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Abstract

In regression analysis, it is desired that no multicollinearity should exist
between the independent (explanatory) variables. In the cases where
this is not achieved, the use of the Least Square (LS) estimation method
leads to mismodelling. Some methods have been developed to solve this
problem; one of which is the ‘biased estimation method’. In this study,
a test statistics for Ridge and Liu estimators, that are shrinkage biased
estimators, is analyzed. Moreover, these estimators are compared via
simulation, in terms of different correlation coefficients between the
independent variables.
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1. Introduction

Multiple linear regression is one of the statistical methods in widespread use that help
one to bring out relationships between variables. Researchers working on data analysis
use the multi linear regression method for forming models. The most common method
used for estimating the regression coefficients is the LS method. However, in order for
the LS method to give valid results, some assumptions need to be made.

In multiple linear regression analysis, there should be no relations between the inde-
pendent variables. Nevertheless, in reality, this may not always be realized. Using the
LS estimation method in this case may lead to an improper use of the model. Some
methods have been developed to allow the analysis of the case when the independent
variables depend on each other. One of these methods is the biased estimation method.
The most widely used biased estimation methods are; principal components regression,
ridge regression and their variations. Estimations produced by biased methods are more
biased than the LS estimators are, but they produce less variable estimations. The main
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purpose of biased estimation methods is to reduce the large variance area of the LS esti-
mation method at the cost of a small bias. Therefore, more valid results can be obtained
in comparison with the LS method.

One type of biased estimator is the so called shrinkage estimator. Basic components
regression, ridge regression and their derivatives are of this type. In his study, Farebrother
[3] formed a general structure for shrinkage estimators. He was able to place ridge, basic
components and conditioned-minimum mean error square biased estimators within this
structure by showing that each of them is a shrinkage estimator. In Liski [6], the powerful
Mean Square Error (MSE) was proposed as a criteria to choose between the LS estimator
and the shrinkage estimator. Liski [7] used a weaker MSE test to make a choice between
the LS estimator and the shrinkage estimators. Kejian [5] suggested the Liu- Kejian
estimator as an alternative to the ridge estimator. Later, this estimator was named the
“Liu estimator” by Akdeniz and Kaçıranlar [2]. Sakallıoğlu, Kaçıranlar and Akdeniz [11]
compared the Liu estimator with its iteration estimator. Then, Akdeniz and Erol [1]
compared various shrinkage estimators, and gave a numerical example.

The second section of this study describes the basic structure of shrinkage estimators.
Keeping this information in mind, necessary and sufficient conditions for the shrinkage
estimators to give better results than the LS estimator are obtained by comparing their
MSE matrices. A hypothesis test based on a test statistics derived from this condition
is then examined.

In the last section, a simulation study is carried out using a MATLAB program. As
a result of this simulation study, rejection and acceptance areas for the Ridge and Liu
shrinkage estimators, constructed according to this hypothesis test were compared and
the results interpreted.

2. The general structure of shrinkage estimators

In this section the general structure of shrinkage estimators is presented, inspired by
the linear regression model of (Farebrother, [3]).

A multi linear regression model with n observation and k independent variables is
defined as in (Farebrother, [3]):

(1)

Y = Xβ + ε

ε ∼
(
0, σ2In

)

rank(Xn×q) = q ≤ n

Here, Y is the (n× 1) dimensional vector of dependent variables; X the (n× q) di-
mensional non-stochastic input matrix (q = k + 1); β the (q × 1) dimensional vector of

unknown coefficients; and ε the error vector satisfying E (ε) = 0, E (εε′) = σ2In.

General linear estimators are described in the following form. Here, C and c are a
matrix and a vector, respectively.

(2) β̃ = CY + c.

This estimator is referred to as the linear estimator of β [14]. In (2), if one takes C =

(X ′X)
−1

X ′ and c = 0, a special case of the estimator is obtained as follows;

β̂ =
(
X ′X

)−1
X ′Y .

This estimator is called the LS estimator of β.

Under the model (1), the form in (2) can be represented as:

(3) β̃ = Aβ̂ + d.
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Here, A is the (q × q) dimensional matrix of constants and d a vector of dimension

(q × 1). It is obvious that when A = I and d = 0, β̃ is an LS estimator. It is seen that

the statements (2) and (3) are the same.

When determining the best estimator from among the unbiased estimators, the one
with the minimum variance is preferred. When biased estimators are concerned, the
MSE is used for determining the best estimator. This is because biased and unbiased
estimators can be identified by checking the MSE matrices. The MSE matrices may be
written as:

(4) MSE
(
β̃
)
= E

(
β̃ − β

)(
β̃ − β

)′
.

When statement (1) is used instead of (2), it takes the following form:

β̃ = C
(
Xβ + c

)
+ c.

When β is eliminated from both sides of this equation and the expected value of the
statement is used, the biased value becomes,

(5)
E
(
β̃
)
− β = Bias

(
β̃
)

= (CX − I)β + c,

and its variance is calculated as,

(6) Var
(
β̃
)
= CVar (Y )C ′ = σ2CC′.

The well-known form of the MSE matrices is MSE = Variance + (Bias)2. Accordingly,
the MSE matrix can be written as,

MSE
(
β̃
)
= σ2CC′ +

[
(CX − I)β + c

] [
(CX − I)β + c

]′
.

Another form uses the scalar mean square error (SMSE):

(7) SMSE
(
β̃
)
= E

(
β̃ − β

)′ (
β̃ − β

)
.

In practice the trace operator is applied in the form:

(8)
SMSE

(
β̃
)
= trE

(
β̃ − β

)(
β̃ − β

)′

= trMSE
(
β̃
)
.

For unbiased estimators, c = 0, and the known condition for being unbiased is CX−I = 0.

In this case, MSE
(
β̃
)

= Var
(
β̃
)

= σ2CC′. For example, this is the case for the LS

estimator. In other words, the matrix of MSE is equal to the variance. Because the LS

estimator is an unbiased estimator for the parameter we have in this case MSE
(
β̂
)

=

Var
(
β̂
)
= σ2 (X ′X)

−1
.

The measure of loss for the estimator β̃ related to the parameter β is defined as

(9) L
(
β̃, A

)
=
(
β̃ − β

)′
A
(
β̃ − β

)
.

Here A is a (k × k) dimensional positive definite symmetric matrix. The risk of the

estimator β̃ is defined by

(10) R
(
β̃, A

)
= E

(
L
(
β̃, A

))
= E

(
β̃ − β

)′
A
(
β̃ − β

)
.
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By applying the trace operator, the relation between the risk and the MSE of the esti-
mator can be expressed as:

(11) R
(
β̃, A

)
= trAE

(
β̃ − β

)(
β̃ − β

)′
= trAMSE

(
β̃
)
.

By considering (11) together with Theorem 2.1 below, minimization of the risk R
(
β̃, A

)

is equivalent to the minimization of MSE
(
β̃
)
, for any estimator β̃ belonging to the fixed

set of possible estimators [14].

2.1. Theorem. (Theobald, [13]) A symmetric n × n matrix D is non-negative definite

if and only if trCD ≥ 0 for all non-negative definite C.

For example, for all C ≥ 0 we have D ≥ 0⇐⇒ trCD ≥ 0.

2.2. Theorem. (Theobald, [13]): Suppose that two estimators are given as β∗
1
and β∗

2
.

Then the following are equivalent:

(i) MSE
(
β∗

1

)
−MSE

(
β∗

2

)
≥ 0.

(ii) R
(
β∗

1
, A
)
−R

(
β∗

2
, A
)
≥ 0 for all A ≥ 0.

A good estimator can be found by minimizing the risk over the class of defined esti-
mators. Such estimators are called R-optimal [14]. Another problem is to find the better
of two proposed estimators. That is the essential problem is the problem of comparing
the two estimators.

2.3. Definition. When,

(12)
for all β we have R

(
β̃

2
, A
)
−R

(
β̃

1
, A
)
≥ 0, and,

for some β we have R
(
β̃

2
, A
)
−R

(
β̃

1
, A
)
> 0,

the estimator β̃
1
is said to be better than β̃

2
with respect to the square loss measurement

L
(
β̃, A

)
.

If for the matrix differences we have,

(13)
for all β we have MSE

(
β̃

2

)
−MSE

(
β̃

1

)
≥ 0, and,

for some β we have MSE
(
β̃

2

)
−MSE

(
β̃

1

)
6= 0,

then taking (11) and Theorem 1 into consideration, it can be concluded that the estimator

β̃
1
is better than β̃

2
.

The relation between the estimators β̃
1
and β̃

2
in (12) depends on the matrix A of

the loss function in (9). In other words, the use of different weighted matrices leads to
different loss functions and therefore to different risks.

If there is no better estimator, its admissibility as an estimator is described in terms

of the risk R
(
β̃, A

)
. In general, for the class of all linear estimators β̃ = CY + c,

admissibility depends on a given estimator class. Admissibility is defined in terms of the

MSE of β̃ in (4).



A Simulation Study of some Shrinkage Estimators 217

2.4. Definition. Consider the conditions:

(14)
for all β we have MSE

(
β̃
)
−MSE

(
β̂
)
≥ 0, and

for some β we have MSE
(
β̃
)
−MSE

(
β̂
)
6= 0,

If these conditions are satisfied for all the estimators β̃ then the estimator β̂ is said to be
admissible with respect to the MSEs.

In view of Theorem 2.2, for all positive definite matrices, that is for all A ≥ 0, β̂ is an

admissible estimator with respect to R
(
β̂, A

)
. In order to prove this it is sufficient to

display the admissibility of β̂ with respect to R
(
β̂, I

)
.

2.5. Theorem. (Toutenburg, [14], pp.12) Let the estimator β̂ be admissible with respect

to R
(
β̂, I

)
. Then, β̂ is an admissible estimator under R

(
β̂, A

)
for each A ≥ 0.

For admissibility, the form of the estimator β is as follows [10]:

(15) β̃ = A
(
β̂ − b

)
+ b.

Here, A is a (q × q) dimensional matrix and b is a constant vector. Estimators defined this
way belong to the class of linear admissible estimators. Other conditions for admissibility
are that

(16)
(
X ′X

)
A or A

(
X ′X

)−1
should be symmetric,

and

(17) The eigenvalues of A lie in [0, 1].

Since X ′X and A are symmetric, there exists a (q × q) orthonormal matrix P such that
P ′X ′XP = Λ is a (q × q) diagonal matrix whose diagonal elements λ1, λ2, . . . , λq are the
eigenvalues of X ′X, assumed to be in descending order. Also P ′AP is a diagonal matrix
whose diagonal elements δ1, δ2, . . . , δq lie in [0, 1] [6,12].

Model (1) can be written in canonical form as

(18) Y = XPP ′β + ε = Zα+ ε

where Z = XP and α = P ′β. Within this model (15) becomes:

(19)
α̃ = P ′A

(
β̂ − b

)
+ P ′b

= P ′AP (α̂− a) + a = ∆(α̂− a) + a.

Here, α̂ = P ′β̂, a = P ′b. These kind of admissible linear estimators are called shrinkage
estimators.

2.1. Mean Square Error Matrices for Shrinkage Estimators. The main problem
for shrinkage estimators is to determine conditions under which the risk of these estima-
tors is less than that of the LS estimator (Liski, [6]). The MSE matrices of the estimators

β̂ and β̃ are respectively:

(20)
MSE

(
β̂
)
= σ2

(
X ′X

)−1
, and

MSE
(
β̃
)
= σ2A

(
X ′X

)−1
A′ + (I −A)

(
β − b

) (
β − b

)′
(I −A) .

Equivalently, the canonical form may be given as:

(21) MSE (α̃) = σ2∆Λ−1∆ + (I −∆) (α− a) (α− a)′ (I −∆) .
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If the matrix difference MSE
(
β̂
)
−MSE

(
β̃
)

is not negative definite then MSE
(
β̂
)
−

MSE
(
β̃
)
≥ 0. It follows that the difference MSE

(
β̂
)
−MSE

(
β̃
)
is not negative definite

if and only if the inequality

(22)
(
β − b

)′
(I +A)−1 X ′X (I −A)

(
β − b

)
/σ2

≤ 1.

is satisfied. Likewise by [7] the difference MSE (α̂)−MSE (α̃) ≥ 0 is not negative definite
if

(23) (α− a)′ (I + ∆)−1 Λ (I −∆) (α− a) /σ2
≤ 1.

The inequality (23) can be stated as:

(24)

q∑

i=1

γiλi (αi − ai)
2 /σ2

≤ 1.

Here, γi =
(1− δi)

(1 + δi)
. This result was obtained by Liski [7].

The Ridge and Liu estimators, which are known to be shrinkage estimators, can be
defined respectively by,

β̃
R

=
(
X ′X + kI

)−1
X ′Y ,(25)

β̃
Liu

=
(
X ′X + I

)−1
(
X ′Y + dβ̂

)
,(26)

where 0 < k < 1 and 0 < d < 1 [5]. The necessary and sufficient condition for the Ridge
estimator to have a lower risk than the LS estimator takes the form

(27)

(
β − b

)′ ( 2
k
I + (X ′X)

−1
)−1 (

β − b
)

σ2
≤ 1,

or

(28)
(α− a)′

(
2
k
I + Λ−1

)−1
(α− a)

σ2
≤ 1.

In a similar way, the corresponding necessary and sufficient condition for the Liu estimator
has the form

(29)
(
β − b

)′ (
X ′X + 2I + d

(
X ′X

)−1
)−1 ((

X ′X
)2

+ dI
) (

β − b
)
/σ2

≤ 1,

or

(30) (α− a)′
(
Λ + 2I + dΛ−1

)−1 (
Λ2 + dI

)
(α− a) /σ2

≤ 1.

The necessary and sufficient conditions for the Ridge and β̂
d

= (dI) β̂, 0 ≤ d ≤ 1,

shrinkage estimators to have a lower risk than the LS estimator are given in the works
of Liski [6,7].

2.2. A Test for the Selection of Shrinkage Estimators. Using the necessary and
sufficient conditions given in (22) and (23) it is possible to choose between two estimators.
In this case, the form of the test statistics to be used in selecting between the shrinkage

estimator β̃ and the LS estimator β̂ is based on that inequality. Liski [6], investigated
the test statistic

(31) F̃ = β̂
′
Hβ̂/mσ̂2,
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where

H = (I +A)−1 X ′X (I −A) ,

σ̂2 =
(
Y −Xβ̂

)′ (
Y −Xβ̂

)
/ (n− q) ,

rank (H) = m, and

b = 0.

The canonical form of this statistic can be written as:

(32)

F̃ = α̂′ (I + ∆)−1 Λ (I −∆) α̂/mσ2

=
1

m

q∑

i=1

γi
(
λiα̂

2
i /σ̂

2
)

Here m = rank (I + ∆)−1 Λ (I −∆). We may write

(33) F̃ =
1

m

m∑

i=1

γi
(
λiα̂

2
i /σ̂

2
)
,

the number of non-zero γi s being m. As it can be seen, m satisfies 1 ≤ m ≤ q. Here,

each
λiα̂

2
i

σ̂2
has a non-central F distribution with degrees of freedom 1 and (n− q) and

non-central parameter

wi =
λiα

2
i

σ2
.

When we write

Fi = λiα̂
2
i /σ̂

2

we obtain

(34) F̃ =
1

m

m∑

i=1

γiFi.

In this case, the test statistic F̃ is formed from a mixture of the statistics Fi. In other
words, the expression (33) can be written as in (34). Here, λiα̂

2
i /σ̂

2 fits a chi-square

distribution having non-central parameter wi =
λiα

2
i

σ2
and degree of freedom 1. On the

other hand, (n− q) σ̂2/σ2 has a chi-square distribution with degree of freedom (n− q).

As previously mentioned,
σ̂2

σ2
and

λiα̂
2
i

σ2
are independent. In this case, Fi =

λiα̂
2
i

σ̂2
fits

an F distribution with non-central parameter wi =
λiα

2
i

σ2
, and degrees of freedom 1 and

(n− q).

Unless all the weights of γi are one or zero in (34), it is quite hard to obtain a closed
form of the distribution function of a non-central Fi. When this is the case, approximate
results can be obtained [6, 7, 8].

The necessary and sufficient condition for shrinkage estimators mentioned above is∑m

i=1 γiwi ≤ 1. Thus, the hypothesis tests can be written as:

(35) H0 :
m∑

i=1

γiwi ≤ 1 Alternative hypothesis H1 :
m∑

i=1

γiwi > 1.
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The decision rule for the proposed test is:

If F̃ ≤ F̃α (m,n− q, 1) then accept H0,

and

If F̃ > F̃α (m,n− q, 1) then reject H0.

Here F̃α (m,n− q, 1) is formed from the distribution F̃ , which has non-central param-

eter w =
∑m

i=1 γiwi = 1 and degrees of freedom m and (n − q). Using the central-F

approximation for F̃ , described below, the values of F̃α (m,n− q, 1) at the critical points

are determined. Then the initial moments for the test statistic F̃ are obtained from the
moments of the statistics Fi using the method of moments.

The first two central moments of the test statistic F̃ are, from [13],

EF̃ =
(n− q)

(n− q − 2)m

m∑

i=1

γi (1 + wi) . (n− q > 2)

EF̃ 2 =
(n− q)2

(n− q − 2) (n− q − 4)m2

{[
m∑

i=1

γi (1 + wi)

]2

+ 2

m∑

i=1

γ2
i (1 + 2wi)

}

(n− q > 4)

2.3. The Central-F Approximation for Statistics. Patnaik [9], studied a central-
F approximation to a non-central distribution F . This is found by using the first
two moments of the central-F distribution F (ϑ, n− q) and the non-central distribution

F̃α (m,n− q, w), and takes the form

F̃α (m,n− q, w) ≈ rF (ϑ, n− q) .

The parameters r and ϑ are found from the first two moments of the distributions F . In
other words, the two moment approximation of central-F can be achieved by equating

the first two moments of central-F and F̃ /r. Thus we obtain

(n− q)

(n− q − 2)m

m∑

i=1

γi (1 + wi) =
(n− q)

(n− q − 2)

and

(n− q)2

r2 (n− q − 2) (n− q − 4)m2

{[
m∑

i=1

γi (1 + wi)

]2

+ 2
m∑

i=1

γ2
i (1 + 2wi)

}

=
(n− q)2

(n− q − 2) (n− q − 4)
·
ϑ+ 2

ϑ
.

Solving these equations gives

(36)

r =
1

m

m∑

i=1

γi (1 + wi) , and

ϑ =

[∑m

i=1 γi (1 + wi)
]

∑m

i=1 γ
2
i (1 + 2wi)

2

When γ =
∑q

i=1 γi and
∑m

i=1 γiwi = 1 are given, the measurement factor r can be

determined from r =
γ + 1

m
. The values of γi lie in the interval [0, 1], and the corrected

degrees of freedom can be written as
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ϑ =
(γ + 1)2∑m

i=1 γ
2
i + 2

∑m

i=1 γ
2
i wi

.

From this, it is easily seen that [14]:

(37) γmin ≤

m∑

i=1

γ2
i wi ≤ γmax.

With the help of the inequality (37), the upper and lower limits of the corrected
degrees of freedom ϑ are found to be:

(38)
(γ + 1)2∑m

i=1 γ
2
i + 2γmax

≤ ϑ ≤
(γ + 1)2∑m

i=1 γ
2
i + 2γmin

.

The upper limit is denoted by ϑmax, and the lower limit by ϑmin. Hence, for all
0 < α < 1 we have Fα (ϑmax, n− q) ≤ Fα (ϑmin, n− q), so we obtain the critical points

Fα (ϑmax, n− q) and Fα (ϑmin, n− q). The statistic F̃ /r may be compared with these
values. Hence, with the help of these critical points, the following regions for the test
statistic may be obtained:

Reject H0 if F̃ /r > Fα (ϑmin, n− q) ,

Accept H0 if F̃ /r < Fα (ϑmax, n− q) ,

Inconclusive if Fα (ϑmax, n− q) ≤ F̃ /r ≤ Fα (ϑmin, n− q) .

3. A simulation study

In this section we describe a simulation that was carried out using a MATLAB package
programme to compare Ridge and Liu estimators - which are shrinkage estimators - with
the LS estimator.

Firstly, n = 50 samples of the independent variables X = (x1, x2) were chosen from
a normal distribution with parameters µ = (9, 8), σ2

1 = 9, σ2
2 = 9 and correlation

coefficients ρ = 0, 0.3, 0.6, 0.9. Then, the error vector ε was chosen from a standard
normal distribution and the dependent variable Y determined as follows;

Y = 3.5 + 3x1 + 2.5x2 + ε

In addition, for the Ridge and Liu estimators, k = 0.01 (0.01) 0.99 and d = 0.01 (0.01) 0.99,

respectively, were used and for each of these the values of F̃ , F̃ /r, Fα (ϑmin, n− q) and
Fα (ϑmax, n− q) were calculated. Finally, the regions of rejection, acceptance and incon-
clusiveness were found. For the Ridge estimator these are shown in Figures 1-4, and for
the Liu estimator in Tables 5-8.
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Figure 1. Rejected, accepted and inconclusive regions for Ridge estimators
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Figure 3. Rejected, accepted and inconclusive regions for Ridge estimators
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Figure 5. Rejected, accepted and inconclusive regions for Liu estimators

with ρ = 0
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Figure 7. Rejected, accepted and inconclusive regions for Liu estimators

with ρ = 0.6

Figure 7: Rejected, accepted and inconclusive areas for Liu estimators for =0.6
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Figure 8: Rejected, accepted and inconclusive areas for Liu estimators for 
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4. Conclusion

In Figure 1, for the correlation coefficient ρ = 0, the Ridge estimator is seen to give
better results than the LS estimator for values of k satisfying 0 < k < 0.09. On the
other hand, as the correlation between the independent variables increases, the interval
in which k lies increases also. For example, when Figure 4 is analyzed, it is seen that the
Ridge estimator is better than the LS estimator for values of k satisfying 0 < k < 0.15.

Similarly, when the Liu estimator is examined, it is seen that it gives similar results to
the Ridge estimator. Looking at Figure 5 we see that when ρ = 0, the Liu estimator gives
better results than the LS estimator for d satisfying 0.91 < d < 1, while when ρ = 0.9 as
in Figure 8, the range for d increases to 0.85 < d < 1.

In short, when Figures 1–8 are examined we see that when the correlation increases
between the independent variables, the interval over which the Ridge and Liu estimators
are preferred to the LS estimator also increases.

In conclusion, Kaçıranlar et. al. [4] gave a new biased estimator for β, and illustrated
their findings with a numerical example. Akdeniz and Kaçıranlar [2] gave a numerical
example with n = 10 to obtain optimal k and d values for the Ridge and Liu estimators,
respectively. In this paper we also compare these estimators for the general case under
different correlation coefficients with the help of a simulation study.
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