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Abstract

In this paper the authors introduce and characterize r-open, r-semiopen
sets (resp. r-closed, r-semiclosed sets) and open, semiopen and semi-
continuous maps (resp. closed, semiclosed maps) in L-fuzzy closure
spaces.
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1. Introduction

Chang introduced fuzzy topological spaces in [1]. In a Chang fuzzy topological space,
each fuzzy set is either open or not. Later Chang’s idea was developed by Goguen [8]
who replaced the lattice [0, 1] by a more general lattice L.

An essentially more general notion of fuzzy topology, in which each fuzzy set has a cer-
tain degree of openness, was introduced by Šostak [13], and independently by Ramadan
[12], Chattopadhyay, Hazra and Sammanta [3, 2].

Mashhour [7] introduced fuzzy closure spaces in the sense of Chang. On the other
hand, L-closure operators corresponding to L-topological spaces (originally called L-fuzzy
topological spaces by Chang [1] and Goguen [8]) in the case of a general lattice L were
first considered by Ghanim and Hasan in [6]. Klein [11] used fuzzy closure operators to
describe L-topological spaces, Šostak [15] applied L-fuzzy closure operators to describe
L-fuzzy topologies in the sense of [14], and Chattopadhyay and Sammanta [4] in the
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case of L = [0, 1]. Kim [9, 10], defined subspaces and products of fuzzy closure spaces
and L-fuzzy closure spaces, respectively.

In this paper we introduce open and closed maps (resp. semiopen, semiclosed and
semicontinuous maps), and give some characterization theorems.

2. Preliminaries

Throughout this paper let X be a non-empty set and (L,≤,∨,∧,′ ) a complete, com-
pletely distributive lattice with an order reversing involution ′. The smallest and largest
elements in L will be denoted by 0 and 1, respectively. Let L0 = L \ {0}.

If a ≤ b or b ≤ a for each a, b ∈ L then L is called a chain. A lattice L is called order

dense if for each a, b ∈ L such that a < b, there exists c ∈ L such that a < c < b.

Note that (LX ,≤,∨,∧,′ ) is a complete, completely distributive lattice with an order
reversing involution ′ if L is, the operations are defined point-wise and 0, 1 denotes the
smallest and largest elements of LX . The elements of LX are called L-fuzzy sets. All
undefined notations are standard notations of L-fuzzy set theory.

2.1. Definition. [3, 2, 12] Let T : LX → L be a mapping. Then T is said to be an
L-fuzzy topology on X if it satisfies the following conditions:

(1) T(0) = T(1) = 1.
(2) T(µ ∧ ν) ≥ T(µ) ∧ T(ν).
(3) T(

∨

i∈Γ µi) ≥
∧

i∈Γ T(µi).

The pair (X,T) is called an L-fuzzy topological space.

If T1,T2 are L-fuzzy topologies on X, we say T1 is finer than T2 (T2 is coarser than
T1) if T2(λ) ≤ T1(λ) for each λ ∈ L

X .

2.2. Definition. [3, 2, 12] Let F : LX → L be a mapping. Then F is said to be an
L-fuzzy cotopology on X if it satisfies the following conditions:

(1) F(0) = F(1) = 1.
(2) F(λ1 ∨ λ2) ≥ F(λ1) ∧ F(λ2).
(3) F(

∧

i∈Γ λi) ≥
∧

i∈Γ F(λi).

The pair (X,F) is called an L-fuzzy cotopological space.

2.3. Proposition. [3, 2, 12] Let T be an L-fuzzy topology on X and T
′ : LX → L the

mapping defined by

T
′(λ) = T(λ′),

Then (X,T′) is an L-fuzzy cotopological space.

2.4. Definition. [3, 2, 12] Let (X,T1), (Y,T2) be L-fuzzy topological spaces. Then the
map f : (X,T1)→ (Y,T2) is called LF-continuous iff

T2(ν) ≤ T1(f
−1(ν)) for every ν ∈ LY

.

2.5. Lemma. [5] If f : X → Y we have the following properties for the direct and inverse

images of L-fuzzy sets. Here µ, µi ∈ L
X and ν, νi ∈ L

Y .

(1) ν ≥ f (f−1(ν)), with equality if f is surjective.

(2) µ ≤ f−1(f (µ)), with equality if f is injective.

(3) f−1(ν′) = f−1(ν)′.
(4) f−1(

∨

i∈Γ νi) =
∨

i∈Γ f
−1(νi).

(5) f−1(
∧

i∈Γ νi) =
∧

i∈Γ f
−1(νi).

(6) f(
∨

i∈Γ µi) =
∨

i∈Γ f(µi).
(7) f(

∧

i∈Γ µi) ≤
∧

i∈Γ f(µi), with equality if f is injective.
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3. L-fuzzy closure spaces

3.1. Definition. [4] An operator C : LX×L0 → LX is called an L-fuzzy closure operator
if it satisfies the following conditions:

(1) C( 0, r) = 0.
(2) λ ≤ C(λ, r) for each λ ∈ LX .
(3) C(λ ∨ µ, r) = C(λ, r) ∨ C(µ, r) for every r ∈ L0.
(4) C(λ, r) ≤ C(µ, r) if λ ≤ µ.
(5) C(λ, r) ≤ C(λ, r∗) if r ≤ r∗.

The pair (X,C) is then called an L-fuzzy closure space. It is called topological if it also
satisfies the condition

C(C(λ, r), r) = C(λ, r) ∀λ ∈ LX
, r ∈ L0.

Let C1 and C2 be L-fuzzy closure operators on X. Then C1 is called finer than C2 (C2
is coarser than C1) if C1(λ, r) ≤ C2(λ, r) for all λ ∈ L

X , r ∈ L0.

3.2. Proposition. [4] Let (X,F) be an L-fuzzy cotopological space. Define the map

CF : LX × L0 → LX by

CF(λ, r) =
∧

{

µ ∈ LX | µ ≥ λ, F(µ) ≥ r
}

.

Then (X,CF) is a topological L-fuzzy closure space and if r =
∨

{s ∈ L | CF(λ, s) = λ}
then CF(λ, r) = λ.

3.3. Proposition. [4] Let (X,C) be L-fuzzy closure space. Define a map TC : LX → L

by

FC(λ) =
∨

{

r ∈ L0 | C(λ, r) = λ
}

Then:

(1) (X,FC) is an L-fuzzy cotopological space.
(2) We have C = CFC

iff the L-fuzzy closure space (X,C) satisfies the following

conditions:

a It is topological.

b If r =
∨

{s ∈ L | C(λ, s) = λ} then C(λ, r) = λ.

3.4. Theorem. [4] Let (X,F) be an L-fuzzy cotopological space. If (X,CF) is the cor-

responding L-fuzzy closure space, then FCF
is an L-fuzzy cotopology on X such that

FCF
= F.

4. r-open and r-closed sets in L-fuzzy closure spaces

4.1. Definition. Let (X,C) be an L-fuzzy closure space. An L-fuzzy set λ ∈ LX is said
to be r-closed if C(λ, r) = λ and r-open if λ′ is r-closed.

4.2. Proposition. We have the following:

(1) (a) A finite union of r-closed sets is r-closed.

(b) An arbitrary intersection of r-closed sets is r-closed.

(2) (a) A finite intersection of r-open sets is r-open.

(b) An arbitrary union of r-open sets is r-open.

Proof. (1) (a) Let {µi | i ∈ Γ} be a finite set of r-closed sets, then

C
(

∨

i∈Γ

µi, r
)

=
∨

i∈Γ

C(µi, r) =
∨

i∈Γ

µi.
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(1) (b) Let {µi | i ∈ Γ} be an arbitrary set of r-closed sets. Since
∧

i∈Γ µi ≤ µi we have
C(

∧

i∈Γ µi, r) ≤ C(µi, r) = µi for each i ∈ Γ. Hence, C(
∧

i∈Γ µi, r) ≤
∧

i∈Γ µi, which is
sufficient to prove that

∧

i∈Γ µi is r-closed.

(2) This follows from (1) by applying the involution ′. ¤

4.3. Definition. Let (X,C) be an L-fuzzy closure space. The map IC : LX ×L0 → LX

defined by:

IC(λ, r) = (C(λ′, r))′, λ ∈ LX
, r ∈ L0

is called the L-fuzzy interior operator associated with C. For λ ∈ LX , IC(λ, r) will be
called the C-interior of λ.

4.4. Proposition. Let (X,C) be an L-fuzzy closure space. Then the C-interior operator

IC has the following properties:

(1) IC(1, r) = 1.
(2) IC(λ, r) ≤ λ for every λ ∈ LX .

(3) IC(λ ∧ µ, r) = IC(λ, r) ∧ IC(µ, r) for every λ, µ ∈ L
X , r ∈ L0.

(4) IC(λ, r) ≤ IC(µ, r) if λ ≤ µ.

(5) IC(λ, s) ≤ IC(λ, r) if r ≤ s.

Proof. Straightforward. ¤

One may easily verify the following statements:

(a) For µ ∈ LX , µ is r-open iff IC(µ, r) = µ.
(b) µ is r-closed iff µ′ is r-open.

4.5. Definition. A map I : LX×L0 → LX is said to be an interior operator if it satisfies
the conditions (1)–(5).

4.6. Proposition. Let I be an interior operator and define CI : L
X × L0 → LX by

CI(µ, r) = (I(µ′, r))′

for every µ ∈ LX . Then CI is an L-fuzzy closure operator and ICI
= I.

Proof. We first verify conditions (1)–(5).

(1). CI(0, r) = (I(0′, r))′ = (I(1, r))′ = (1′) = 0.

(2). CI(µ, r) = (I(µ′, r))′ since I(µ′, r) ≤ µ′, then µ ≤ (I(µ′, r))′, µ ≤ CI(µ, r).

(3). CI(λ ∨ µ, r) = I((λ ∨ µ)′, r))′ = I((λ′ ∧ µ′)′, r)′

= (I(λ′, r) ∧ I(µ′, r))′ = I(λ′, r)′ ∨ I(µ′, r)′

= CI(λ, r) ∨ CI(µ, r).

(4). If λ ≤ µ then µ′ ≤ λ′, so I(µ′, r) ≤ I(λ′, r). Taking the complement and using
the definition of CI this leads to

CI(λ, r) ≤ CI(µ, r).

(5). If r ≤ r∗ then I(λ′, r∗) ≤ I(λ′, r). By taking the complement this leads to
(I(λ′, r))′ ≤ (I(λ′, r∗))′, hence CI(λ, r) ≤ CI(λ, r

∗).

To prove that ICI
= I, we note that:

ICI
(µ, r) = (CI(µ

′
, r))′ = (I(µ, r)′)′ = I(µ, r)

for each µ ∈ IX , r ∈ I0. ¤
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4.7. Definition. Let (X,C1), (Y,C2) be L-fuzzy closure spaces. A function f : (X,C1)→
(Y,C2) is called an open map (resp. a closed map) if f(λ) is an r-open set (resp. an r-
closed set) for each r-open (resp. r-closed) set λ ∈ LX .

4.8. Definition. [10] Let (X,C1), (Y,C2) be L-fuzzy closure spaces. Then f : (X,C1)→
(Y,C2) is called a continuous map if

f(C1(λ, r)) ≤ C2(f(λ), r), ∀λ ∈ L
X
, r ∈ L0.

4.9. Definition. Let (X,C1), (Y,C2) be L-fuzzy closure spaces. A function f : (X,C1)→
(Y,C2) is called a homeomorphism iff f is bijective and f , f−1 are continuous maps.

4.10. Theorem. Let (X,C1), (Y,C2) be topological L-fuzzy closure spaces. Then the

following statements are equivalent for the map f : (X,C1)→ (Y,C2).

(1) f is an open map.

(2) f(IC1(λ, r)) ≤ IC2(f(λ), r) for each λ ∈ L
X , r ∈ L0.

(3) IC1(f
−1(µ), r) ≤ f−1(IC2(µ, r)) for each µ ∈ L

Y , r ∈ L0.
(4) For any µ ∈ LY and any r-closed λ ∈ LX with f−1(µ) ≤ λ, there exists an

r-closed set ρ ∈ LY with µ ≤ ρ such that f−1(ρ) ≤ λ.

Proof. (1) =⇒ (2). Since (X,C1) is topological it is easy to see that IC1(IC1(λ, r), r) =
IC1(λ, r), whence IC1(λ, r) is r-open. Since f is an open map, f(IC1(λ, r)) is r-open in
(Y,C2) and so

f(IC1(λ, r)) = IC2(f(IC1(λ, r)), r).

On the other hand, IC1(λ, r) ≤ λ so f(IC1(λ, r)) ≤ f(λ), and hence

IC2(f(IC1(λ, r)), r) ≤ IC2(f(λ), r).

From the above inequalities we obtain f(IC1(λ, r)) ≤ IC2(f(λ), r) for each λ ∈ LX , r ∈
L0.

(2) =⇒ (3). For all µ ∈ LY , r ∈ L0, put λ = f−1(µ). From (2) we have

f(IC1(f
−1(µ), r)) ≤ IC2(f(f

−1(µ)), r) ≤ IC2(µ, r)

by Lemma 2.5 (1). By Lemma 2.5 (2) this gives

IC1(f
−1(µ), r) ≤ f

−1(IC2(µ, r)).

(3) =⇒ (4). Let λ be r-closed such that f−1(µ) ≤ λ, whence λ′ ≤ f−1(µ′). Since
IC1(λ

′, r) = λ′ then

λ
′ = IC1(λ

′
, r) ≤ IC1(f

−1(µ′), r).

From (3),

λ
′ ≤ IC1(f

−1(µ′), r) ≤ f
−1(IC2(µ

′
, r)).

This implies that

λ ≥ (f−1(IC2(µ
′
, r)))′ = f

−1((IC2(µ
′
, r))′) = f

−1(C2(µ, r)).

Since (Y,C2) is topological, ρ = C2(µ, r) ∈ LY is r-closed and satisfies µ ≤ ρ and
f−1(ρ) ≤ λ.

(4) =⇒ (1). Let ν be an r-open set, put µ = f(ν)′ and λ = ν′ so that λ is r-closed.
Then:

f
−1(µ) = f

−1(f(ν)′) = (f−1(f(ν)))′ ≤ ν
′ = λ.

From (4), there exists an r-closed set ρ with µ ≤ ρ such that f−1(ρ) ≤ λ = ν′. Hence,
ν ≤ (f−1(ρ))′ = f−1(ρ′). Thus f(ν) ≤ f(f−1(ρ′)) ≤ ρ′. On the other hand, since µ ≤ ρ,
f(ν) = (µ)′ ≥ ρ′. Hence f(ν) = ρ′. That is, f(ν) is r-open. ¤
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4.11. Theorem. Let (X,C1) and (Y,C2) be topological L-fuzzy closure spaces. Then the

following statements are equivalent for the map f : (X,C1)→ (Y,C2).

(1) f is a closed map.

(2) f(C1(λ, r)) ≥ C2(f(λ), r), ∀λ ∈ L
X , r ∈ L0.

(3) C1(f
−1(µ), r) ≥ f−1(C2(µ, r)), ∀µ ∈ L

Y , r ∈ L0
(4) For any µ ∈ LY and any r-open λ ∈ LX , with f−1(µ) ≤ λ, there exists an

r-open ρ ∈ LY with µ ≤ ρ such that f−1(ρ) ≤ λ.

Proof. Similar to the proof of Theorem 4.10. ¤

4.12. Theorem. Let (X,C1), (Y,C2) be topological L-fuzzy closure spaces. Then the

following statements are true for a bijective map f : (X,C1)→ (Y,C2).

(1) f is a closed map iff f−1(C2(µ, r)) ≤ C1(f
−1(µ), r) for each µ ∈ LY , r ∈ L0.

(2) f is a closed map iff f is open.

Proof. (1) =⇒ . Let f be a closed map. From Theorem 4.11 (2), for each λ ∈ LX , r ∈ L0,

f(C1(λ, r)) ≥ C2(f(λ), r).

For all µ ∈ LY , r ∈ L0, put λ = f−1(µ). Since f is onto, f(f−1(µ)) = µ. Thus

f(C1(f
−1(µ), r)) ≥ C2(f(f

−1(µ)), r) = C2(µ, r)

This implies that

C1(f
−1(µ), r) = f

−1(f(C1(f
−1(µ), r))) ≥ f

−1(C2(µ, r)).

⇐=. Put µ = f(λ). Since f is injective,

f
−1(C2(f(λ), r)) ≤ C1(f

−1 (f(λ)), r) = C1(λ, r).

Since f is onto, C2(f(λ), r) ≤ f(C1(λ, r)).

(2). This follows easily from:

f
−1(C2(µ, r)) ≤ C1(f

−1(µ), r)

⇐⇒ f
−1((IC2(µ

′
, r))′) ≤ (IC1(f

−1(µ′), r))′

⇐⇒ f
−1(IC2(µ

′
, r)) ≥ IC1(f

−1(µ′), r).

¤

From the above theorems we obtain the following result.

4.13. Theorem. Let f : (X,C1)→ (Y,C2) be a bijective map between the topological L-

fuzzy closure spaces (X,C1) and (Y,C2). Then the following statements are equivalent:

(1) f is a homeomorphism.

(2) f is a continuous map and an open map.

(3) f is a continuous map and a closed map.

(4) f(IC1(λ, r)) = IC2(f(λ), r), for each λ ∈ L
X , r ∈ L0.

(5) f(C1(λ, r)) = C2(f(λ), r), for each λ ∈ L
X , r ∈ L0.

(6) IC1(f
−1(µ), r) = f−1(IC2(µ, r)), for each µ ∈ L

Y , r ∈ L0.
(7) C1(f

−1(µ), r) = f−1(C2(µ, r)), for each µ ∈ L
Y , r ∈ L0.

4.14. Theorem. Let (X,T1), (Y,T2) be L-fuzzy topological spaces, and denote the cor-

responding L-fuzzy closure spaces by (X,C1), (Y,C2) respectively. Then a function

f : (X,T1)→ (Y,T2) is LF-continuous iff f : (X,C1)→ (Y,C2) is a continuous map.
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Proof. Let f be LF-continuous. Then for all λ ∈ LX , r ∈ L0

C2(f(λ), r) = CT′
2
(f(λ), r) =

∧

{µ | µ ∈ LY
, µ ≥ f(λ), T2(µ

′) ≥ r}.

(See Propositions 2.3 and 3.2). But from µ ≥ f(λ) we will have f−1(µ) ≥ λ, while from
the definition of LF-continuity, r ≤ T2(µ

′) ≤ T1(f
−1(µ′)) = T1(f

−1(µ)′). Thus we can
write:

C2(f(λ), r) =
∧

{

µ ∈ LY | µ ≥ f(λ), r ≤ T2(µ
′)
}

≥
∧

{

ff
−1(µ) | f−1(µ) ≥ λ, T1(f

−1(µ)′) ≥ r
}

≥ f
(

∧

{

f
−1(µ) | f−1(µ) ≥ λ, T1(f

−1(µ)′) ≥ r
})

≥ f(C1(λ, r))

Then f(C1(λ, r)) ≤ C2(f(λ), r), i.e f is a continuous map.

Conversely, let f be a continuous map. It will be sufficient to prove that T
′
2(µ) ≤

T1(f
−1(µ)) ∀µ ∈ LY (see Proposition 2.3). Take µ ∈ LY . By Theorem 3.4 we have T

′
2 =

T
′
C2

, so by Proposition 3.3 we must prove that
∨

{r ∈ L0 | C2(µ, r) = µ} ≤ T
′
2(f

−1(µ)).

This is true if C2(µ, r) = µ =⇒ r ≤ T
′
2(f

−1(µ), so suppose there exists some r0 ∈ L0
satisfying C2(µ, r0) = µ and r0 £ T

′
2(f

−1(µ)).

Since f is a continuous map and using Lemma 2.5 we have f(C1(f
−1(µ), r0)) ≤

C2(µ, r0) = µ. This leads to:

C1(f
−1(µ, r0)) ≤ f

−1(f(C1(f
−1(µ), r0))) ≤ f

−1(ν),

that is,

C1(f
−1(µ), r0) ≤ f

−1(µ).

Hence C1(f
−1(µ), r0) = f−1(µ) since f−1(µ) ≤ C1(f

−1(µ), r0). Again by Theorem 3.4
and Proposition 3.3 we have T

′
1(f

−1(µ)) = T
′
C1

(f−1(µ)) =
∨

{r ∈ L0 | C1(f
−1(µ), r) =

f−1(µ)} ≥ r0, which is contradiction. ¤

4.15. Theorem. Let (X,C1), (Y,C2) be L-fuzzy closure spaces. If f : (X,C1)→ (Y,C2)
is a continuous map then f : (X,T1) → (X,T2) is LF-continuous, but the converse is

false in general. Here, T1,T2 are defined by the equalities T1(λ) = T
′
C1

(λ′) and TC2(λ) =
T
′
C2

(λ′).

Proof. The proof of continuity =⇒ LF-continuity in Theorem 4.14 relies on the equali-
ties T

′
k = T

′
Ck

, k = 1, 2. Here these equalities hold by definition, so essentially the same
proof holds here too.

To show that the converse is false in general, consider the following example.

4.16. Example. Let X = {x, y, z}. We denote by χ
A

the characteristic function of a
subset A of X. Let L = [0, 1] = I, so that I0 = (0, 1].

We define C1, C2 : I
X × I0 −→ IX as follows:

C1(λ, r) =











0 if λ = 0, r ∈ I0

χ{z} if λ = zs, s ∈ I0, 0 < r ≤ 1

2

1 otherwise,
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and

C2(λ, r) =



















0 if λ = 0, r ∈ I0

χ{x,y} if λ = xs, s ∈ I0, 0 < r ≤ 1

3

χ{z} if λ = zs, s ∈ I0, r ≤
1

2

1 otherwise,

where xs, zs denote fuzzy points. Then the identity map idX : (X,C1) → (X,C2) is not
a continuous map because for any s ∈ I0,

1 = C1(xs,
1

4
) £ C2(xs,

1

4
) = χ{x,y}.

On the other hand, from the definition of TC1 ,TC2 : I
X → I:

TC1(λ) = TC2(λ)











1 if λ = 0 or 1
1

2
if λ = χ{x,y},

0, otherwise.

Hence idX : (X,TC1)→ (X,TC2) is LF-continuous.

This shows that for the above fuzzy I-closure spaces, idX is an LF -continuous mapping
which is not continuous. ¤

4.17. Theorem. Let (X,C1), (Y,C2) be L-fuzzy closure spaces and f : (X,C1)→ (Y,C2)
a map. Then the following statements are equivalent:

(1) f is a continuous map.

(2) C1(f
−1(ν), r) ≤ f−1(C2(ν, r)), ∀ ν ∈ L

Y , r ∈ L0.
(3) f−1(IC2(ν, r)) ≤ IC1(f

−1(ν), r), ∀ ν ∈ LY , r ∈ L0.

Proof. (1) =⇒ (2). Let ν ∈ LY and set µ = f−1(ν) in f(C1(µ, r)) ≤ C2(f(µ), r). Since
C2(ff

−1(ν), r) ≤ C2(ν, r), we get f (C1(f
−1(ν), r)) ≤ C2(ν, r). Thus C1(f

−1(ν), r) ≤
f−1(C2(ν, r)), ∀ ν ∈ L

X .

(2) =⇒ (1). Take µ ∈ LX . Using (2) this leads to C1(f
−1(f (µ)), r) ≤ f−1(C2(f (µ), r)).

Hence, C1(µ, r) ≤ f−1(C2(f (µ), r)), and so f (C1(µ, r)) ≤ C2(f (µ), r). So, f is continu-
ous.

(2) =⇒ (3). Since C1(f
−1(ν′), r) ≤ f−1(C2(ν

′, r)), then applying the involution ′

to both sides gives (f−1(C2(ν
′, r)))′ ≤ (C1(f

−1(ν′), r))′. However, (f−1(C2(ν
′, r)))′ =

f−1(C2(ν
′, r)′), so we have

f
−1(IC2(ν, r)) ≤ IC1(f

−1(ν), r).

(3) =⇒ (2). Trivial from the definition of IC . ¤

If C : LX × L0 → LX is a L-fuzzy closure operator on X, then for each r ∈ L0,
Cr : L

X → LX defined by Cr(λ) = C(λ, r) is a Chang L-fuzzy closure operator on X [4].

5. r-semiopen and r-semiclosed sets in L-fuzzy closure spaces

5.1. Definition. Let (X,C) be L-fuzzy closure space. For λ ∈ LX and r ∈ L0:

(1) λ is called an r-semiopen set if there exists an r-open set ν ∈ LX such that
ν ≤ λ ≤ C(ν, r).

(2) λ is called an r-semiclosed set if there exists an r-closed set ν ∈ LX such that
IC(ν, r) ≤ λ ≤ ν.
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5.2. Remark. (1) If λ is r-semiopen then λ ≤ C(IC(λ, r), r). Conversely, if this inequal-
ity is satisfied and (X,C) is topological then λ is r-semiopen.

(2) If λ is r-semiclosed then IC(C(λ, r), r) ≤ λ. Conversely, if this inequality is satisfied
and (X,C) is topological then λ is r-semiclosed.

5.3. Definition. Let (X,C) be an L-fuzzy closure space. The r-semiclosure SC(µ, r),
r ∈ L0, µ ∈ L

X , is defined by

SC(µ, r) =
∧

{

ρ ∈ LX | µ ≤ ρ, ρ is r-semiclosed
}

and the r-semi-interior SIC is defined by

SIC(µ, r) =
∨

{

ρ ∈ LX | µ ≥ ρ, ρ is r-semiopen
}

.

From the above definitions we clearly have SIC(µ, r) ≤ µ ≤ SC(µ, r), while if (X,C)
is topological,

IC(µ, r) ≤ SIC(µ, r) ≤ µ ≤ SC(µ, r) ≤ C(µ, r).

5.4. Remark. Since an arbitrary union of r-open sets is r-open by Proposition 4.2,
it is easy to show that an arbitrary union of r-semiopen sets is r-semiopen. Hence, in
particular, the r-semi-interior of µ ∈ LX is r-semiopen.

In just the same way, an arbitrary intersection of r-semiclosed sets is r-semiclosed,
and the r-semiclosure of µ ∈ LX is r-semiclosed.

5.5. Definition. Let f : (X,C1) → (Y,C2) be a map from an L-fuzzy closure space
(X,C1) to another L-fuzzy closure space (Y,C2), and r ∈ L0. Then f is called:

(1) A semicontinuous map if f−1(ν) is an r-semiopen set for each r-open set ν ∈ LY ,
or equivalently, if f−1(ν) is an r-semiclosed set for each r-closed set ν ∈ LY .

(2) A semiopen map if f(µ) is an r-semiopen set for each r-open set µ ∈ LX .
(3) A semiclosed map if f(µ) is an r-semiclosed set for each r-closed set µ ∈ LX .

5.6. Theorem. Let (X,C1), (Y,C2) be topological L-fuzzy closure spaces. Then the

following are equivalent for a map f : (X,C1)→ (Y,C2).

(1) f is a semicontinuous map.

(2) IC1(C1(f
−1(ν), r), r) ≤ f−1(C2(ν, r)) for each ν ∈ L

Y , r ∈ L0.
(3) f(IC1(C(µ, r), r)) ≤ C2(f(µ), r) for each µ ∈ L

X , r ∈ L0.

Proof. : (1) =⇒ (2). Let f be a semicontinuous map, ν ∈ LY . Then C2(ν, r) is r-
closed since (X,C2) is topological, so since f is a semicontinuous map, f−1(C2(ν, r)) is
r-semiclosed. Thus

f
−1(C2(ν, r)) ≥ IC1(C1(f

−1(C2(ν, r)), r), r) ≥ IC1(C1(f
−1(ν), r), r).

(2) =⇒ (3). Let µ ∈ LX . Then f(µ) ∈ LY . By (2),

f
−1(C2(f(µ), r)) ≥ IC1(C1(f

−1
f(µ), r)) ≥ IC1(C1(µ, r), r).

Hence

C2(f(µ), r) ≥ ff
−1(C2(f(µ), r)) ≥ f(IC1(C1(µ, r), r)).

(3) =⇒ (1). Let ν be an r-closed set. Since f−1(ν) ∈ LX we have by (3),

f(IC1(C1(f
−1(ν), r), r) ≤ C2(ff

−1(ν), r) ≤ C2(ν, r) = ν.

So

IC1(C1(f
−1(ν), r), r) ≤ f

−1
f(IC1(C1(f

−1(ν), r), r)) ≤ f
−1(ν).
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Since (X,C1) is topological, f
−1(ν) is an r-semiclosed set by Remark 5.2 (2), and hence

f is a semicontinuous map. ¤

5.7. Remark. Clearly, every continuous (resp. open, closed) map is a semicontinuous
(resp. semiopen, semiclosed) map.

5.8. Theorem. Let (X,C1), (Y,C2) be topological L-fuzzy closure spaces. Then the

following statements are equivalent for the map f : (X,C1)→ (Y,C2).

(1) f is a semicontinuous map.

(2) f(SC1(µ, r)) ≤ C2(f(µ), r) for each µ ∈ L
X , r ∈ L0.

(3) SC1(f
−1(ν), r) ≤ f−1(C2(ν, r)) for each ν ∈ L

Y , r ∈ L0.
(4) f−1(IC2(ν, r)) ≤ SIC1(f

−1(ν), r) for each ν ∈ LY .

Proof. Left to the reader. ¤

5.9. Theorem. For L-fuzzy closure spaces (X,C1), (Y,C2) with (Y,C2) topological, let
f : (X,C1) → (Y,C2) be a bijection. Then f is a semicontinuous map iff IC2(f(µ), r) ≤
f(SIC1(µ, r)) for each µ ∈ L

X and r ∈ L0.

Proof. Let f be a semicontinuous map and µ ∈ LX . By hypothesis IC2(f(µ), r) is r-open,
so f−1(IC1(f(µ), r)) is r-semiopen. Since f is one to one, we have

f
−1(IC2(f(µ), r)) ≤ SIC1(f

−1
f(µ), r) = SIC1(µ, r).

Since f is onto,

IC2(f(µ), r) = ff
−1(IC2(f(µ), r)) ≤ f(SIC1(µ, r)).

Conversely, let ν be an r-open set. Then IC2(ν, r) = ν. Since f is onto,

f(SIC1(f
−1(ν), r)) ≥ IC2(ff

−1(ν), r) = IC2(ν, r) = ν.

Since f is one to one, we have

f
−1(ν) ≤ f

−1
f(SIC1(f

−1(ν), r)) = SIC1(f
−1(ν), r) ≤ f

−1(ν).

Thus f−1(ν) = SIC1(f
−1(ν), r), and hence f−1(ν) is r-semiopen. Therefore f is a

semicontinuous map. ¤

5.10. Theorem. Let (X,C1), (Y,C2) be L-fuzzy closure spaces with (X,C1) topological.
Then the following statements are equivalent for a map f : (X,C1)→ (Y,C2).

(1) f is a semiopen map.

(2) f(IC1(µ, r)) ≤ SIC2(f(µ), r) for each µ ∈ L
X , r ∈ L0.

(3) IC1(f
−1(ν), r) ≤ f−1(SIC2(ν, r)) for each ν ∈ L

Y , r ∈ L0.

Proof. (1) =⇒ (2). Take µ ∈ LX . By hypothesis IC1(µ, r) is an r-open set. Hence, since
f is a semiopen map, f(IC1(µ, r)) is an r-semiopen set. Thus

f(IC1(µ, r)) = SIC2(f(IC1(µ, r)), r) ≤ SIC2(f(µ), r).

(2) =⇒ (3). Let ν ∈ LY . Then f−1(ν) ∈ LX . By (2),

f(IC1(f
−1(ν), r)) ≤ SIC2(ff

−1(ν), r) ≤ SIC2(ν, r).

Thus we have

IC1(f
−1(ν), r) ≤ f

−1
f(IC1(f

−1(ν), r)) ≤ f
−1(SIC2(ν, r)).

(3) =⇒ (1). Let µ be an r-open set. Then IC1(µ, r) = µ. Since f(µ) ∈ LY we have
by (3),

µ = IC1(µ, r) ≤ IC1(f
−1
f(µ), r) ≤ f

−1(SIC2(f(µ), r)).
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Hence we have

f(µ) ≤ ff
−1(SIC2(f(µ), r)) ≤ SIC2(f(µ), r) ≤ f(µ).

Thus f(µ) = SIC2(f(µ), r), and so f(µ) is an r-semiopen by Remark 5.4. Therefore, f
is a semiopen map. ¤

5.11. Theorem. Let (X,C1), (Y,C2) be L-fuzzy closure spaces with (X,C1) topological.
Then the following statements are equivalent for a map f : (X,C1)→ (Y,C2).

(1) f is a semiclosed map.

(2) SC2(f(µ), r) ≤ f(C1(µ, r)) for each µ ∈ L
X , r ∈ L0.

Proof. (1) =⇒ (2). Let µ ∈ LX . By hypothesis, C1(µ, r) is an r-closed set. Since f is a
semiclosed map, f(C1(µ, r)) is an r-semiclosed set. Thus we have

SC2(f(µ), r) ≤ SC2(f(C1(µ, r)), r) = f(C1(µ, r)).

(2) =⇒ (1). Let µ be an r-closed set. Then C1(µ, r) = µ. By (2),

SC2(f(µ), r) ≤ f(C1(µ, r)) = f(µ) ≤ SC2(f(µ), r).

Thus f(µ) = SC2(f(µ), r), and hence f(µ) is r-semiclosed by Remark 5.4. Therefore, f
is a semiclosed map. ¤

5.12. Theorem. For L-fuzzy closure spaces (X,C1), (Y,C2) with (X,C1) topological,
let f : (X,C1)→ (Y,C2) be a bijection. Then f is a semiclosed map iff f−1(SC2(ν, r)) ≤
C1(f

−1(ν), r) for each ν ∈ LY r ∈ L0.

Proof. Let f be a semiclosed map and ν ∈ LY . Then f−1(ν) ∈ LX . Since f is onto, we
have

SC2(ν, r) = SC2(ff
−1(ν), r) ≤ f(C1(f

−1(ν), r))

by Theorem 5.10. Since f is one to one, we have

f
−1(SC2(ν, r)) ≤ f

−1
f(C1(f

−1(ν), r)) = C1(f
−1(ν), r).

Conversely, let µ be r-closed, Then C1(µ, r) = µ. Since f is onto, we have

SC2(f(µ), r) = ff
−1(SC2(f(µ), r)) ≤ f(µ) ≤ SC2(f(µ), r).

Thus f(µ) = SC2(f(µ), r), and hence f(µ) is r- semiclosed. Therefore f is a semiclosed
map. ¤

5.13. Theorem. Let (X,C1), (Y,C2), (Z,C3) be L-fuzzy closure spaces. Let f : (X,C1)→
(Y,C2) and g : (Y,C2) → (Z,C3) be open maps. Then the composition gof : X → Z is

an open map.

Proof. Straightforward. ¤

5.14. Theorem. Let (X,C1), (Y,C2), (Z,C3) be L-fuzzy closure spaces. Let f : (X,C1)→
(Y,C2) and g : (Y,C2) → (Z,C3) be closed maps. Then the composition gof : X → Z is

a closed map.

Proof. Straightforward. ¤
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