mathfrak{I}(\lambda', r)$. Taking the complement and using the definition of $C_{\mathfrak{I}}$ this leads to

 $C_{\mathfrak{I}}(\lambda, r) \leq C_{\mathfrak{I}}(\mu, r).$

(5). If $r \leq r^*$ then $\mathfrak{I}(\lambda', r^*) \leq \mathfrak{I}(\lambda', r)$. By taking the complement this leads to $(\mathfrak{I}(\lambda', r))' \leq (\mathfrak{I}(\lambda', r^*))'$, hence $C_{\mathfrak{I}}(\lambda, r) \leq C_{\mathfrak{I}}(\lambda, r^*)$.

To prove that $\mathcal{I}_{C_{\mathfrak{I}}} = \mathfrak{I}$, we note that:

$$\mathfrak{I}_{C_{\mathfrak{I}}}(\mu,r) = (C_{\mathfrak{I}}(\mu',r))' = (\mathfrak{I}(\mu,r)')' = \mathfrak{I}(\mu,r)$$
for each $\mu \in I^X, r \in I_0.$

164

 \square

4.7. Definition. Let $(X, C_1), (Y, C_2)$ be L-fuzzy closure spaces. A function $f: (X, C_1) \rightarrow f: (X, C_1)$ (Y, C_2) is called an open map (resp. a closed map) if $f(\lambda)$ is an r-open set (resp. an rclosed set) for each r-open (resp. r-closed) set $\lambda \in L^X$.

4.8. Definition. [10] Let $(X, C_1), (Y, C_2)$ be L-fuzzy closure spaces. Then $f: (X, C_1) \rightarrow C_1$ (Y, C_2) is called a *continuous map* if

 $f(C_1(\lambda, r)) \leq C_2(f(\lambda), r), \forall \lambda \in L^X, r \in L_0.$

4.9. Definition. Let $(X, C_1), (Y, C_2)$ be L-fuzzy closure spaces. A function $f: (X, C_1) \rightarrow C_1$ (Y, C_2) is called a homeomorphism iff f is bijective and f, f^{-1} are continuous maps.

4.10. Theorem. Let (X, C_1) , (Y, C_2) be topological L-fuzzy closure spaces. Then the following statements are equivalent for the map $f: (X, C_1) \to (Y, C_2)$.

- (1) f is an open map.
- (2) $f(\mathcal{I}_{C_1}(\lambda, r)) \leq \mathcal{I}_{C_2}(f(\lambda), r)$ for each $\lambda \in L^X$, $r \in L_0$.
- (2) $f(\mathfrak{S}_{1}(\Lambda, r)) \leq \mathfrak{S}_{2}(f(\Lambda), r)$ for each $\Lambda \in L^{Y}$, $r \in L_{0}$. (3) $\mathfrak{I}_{C_{1}}(f^{-1}(\mu), r) \leq f^{-1}(\mathfrak{I}_{C_{2}}(\mu, r))$ for each $\mu \in L^{Y}$, $r \in L_{0}$. (4) For any $\mu \in L^{Y}$ and any r-closed $\lambda \in L^{X}$ with $f^{-1}(\mu) \leq \lambda$, there exists an r-closed set $\rho \in L^{Y}$ with $\mu \leq \rho$ such that $f^{-1}(\rho) \leq \lambda$.

Proof. (1) \Longrightarrow (2). Since (X, C_1) is topological it is easy to see that $\mathcal{I}_{C_1}(\mathcal{I}_{C_1}(\lambda, r), r) =$ $\mathfrak{I}_{C_1}(\lambda, r)$, whence $\mathfrak{I}_{C_1}(\lambda, r)$ is r-open. Since f is an open map, $f(\mathfrak{I}_{C_1}(\lambda, r))$ is r-open in (Y, C_2) and so

 $f(\mathcal{I}_{C_1}(\lambda, r)) = \mathcal{I}_{C_2}(f(\mathcal{I}_{C_1}(\lambda, r)), r).$

On the other hand, $\mathcal{I}_{C_1}(\lambda, r) \leq \lambda$ so $f(\mathcal{I}_{C_1}(\lambda, r)) \leq f(\lambda)$, and hence $\mathfrak{I}_{C_2}(f(\mathfrak{I}_{C_1}(\lambda, r)), r) \leq \mathfrak{I}_{C_2}(f(\lambda), r).$

From the above inequalities we obtain $f(\mathcal{I}_{C_1}(\lambda, r)) \leq \mathcal{I}_{C_2}(f(\lambda), r)$ for each $\lambda \in L^X$, $r \in$ L_0 .

(2) \Longrightarrow (3). For all $\mu \in L^Y$, $r \in L_0$, put $\lambda = f^{-1}(\mu)$. From (2) we have

 $f(\mathcal{I}_{C_1}(f^{-1}(\mu), r)) \leq \mathcal{I}_{C_2}(f(f^{-1}(\mu)), r) \leq \mathcal{I}_{C_2}(\mu, r)$

by Lemma 2.5(1). By Lemma 2.5(2) this gives

 $\mathfrak{I}_{C_1}(f^{-1}(\mu), r) \le f^{-1}(\mathfrak{I}_{C_2}(\mu, r)).$

(3) \implies (4). Let λ be r-closed such that $f^{-1}(\mu) \leq \lambda$, whence $\lambda' \leq f^{-1}(\mu')$. Since $\mathfrak{I}_{C_1}(\lambda',r)=\lambda'$ then

$$\lambda' = \mathfrak{I}_{C_1}(\lambda', r) \le \mathfrak{I}_{C_1}(f^{-1}(\mu'), r).$$

From (3),

$$J' \leq \mathfrak{I}_{C_1}(f^{-1}(\mu'), r) \leq f^{-1}(\mathfrak{I}_{C_2}(\mu', r)).$$

 λ' This implies that

$$\lambda \ge (f^{-1}(\mathfrak{I}_{C_2}(\mu',r)))' = f^{-1}((\mathfrak{I}_{C_2}(\mu',r))') = f^{-1}(C_2(\mu,r)).$$

Since (Y, C_2) is topological, $\rho = C_2(\mu, r) \in L^Y$ is r-closed and satisfies $\mu \leq \rho$ and $f^{-1}(\rho) \leq \lambda.$

(4) \Longrightarrow (1). Let ν be an *r*-open set, put $\mu = f(\nu)'$ and $\lambda = \nu'$ so that λ is *r*-closed. Then:

$$f^{-1}(\mu) = f^{-1}(f(\nu)') = (f^{-1}(f(\nu)))' \le \nu' = \lambda$$

From (4), there exists an r-closed set ρ with $\mu \leq \rho$ such that $f^{-1}(\rho) \leq \lambda = \nu'$. Hence, $\nu \leq (f^{-1}(\rho))' = f^{-1}(\rho')$. Thus $f(\nu) \leq f(f^{-1}(\rho')) \leq \rho'$. On the other hand, since $\mu \leq \rho$, $f(\nu) = (\mu)' \geq \rho'$. Hence $f(\nu) = \rho'$. That is, $f(\nu)$ is r-open. \Box **4.11. Theorem.** Let (X, C_1) and (Y, C_2) be topological L-fuzzy closure spaces. Then the following statements are equivalent for the map $f: (X, C_1) \to (Y, C_2)$.

- (1) f is a closed map.
- (2) $f(C_1(\lambda, r)) \ge C_2(f(\lambda), r), \ \forall \lambda \in L^X, \ r \in L_0.$
- (2) $f(C_1(\mu), r) \ge 2f(C_2(\mu, r)), \forall \mu \in L^Y, r \in L_0$ (3) $C_1(f^{-1}(\mu), r) \ge f^{-1}(C_2(\mu, r)), \forall \mu \in L^Y, r \in L_0$ (4) For any $\mu \in L^Y$ and any r-open $\lambda \in L^X$, with $f^{-1}(\mu) \le \lambda$, there exists an r-open $\rho \in L^Y$ with $\mu \leq \rho$ such that $f^{-1}(\rho) \leq \lambda$.

Proof. Similar to the proof of Theorem 4.10.

4.12. Theorem. Let (X, C_1) , (Y, C_2) be topological L-fuzzy closure spaces. Then the following statements are true for a bijective map $f: (X, C_1) \to (Y, C_2)$.

- (1) f is a closed map iff $f^{-1}(C_2(\mu, r)) \leq C_1(f^{-1}(\mu), r)$ for each $\mu \in L^Y$, $r \in L_0$.
- (2) f is a closed map iff f is open.

Proof. (1) \implies . Let f be a closed map. From Theorem 4.11 (2), for each $\lambda \in L^X$, $r \in L_0$,

$$f(C_1(\lambda, r)) \ge C_2(f(\lambda), r).$$

For all $\mu \in L^Y$, $r \in L_0$, put $\lambda = f^{-1}(\mu)$. Since f is onto, $f(f^{-1}(\mu)) = \mu$. Thus

$$f(C_1(f^{-1}(\mu), r)) \ge C_2(f(f^{-1}(\mu)), r) = C_2(\mu, r)$$

This implies that

$$C_1(f^{-1}(\mu), r) = f^{-1}(f(C_1(f^{-1}(\mu), r))) \ge f^{-1}(C_2(\mu, r)).$$

 \Leftarrow . Put $\mu = f(\lambda)$. Since f is injective,

$$f^{-1}(C_2(f(\lambda), r)) \le C_1(f^{-1}(f(\lambda)), r) = C_1(\lambda, r).$$

Since f is onto, $C_2(f(\lambda), r) \leq f(C_1(\lambda, r))$.

(2). This follows easily from:

$$f^{-1}(C_{2}(\mu, r)) \leq C_{1}(f^{-1}(\mu), r)$$

$$\iff f^{-1}((\mathbb{J}_{C_{2}}(\mu', r))') \leq (\mathbb{J}_{C_{1}}(f^{-1}(\mu'), r))'$$

$$\iff f^{-1}(\mathbb{J}_{C_{2}}(\mu', r)) \geq \mathbb{J}_{C_{1}}(f^{-1}(\mu'), r).$$

From the above theorems we obtain the following result.

4.13. Theorem. Let $f: (X, C_1) \to (Y, C_2)$ be a bijective map between the topological Lfuzzy closure spaces (X, C_1) and (Y, C_2) . Then the following statements are equivalent:

- (1) f is a homeomorphism.
- (2) f is a continuous map and an open map.
- (3) f is a continuous map and a closed map.
- (4) $f(\mathcal{I}_{C_1}(\lambda, r)) = \mathcal{I}_{C_2}(f(\lambda), r)$, for each $\lambda \in L^X$, $r \in L_0$.
- (4) $f(S_{L_1}(\lambda, r)) = S_{L_2}(f(\lambda, r))$, for each $\lambda \in L^X$, $r \in L_0$. (5) $f(C_1(\lambda, r)) = C_2(f(\lambda), r)$, for each $\lambda \in L^X$, $r \in L_0$. (6) $\Im_{C_1}(f^{-1}(\mu), r) = f^{-1}(\Im_{C_2}(\mu, r))$, for each $\mu \in L^Y$, $r \in L_0$. (7) $C_1(f^{-1}(\mu), r) = f^{-1}(C_2(\mu, r))$, for each $\mu \in L^Y$, $r \in L_0$.

4.14. Theorem. Let $(X, \mathcal{T}_1), (Y, \mathcal{T}_2)$ be L-fuzzy topological spaces, and denote the corresponding L-fuzzy closure spaces by (X, C_1) , (Y, C_2) respectively. Then a function $f: (X, \mathfrak{T}_1) \to (Y, \mathfrak{T}_2)$ is LF-continuous iff $f: (X, C_1) \to (Y, C_2)$ is a continuous map.

Proof. Let f be LF-continuous. Then for all $\lambda \in L^X$, $r \in L_0$

$$C_2(f(\lambda),r) = C_{\mathbb{T}_2'}(f(\lambda),\ r) = \bigwedge \{\mu \mid \mu \in L^Y,\ \mu \ge f(\lambda),\ \mathbb{T}_2(\mu') \ge r\}.$$

(See Propositions 2.3 and 3.2). But from $\mu \geq f(\lambda)$ we will have $f^{-1}(\mu) \geq \lambda$, while from the definition of LF-continuity, $r \leq \mathfrak{T}_2(\mu') \leq \mathfrak{T}_1(f^{-1}(\mu')) = \mathfrak{T}_1(f^{-1}(\mu)')$. Thus we can write:

$$C_{2}(f(\lambda), r) = \bigwedge \left\{ \mu \in L^{Y} \mid \mu \geq f(\lambda), \ r \leq \mathfrak{T}_{2}(\mu') \right\}$$

$$\geq \bigwedge \left\{ ff^{-1}(\mu) \mid f^{-1}(\mu) \geq \lambda, \ \mathfrak{T}_{1}(f^{-1}(\mu)') \geq r \right\}$$

$$\geq f(\bigwedge \left\{ f^{-1}(\mu) \mid f^{-1}(\mu) \geq \lambda, \ \mathfrak{T}_{1}(f^{-1}(\mu)') \geq r \right\})$$

$$\geq f(C_{1}(\lambda, r))$$

Then $f(C_1(\lambda, r)) \leq C_2(f(\lambda), r)$, i.e f is a continuous map.

Conversely, let f be a continuous map. It will be sufficient to prove that $\mathfrak{T}'_2(\mu) \leq \mathfrak{T}_1(f^{-1}(\mu)) \forall \mu \in L^Y$ (see Proposition 2.3). Take $\mu \in L^Y$. By Theorem 3.4 we have $\mathfrak{T}'_2 = \mathfrak{T}'_{C_2}$, so by Proposition 3.3 we must prove that $\bigvee \{r \in L_0 \mid C_2(\mu, r) = \mu\} \leq \mathfrak{T}'_2(f^{-1}(\mu))$. This is true if $C_2(\mu, r) = \mu \implies r \leq \mathfrak{T}'_2(f^{-1}(\mu))$, so suppose there exists some $r_0 \in L_0$ satisfying $C_2(\mu, r_0) = \mu$ and $r_0 \notin \mathfrak{T}'_2(f^{-1}(\mu))$.

Since f is a continuous map and using Lemma 2.5 we have $f(C_1(f^{-1}(\mu), r_0)) \leq C_2(\mu, r_0) = \mu$. This leads to:

$$C_1(f^{-1}(\mu, r_0)) \le f^{-1}(f(C_1(f^{-1}(\mu), r_0))) \le f^{-1}(\nu),$$

that is,

$$C_1(f^{-1}(\mu), r_0) \le f^{-1}(\mu).$$

Hence $C_1(f^{-1}(\mu), r_0) = f^{-1}(\mu)$ since $f^{-1}(\mu) \leq C_1(f^{-1}(\mu), r_0)$. Again by Theorem 3.4 and Proposition 3.3 we have $\mathfrak{T}'_1(f^{-1}(\mu)) = \mathfrak{T}'_{C_1}(f^{-1}(\mu)) = \bigvee \{r \in L_0 \mid C_1(f^{-1}(\mu), r) = f^{-1}(\mu) \} \geq r_0$, which is contradiction.

4.15. Theorem. Let $(X, C_1), (Y, C_2)$ be L-fuzzy closure spaces. If $f: (X, C_1) \to (Y, C_2)$ is a continuous map then $f: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$ is LF-continuous, but the converse is false in general. Here, $\mathcal{T}_1, \mathcal{T}_2$ are defined by the equalities $\mathcal{T}_1(\lambda) = \mathcal{T}'_{C_1}(\lambda')$ and $\mathcal{T}_{C_2}(\lambda) = \mathcal{T}'_{C_2}(\lambda')$.

Proof. The proof of continuity \implies LF-continuity in Theorem 4.14 relies on the equalities $\Upsilon'_k = \Upsilon'_{C_k}$, k = 1, 2. Here these equalities hold by definition, so essentially the same proof holds here too.

To show that the converse is false in general, consider the following example.

4.16. Example. Let $X = \{x, y, z\}$. We denote by χ_A the characteristic function of a subset A of X. Let L = [0, 1] = I, so that $I_0 = (0, 1]$.

We define $C_1, C_2: I^X \times I_0 \longrightarrow I^X$ as follows:

$$C_1(\lambda, r) = \begin{cases} \underline{0} & \text{if } \lambda = \underline{0}, \ r \in I_0 \\ \chi_{\{z\}} & \text{if } \lambda = z_s, \ s \in I_0, \ 0 < r \le \frac{1}{2} \\ \underline{1} & \text{otherwise,} \end{cases}$$

and

$$C_{2}(\lambda, r) = \begin{cases} 0 & \text{if } \lambda = \underline{0}, \ r \in I_{0} \\ \chi_{\{x,y\}} & \text{if } \lambda = x_{s}, \ s \in I_{0}, \ 0 < r \le \frac{1}{3} \\ \chi_{\{z\}} & \text{if } \lambda = z_{s}, \ s \in I_{0}, \ r \le \frac{1}{2} \\ \underline{1} & \text{otherwise}, \end{cases}$$

where x_s, z_s denote fuzzy points. Then the identity map $id_X: (X, C_1) \to (X, C_2)$ is not a continuous map because for any $s \in I_0$,

$$\underline{1} = C_1(x_s, \frac{1}{4}) \nleq C_2(x_s, \frac{1}{4}) = \chi_{\{x,y\}}$$

On the other hand, from the definition of $\mathcal{T}_{C_1}, \mathcal{T}_{C_2}: I^X \to I$:

$$\mathfrak{T}_{C_1}(\lambda) = \mathfrak{T}_{C_2}(\lambda) \begin{cases} 1 & \text{if } \lambda = \underline{0} \text{ or } \underline{1} \\ \frac{1}{2} & \text{if } \lambda = \chi_{\{x,y\}}, \\ 0, & \text{otherwise.} \end{cases}$$

Hence $\operatorname{id}_X : (X, \mathfrak{T}_{C_1}) \to (X, \mathfrak{T}_{C_2})$ is LF-continuous.

This shows that for the above fuzzy *I*-closure spaces, id_X is an *LF*-continuous mapping which is not continuous.

4.17. Theorem. Let $(X, C_1), (Y, C_2)$ be L-fuzzy closure spaces and $f: (X, C_1) \to (Y, C_2)$ a map. Then the following statements are equivalent:

- (1) f is a continuous map.
- (2) $C_1(f^{-1}(\nu), r) \leq f^{-1}(C_2(\nu, r)), \ \forall \nu \in L^Y, \ r \in L_0.$ (3) $f^{-1}(\mathfrak{I}_{C_2}(\nu, r)) \leq \mathfrak{I}_{C_1}(f^{-1}(\nu), r), \ \forall \nu \in L^Y, \ r \in L_0.$

Proof. (1) \Longrightarrow (2). Let $\nu \in L^Y$ and set $\mu = f^{-1}(\nu)$ in $f(C_1(\mu, r)) \leq C_2(f(\mu), r)$. Since $C_2(ff^{-1}(\nu), r) \leq C_2(\nu, r)$, we get $f(C_1(f^{-1}(\nu), r)) \leq C_2(\nu, r)$. Thus $C_1(f^{-1}(\nu), r) \leq C_2(\nu, r)$. $f^{-1}(C_2(\nu, r)), \forall \nu \in L^X.$

(2) \implies (1). Take $\mu \in L^X$. Using (2) this leads to $C_1(f^{-1}(f(\mu)), r) \leq f^{-1}(C_2(f(\mu), r))$. Hence, $C_1(\mu, r) \leq f^{-1}(C_2(f(\mu), r))$, and so $f(C_1(\mu, r)) \leq C_2(f(\mu), r)$. So, f is continuous.

(2) \implies (3). Since $C_1(f^{-1}(\nu'), r) \leq f^{-1}(C_2(\nu', r))$, then applying the involution ' to both sides gives $(f^{-1}(C_2(\nu', r)))' \leq (C_1(f^{-1}(\nu'), r))'$. However, $(f^{-1}(C_2(\nu', r)))' =$ $f^{-1}(C_2(\nu', r)')$, so we have

$$f^{-1}(\mathfrak{I}_{C_2}(\nu, r)) \leq \mathfrak{I}_{C_1}(f^{-1}(\nu), r).$$

 $(3) \Longrightarrow (2)$. Trivial from the definition of \mathcal{I}_C .

If $C: L^X \times L_0 \to L^X$ is a L-fuzzy closure operator on X, then for each $r \in L_0$, $C_r \colon L^X \to L^X$ defined by $C_r(\lambda) = C(\lambda, r)$ is a Chang *L*-fuzzy closure operator on X [4].

5. r-semiopen and r-semiclosed sets in L-fuzzy closure spaces

5.1. Definition. Let (X, C) be *L*-fuzzy closure space. For $\lambda \in L^X$ and $r \in L_0$:

- (1) λ is called an *r*-semiopen set if there exists an *r*-open set $\nu \in L^X$ such that $\nu < \lambda < C(\nu, r).$
- (2) λ is called an *r*-semiclosed set if there exists an *r*-closed set $\nu \in L^X$ such that $\mathfrak{I}_C(\nu, r) \leq \lambda \leq \nu.$

- **5.2. Remark.** (1) If λ is r-semiopen then $\lambda \leq C(\mathfrak{I}_C(\lambda, r), r)$. Conversely, if this inequality is satisfied and (X, C) is topological then λ is r-semiopen.
 - (2) If λ is *r*-semiclosed then $\mathfrak{I}_C(C(\lambda, r), r) \leq \lambda$. Conversely, if this inequality is satisfied and (X, C) is topological then λ is r-semiclosed.

5.3. Definition. Let (X, C) be an L-fuzzy closure space. The r-semiclosure $SC(\mu, r)$, $r \in L_0, \mu \in L^X$, is defined by

$$SC(\mu, r) = \bigwedge \left\{ \rho \in L^X \mid \mu \le \rho, \ \rho \text{ is } r \text{-semiclosed} \right\}$$

and the *r*-semi-interior $S\mathcal{I}_C$ is defined by

$$S \mathfrak{I}_C(\mu, r) = \bigvee \{ \rho \in L^X \mid \mu \ge \rho, \ \rho \text{ is } r \text{-semiopen} \}.$$

From the above definitions we clearly have $SJ_C(\mu, r) \leq \mu \leq SC(\mu, r)$, while if (X, C)is topological,

$$\mathbb{J}_C(\mu, r) \le S\mathbb{J}_C(\mu, r) \le \mu \le SC(\mu, r) \le C(\mu, r).$$

5.4. Remark. Since an arbitrary union of r-open sets is r-open by Proposition 4.2, it is easy to show that an arbitrary union of r-semiopen sets is r-semiopen. Hence, in particular, the r-semi-interior of $\mu \in L^X$ is r-semiopen.

In just the same way, an arbitrary intersection of r-semiclosed sets is r-semiclosed, and the r-semiclosure of $\mu \in L^X$ is r-semiclosed.

5.5. Definition. Let $f: (X, C_1) \to (Y, C_2)$ be a map from an L-fuzzy closure space (X, C_1) to another L-fuzzy closure space (Y, C_2) , and $r \in L_0$. Then f is called:

- (1) A semicontinuous map if $f^{-1}(\nu)$ is an r-semiopen set for each r-open set $\nu \in L^Y$, or equivalently, if $f^{-1}(\nu)$ is an *r*-semiclosed set for each *r*-closed set $\nu \in L^Y$. (2) A semiopen map if $f(\mu)$ is an *r*-semiopen set for each *r*-open set $\mu \in L^X$.
- (3) A semiclosed map if $f(\mu)$ is an r-semiclosed set for each r-closed set $\mu \in L^X$.

5.6. Theorem. Let (X, C_1) , (Y, C_2) be topological L-fuzzy closure spaces. Then the following are equivalent for a map $f: (X, C_1) \to (Y, C_2)$.

- (1) f is a semicontinuous map.
- (2) $\mathfrak{I}_{C_1}(C_1(f^{-1}(\nu),r),r) \leq f^{-1}(C_2(\nu,r))$ for each $\nu \in L^Y$, $r \in L_0$. (3) $f(\mathfrak{I}_{C_1}(C(\mu,r),r)) \leq C_2(f(\mu),r)$ for each $\mu \in L^X$, $r \in L_0$.

Proof. : (1) \implies (2). Let f be a semicontinuous map, $\nu \in L^{Y}$. Then $C_{2}(\nu, r)$ is rclosed since (X, C_2) is topological, so since f is a semicontinuous map, $f^{-1}(C_2(\nu, r))$ is *r*-semiclosed. Thus

$$f^{-1}(C_2(\nu, r)) \ge \mathfrak{I}_{C_1}(C_1(f^{-1}(C_2(\nu, r)), r), r) \ge \mathfrak{I}_{C_1}(C_1(f^{-1}(\nu), r), r).$$

(2)
$$\Longrightarrow$$
 (3). Let $\mu \in L^X$. Then $f(\mu) \in L^Y$. By (2),

$$f^{-1}(C_2(f(\mu), r)) \ge \mathfrak{I}_{C_1}(C_1(f^{-1}f(\mu), r)) \ge \mathfrak{I}_{C_1}(C_1(\mu, r), r)$$

Hence

$$C_2(f(\mu), r) \ge f f^{-1}(C_2(f(\mu), r)) \ge f(\mathcal{I}_{C_1}(C_1(\mu, r), r))$$

(3) \Longrightarrow (1). Let ν be an r-closed set. Since $f^{-1}(\nu) \in L^X$ we have by (3),

 $f(\mathfrak{I}_{C_1}(C_1(f^{-1}(\nu),r),r) \le C_2(ff^{-1}(\nu),r) \le C_2(\nu,r) = \nu.$

So

$$\mathfrak{I}_{C_1}(C_1(f^{-1}(\nu),r),r) \le f^{-1}f(\mathfrak{I}_{C_1}(C_1(f^{-1}(\nu),r),r)) \le f^{-1}(\nu).$$

Since (X, C_1) is topological, $f^{-1}(\nu)$ is an r-semiclosed set by Remark 5.2(2), and hence f is a semicontinuous map.

5.7. Remark. Clearly, every continuous (resp. open, closed) map is a semicontinuous (resp. semiopen, semiclosed) map.

5.8. Theorem. Let (X, C_1) , (Y, C_2) be topological L-fuzzy closure spaces. Then the following statements are equivalent for the map $f: (X, C_1) \to (Y, C_2)$.

- (1) f is a semicontinuous map.
- (2) $f(SC_1(\mu, r)) \leq C_2(f(\mu), r)$ for each $\mu \in L^X$, $r \in L_0$. (3) $SC_1(f^{-1}(\nu), r) \leq f^{-1}(C_2(\nu, r))$ for each $\nu \in L^Y$, $r \in L_0$. (4) $f^{-1}(\mathcal{J}_{C_2}(\nu, r)) \leq S\mathcal{J}_{C_1}(f^{-1}(\nu), r)$ for each $\nu \in L^Y$.

Proof. Left to the reader.

5.9. Theorem. For L-fuzzy closure spaces (X, C_1) , (Y, C_2) with (Y, C_2) topological, let $f: (X, C_1) \to (Y, C_2)$ be a bijection. Then f is a semicontinuous map iff $\mathfrak{I}_{C_2}(f(\mu), r) \leq 1$ $f(SI_{C_1}(\mu, r))$ for each $\mu \in L^X$ and $r \in L_0$.

Proof. Let f be a semicontinuous map and $\mu \in L^X$. By hypothesis $\mathcal{I}_{C_2}(f(\mu), r)$ is r-open, so $f^{-1}(\mathcal{I}_{C_1}(f(\mu), r))$ is r-semiopen. Since f is one to one, we have

$$f^{-1}(\mathfrak{I}_{C_2}(f(\mu), r)) \le S\mathfrak{I}_{C_1}(f^{-1}f(\mu), r) = S\mathfrak{I}_{C_1}(\mu, r).$$

Since f is onto,

$$\mathfrak{I}_{C_2}(f(\mu), r) = ff^{-1}(\mathfrak{I}_{C_2}(f(\mu), r)) \le f(S\mathfrak{I}_{C_1}(\mu, r)).$$

Conversely, let ν be an *r*-open set. Then $\mathcal{I}_{C_2}(\nu, r) = \nu$. Since *f* is onto,

 $f(S\mathcal{I}_{C_1}(f^{-1}(\nu), r)) \ge \mathcal{I}_{C_2}(ff^{-1}(\nu), r) = \mathcal{I}_{C_2}(\nu, r) = \nu.$

Since f is one to one, we have

$$f^{-1}(\nu) \le f^{-1}f(S\mathfrak{I}_{C_1}(f^{-1}(\nu),r)) = S\mathfrak{I}_{C_1}(f^{-1}(\nu),r) \le f^{-1}(\nu).$$

Thus $f^{-1}(\nu) = S \mathcal{I}_{C_1}(f^{-1}(\nu), r)$, and hence $f^{-1}(\nu)$ is r-semiopen. Therefore f is a semicontinuous map.

5.10. Theorem. Let (X, C_1) , (Y, C_2) be L-fuzzy closure spaces with (X, C_1) topological. Then the following statements are equivalent for a map $f: (X, C_1) \to (Y, C_2)$.

- (1) f is a semiopen map.
- $\begin{array}{l} (2) \quad f(\mathbb{J}_{C_1}(\mu, r)) \stackrel{!}{\leq} S\mathbb{J}_{C_2}(f(\mu), r) \text{ for each } \mu \in L^X, \ r \in L_0. \\ (3) \quad \mathbb{J}_{C_1}(f^{-1}(\nu), r) \stackrel{!}{\leq} f^{-1}(S\mathbb{J}_{C_2}(\nu, r)) \text{ for each } \nu \in L^Y, \ r \in L_0. \end{array}$

Proof. (1) \Longrightarrow (2). Take $\mu \in L^X$. By hypothesis $\mathcal{I}_{C_1}(\mu, r)$ is an r-open set. Hence, since f is a semiopen map, $f(\mathcal{I}_{C_1}(\mu, r))$ is an r-semiopen set. Thus

$$f(\mathfrak{I}_{C_1}(\mu, r)) = S\mathfrak{I}_{C_2}(f(\mathfrak{I}_{C_1}(\mu, r)), r) \le S\mathfrak{I}_{C_2}(f(\mu), r).$$

(2)
$$\Longrightarrow$$
 (3). Let $\nu \in L^Y$. Then $f^{-1}(\nu) \in L^X$. By (2),

 $f(\mathcal{I}_{C_1}(f^{-1}(\nu), r)) \le S\mathcal{I}_{C_2}(ff^{-1}(\nu), r) \le S\mathcal{I}_{C_2}(\nu, r).$

Thus we have

$$\mathfrak{I}_{C_1}(f^{-1}(\nu), r) \le f^{-1}f(\mathfrak{I}_{C_1}(f^{-1}(\nu), r)) \le f^{-1}(S\mathfrak{I}_{C_2}(\nu, r)).$$

(3) \Longrightarrow (1). Let μ be an r-open set. Then $\mathcal{I}_{C_1}(\mu, r) = \mu$. Since $f(\mu) \in L^Y$ we have by (3),

$$\mu = \mathfrak{I}_{C_1}(\mu, r) \le \mathfrak{I}_{C_1}(f^{-1}f(\mu), r) \le f^{-1}(S\mathfrak{I}_{C_2}(f(\mu), r)).$$

170

Hence we have

$$f(\mu) \le f f^{-1}(S \mathfrak{I}_{C_2}(f(\mu), r)) \le S \mathfrak{I}_{C_2}(f(\mu), r) \le f(\mu).$$

Thus $f(\mu) = S \mathfrak{I}_{C_2}(f(\mu), r)$, and so $f(\mu)$ is an *r*-semiopen by Remark 5.4. Therefore, f is a semiopen map.

5.11. Theorem. Let (X, C_1) , (Y, C_2) be L-fuzzy closure spaces with (X, C_1) topological. Then the following statements are equivalent for a map $f: (X, C_1) \to (Y, C_2)$.

- (1) f is a semiclosed map.
- (2) $SC_2(f(\mu), r) \le f(C_1(\mu, r))$ for each $\mu \in L^X$, $r \in L_0$.

Proof. (1) \Longrightarrow (2). Let $\mu \in L^X$. By hypothesis, $C_1(\mu, r)$ is an *r*-closed set. Since *f* is a semiclosed map, $f(C_1(\mu, r))$ is an *r*-semiclosed set. Thus we have

$$SC_2(f(\mu), r) \le SC_2(f(C_1(\mu, r)), r) = f(C_1(\mu, r)).$$

 $(2) \Longrightarrow (1)$. Let μ be an r-closed set. Then $C_1(\mu, r) = \mu$. By (2),

$$SC_2(f(\mu), r) \le f(C_1(\mu, r)) = f(\mu) \le SC_2(f(\mu), r).$$

Thus $f(\mu) = SC_2(f(\mu), r)$, and hence $f(\mu)$ is r-semiclosed by Remark 5.4. Therefore, f is a semiclosed map.

5.12. Theorem. For L-fuzzy closure spaces (X, C_1) , (Y, C_2) with (X, C_1) topological, let $f: (X, C_1) \to (Y, C_2)$ be a bijection. Then f is a semiclosed map iff $f^{-1}(SC_2(\nu, r)) \leq C_1(f^{-1}(\nu), r)$ for each $\nu \in L^Y$ $r \in L_0$.

Proof. Let f be a semiclosed map and $\nu \in L^Y$. Then $f^{-1}(\nu) \in L^X$. Since f is onto, we have

$$SC_2(\nu, r) = SC_2(ff^{-1}(\nu), r) \le f(C_1(f^{-1}(\nu), r))$$

by Theorem 5.10. Since f is one to one, we have

$$f^{-1}(SC_2(\nu, r)) \le f^{-1}f(C_1(f^{-1}(\nu), r)) = C_1(f^{-1}(\nu), r).$$

Conversely, let μ be r-closed, Then $C_1(\mu, r) = \mu$. Since f is onto, we have

$$SC_2(f(\mu), r) = ff^{-1}(SC_2(f(\mu), r)) \le f(\mu) \le SC_2(f(\mu), r).$$

Thus $f(\mu) = SC_2(f(\mu), r)$, and hence $f(\mu)$ is r- semiclosed. Therefore f is a semiclosed map.

5.13. Theorem. Let (X, C_1) , (Y, C_2) , (Z, C_3) be L-fuzzy closure spaces. Let $f: (X, C_1) \rightarrow (Y, C_2)$ and $g: (Y, C_2) \rightarrow (Z, C_3)$ be open maps. Then the composition $gof: X \rightarrow Z$ is an open map.

Proof. Straightforward.

5.14. Theorem. Let (X, C_1) , (Y, C_2) , (Z, C_3) be L-fuzzy closure spaces. Let $f: (X, C_1) \rightarrow (Y, C_2)$ and $g: (Y, C_2) \rightarrow (Z, C_3)$ be closed maps. Then the composition $gof: X \rightarrow Z$ is a closed map.

Proof. Straightforward.

Acknowledgements

The authors wish to express their sincere thanks to the referees for their valuable suggestions.

References

- [1] Chang, C. L. Fuzzy topological spees, J. Math. Anal. Appl. 24, 182–190, 1968.
- [2] Chattopadhyay, K. C., Hazra, R. N. and Sammanta, S. K. Fuzzy topology redefined, Fuzzy Sets and Systems 45, 49–82, 1992.
 [2] Chattapadhyay, K. C., Hazra, P. N. and Sammanta, S. K. Cradatian of accuracy furger.
- [3] Chattopadhyay, K. C., Hazra, R. N. and Sammanta, S. K. Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49, 237–242, 1992.
- [4] Chattopadhyay, K. C. and Sammanta, S. K. Fuzzy topology: fuzzy closure operator, fuzzy compactness, fuzzy connectdeness, Fuzzy Sets and Systems 54, 207–212, 1993.
- [5] El Gayyar, M. K., Kerre, E. E. and Ramadan, A. A. Almost compactness and near compactness in smooth topological spaces, Fuzzy Sets and Systems 62, 193–202, 1994.
- [6] Ghanim, M. H. and Hasan, H. M. L-closure spaces, Fuzzy sets and systems 33, 154–170, 1989.
- [7] Ghanim, M. H. and Mashhour, A. M. Fuzzy closure spaces, J. Math. Anal. Appl. 106, 154– 170, 1985.
- [8] Goguen, J. A. The fuzzy Tychonoff theoem, J. Math. Anal. Appl. 43, 734–742, 1973.
- Kim, Y.C. Smooth fuzzy closure and topological spaces, Kangweon-Kyungki Math. Jour. 7 (1), 11–25, 1999.
- [10] Kim, Y.C. Initial L-fuzzy closure spaces, Fuzzy Sets and Systems 133, 277–297, 2003.
- [11] Klien, A. Geneating fuzzy topologies with semi-closue operators, Fuzzy Sets and Systems 9, 267–274, 1983.
- [12] Ramadan, A. A. Smooth topological spaces, Fuzzy Sets and Systems 48, 371–375, 1992.
- [13] Šostak, A. P. On fuzzy topological structures, Rend. Cire. Matem. Palerma ser. II 11, 89–103, 1985.
- [14] Šostak, A. P. Two decades of fuzzy topology: basic ideas, notions and results, Russian Math. Suveys, 44 (6), 125–186, 1989.
- [15] Šostak, A. P. Basic structures of fuzzy topology, J. Math. Sci. 78 (6), 662-701, 1996.