ON ALPHA-QUASI-UNIFORMLY CONVEX *p*-VALENT FUNCTIONS OF TYPE β IN TERMS OF RUSCHEWEYH DERIVATIVES

A. Tehranchi^{*} and S. R. Kulkarni[†]

Received 13:01:2005 : Accepted 02:05:2006

Abstract

In the present paper we will establish some properties of the class of α - Quasi - Uniformly convex, *p*-valent functions of type β in the open unit disk, which we denote by $\operatorname{QUCV}_{\beta,\alpha}^{p,\lambda}$, for $\lambda > -1$; $0 \leq \beta < p$, $\alpha \geq 0$ and $p \in \mathbb{N}$, by making use of the Ruscheweyh Derivatives.

Keywords: Ruscheweyh Derivative, Quasi-convex, Uniformly convex, Close-to-uniformly convex and alpha-quasi- uniformly convex *p*-valent functions.

2000 AMS Classification: 30 C 45

1. Introduction and Definitions

Let \mathcal{A}_p denote the class of functions of the form

(1)
$$f(z) = z^p + \sum_{n=2}^{\infty} a_n z^n, \ p \in \mathbb{N},$$

which are analytic in the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, normalized by conditions f(0) = 0, $f^{(p)}(0) = p!$. Also, let *B* denote the subclass of \mathcal{A}_p that are *p*-valent in Δ . We also denote by UCV^{*p*}, $C^{*,p}$ and Q^p_{α} the subclasses of functions in \mathcal{A}_p that are respectively uniformly convex *p*-valent, Quasi-convex *p*-valent and α -Quasi-convex *p*-valent in Δ . For p = 1 we obtain the classes UCV and C^* which were introduced and studied in [1], [2] respectively.

To prove our results, we need the following definitions.

^{*}Department of Mathematics, Islamic Azad University - South Tehran Branch, Iran. E-mail: tehranchiab@yahoo.co.uk

[†]Department of Mathematics, Fergusson College, Pune - 411004, India. E-mail: kulkarni_ferg@yahoo.com

1.1. Definition. Let $f(z) = z^p + \sum_{n=1}^{\infty} a_{n+p} z^{n+p}$, $p \in \mathbb{N}$. Then the Ruscheweyh Derivatives of f(z) are defined by

$$D^{\lambda}f(z) = \frac{1}{\lambda!} \{ z(z^{\lambda-1}f(z))^{(\lambda)} \} = S(\lambda, p)z^{p} + \sum_{n=1}^{\infty} S(\lambda, n)a_{n+p}z^{n+p}, \ \lambda > -1,$$
$$S(\lambda, p) = \binom{\lambda+p-1}{\lambda}.$$

where

1.2. Definition. The class $UQCV_{\beta}^{p,\lambda}$ of uniformly Quasi-convex p-valent functions of type β consists of function f of the form (1) for which there exists a function $g \in \mathrm{UCV}^p$ of the form

(2)
$$g(z) = z^p + \sum_{n=2}^{\infty} b_n z^n$$

such that

(3)
$$Re\left\{\frac{\left[(z-\eta)(D^{\lambda}f(z))'\right]'}{(D^{\lambda}g(z))'}\right\} > \beta, \ 0 \le \beta < p,$$

where $z \neq \eta \in \Delta$. When $\eta = 0$, the class of functions satisfying (3) is called the class of Quasi-uniformly convex p-valent function of type β , which we denote by $\text{QUCV}_{\beta}^{p,\lambda}$, see [6]. For p = 1, $\lambda = 0$ and $\beta = 0$ we get the class UQCV introduced in [6].

1.3. Definition. The class $\text{CUCV}_{\beta}^{p,\lambda}$ of close-to-uniformly convex p-valent functions of order β consists of functions f of the form (1) for which there exists a uniformly convex *p*-valent function $g \in \mathrm{UCV}^p$ of the form (2) such that

$$\operatorname{Re}\left\{\frac{(D^{\lambda}f(z))'}{(D^{\lambda}g(z))'}\right\} > \beta, \ z \in \Delta, \ 0 \le \beta < p.$$

For $\lambda = 0$, p = 1 and $\beta = 0$ we get the class CUCV, which was introduced by K. S. Padmanabhan in [5].

We note that here

$$\mathrm{UCV}^p \subset \mathrm{UQCV}^{p,\lambda}_\beta \subset \mathrm{QUCV}^{p,\lambda}_\beta \subset \mathrm{CUCV}^{p,\lambda}_\beta \subset K \subset B,$$

where K is the class of close-to-convex functions of order β , and we have $D^{\lambda} f \in \text{QUCV}_{\beta}^{p,\lambda}$ if and only if $z(D^{\lambda}f)' \in \text{CUCV}_{\beta}^{p,\lambda}$. This is proved in [6] for $\lambda = 0, \beta = 0$ and p = 1.

1.4. Definition. Let $f(z) = z^p + \sum_{n=2}^{\infty} a_n z^n$, be analytic in Δ . Then f(z) is said to α -Quasi - uniformly convex p-valent of type β in Δ if and only if, there exists a uniformly convex, p-valent function $g(z) = z^p + \sum_{n=2}^{\infty} b_n z^n$ in Δ such that

$$Re\left\{(1-\alpha)\frac{(D^{\lambda}f(z))'}{(D^{\lambda}g(z))'} + \alpha\frac{[z(D^{\lambda}f(z))']'}{(D^{\lambda}g(z))'}\right\} > \beta, \ 0 \le \alpha \le 1, \ 0 \le \beta < p.$$

This class of functions is denoted by $\text{QUCV}_{\beta,\alpha}^{p,\lambda}$

We note here that $\operatorname{QUCV}_{\beta,0}^{p,\lambda} = \operatorname{CUCV}_{\beta}^{p,\lambda}$, the class of close-to-uniformly convex functions; and $\operatorname{QUCV}_{\beta,1}^{p,\lambda} = \operatorname{QUCV}_{\beta}^{p,\lambda}$, the class of Quasi-uniformly functions. Thus, $\operatorname{QUCV}_{\beta,\alpha}^{p,\lambda}$ unifies the classes $\operatorname{CUCV}_{\beta}^{p,\lambda}$ and $\operatorname{QUCV}_{\beta}^{p,\lambda}$ in the same way as Q_{α}^{p} connects K and $\operatorname{C}^{*,p}$.

2. Main Results

2.1. Theorem. Let

(4)
$$D^{\lambda}d(z) = (1-\alpha)D^{\lambda}t(z) + \alpha z(D^{\lambda}t(z))', \ \lambda > -1, \ \alpha \ge 0, \ p \in \mathbb{N},$$

and
$$|z| < 1$$
. Then $t(z) \in \text{QUCV}_{\beta,\alpha}^{p,\lambda}$ if and only if $d(z) \in \text{CUCV}_{\beta}^{p,\lambda}$

Proof. Let $D^{\lambda}d(z) = (1-\alpha)D^{\lambda}t(z) + \alpha z(D^{\lambda}t(z))'$ and suppose $t(z) \in \text{QUCV}_{\beta,\alpha}^{p,\lambda}$. Then there exists a function $\psi(z) \in \text{UCV}^p$ such that

(5)
$$Re\left\{(1-\alpha)\frac{(D^{\lambda}(t(z))'}{(D^{\lambda}\psi(z))'} + \alpha\frac{[z(D^{\lambda}t(z))']'}{(D^{\lambda}\psi(z))'}\right\} > \beta.$$

Now by (4) we have

$$\frac{(D^{\lambda}d(z))'}{(D^{\lambda}\psi(z))'} = (1-\alpha)\frac{(D^{\lambda}t(z))'}{(D^{\lambda}\psi(z))'} + \alpha\frac{[z(D^{\lambda}t(z))']'}{(D^{\lambda}\psi(z))'},$$

so by (5) we have $Re\left\{\frac{(D^{\lambda}d(z))'}{(D^{\lambda}\psi(z))'}\right\} > \beta$, proving that d(z) is in $\mathrm{CUCV}_{\beta}^{p,\lambda}$.

Conversely assume $d(z) \in \text{CUCV}_{\beta}^{p,\lambda}$. Then there exists a function $\psi(z) \in \text{UCV}^p$ such that

(6)
$$Re\left\{\frac{(D^{\lambda}d(z))'}{(D^{\lambda}\psi(z))'}\right\} > \beta.$$

From (4) we have

$$\frac{(D^{\lambda}d(z))'}{(D^{\lambda}\psi(z))'} = (1-\alpha)\frac{(D^{\lambda}t(z))'}{(D^{\lambda}\psi(z))'} + \frac{\alpha[z(D^{\lambda}t(z))']'}{(D^{\lambda}\psi(z))'}.$$

Then

$$Re\left\{(1-\alpha)\frac{(D^{\lambda}t(z))'}{(D^{\lambda}\psi(z))'} + \alpha\frac{[z(D^{\lambda}t(z))']'}{(D^{\lambda}\psi(z))'}\right\} > \beta \quad (by \ 6)$$

which implies $t(z) \in \text{QUCV}_{\beta,\alpha}^{p,\lambda}$. This completes the proof.

2.2. Corollary. For p = 1, $\lambda = 0$ and $\beta = 0$ we get the result due to C. Selvaraj [8] involving CUCV and QUCV_{α}.

2.3. Theorem. A function f of the form (1) is in $\text{QUCV}_{\beta,\alpha}^{p,\lambda}$ if and only if there exists a function $S(z) \in \text{CUCV}_{\beta}^{p,\lambda}$ such that

(7)
$$D^{\lambda}f(z) = \frac{1}{\alpha z^{(\frac{1}{\alpha})-1}} \int_0^z t^{(1/\alpha)-2} D^{\lambda}S(t)dt, \quad 0 < \alpha \le 1, \lambda > -1.$$

Proof. From the representation (7) we have

(8)
$$\alpha z^{(1/\alpha)-1} D^{\lambda} f(z) = \int_0^z t^{(1/\alpha)-2} D^{\lambda} S(t) dt.$$

After differentiating both sides of (8) we obtain

$$(1-\alpha)z^{(\frac{1}{\alpha})-2}D^{\lambda}f(z) + \alpha z^{(\frac{1}{\alpha})-1}(D^{\lambda}f(z))' = z^{(\frac{1}{\alpha})-2}D^{\lambda}S(z),$$

or equivalently,

$$(1 - \alpha)D^{\lambda}f(z) + \alpha z(D^{\lambda}f(z))' = D^{\lambda}S(z).$$

So we obtain (4), and hence by Theorem 2.1 the proof is complete.

A. Tehranchi, S. R. Kulkarni

The same result was obtained for p = 1, $\lambda = 0$ and $\beta = 0$ by C. Selvaraj [8].

Goodman [1] showed that the classical Alexander result $f \in K \iff zf' \in S^*$ does not hold between the classes UCV^p and UST^p (uniformly starlike functions). Rønning [7] introduced the class $S_{\mathbb{P}}(\gamma)$ consisting of functions $zf', f \in \mathrm{UCV}^p$. To prove the next theorem we require the definition of the class $S_{\mathbb{P}}(\gamma)$.

2.4. Definition. Let $f(z) = z^p + \sum_{k=2}^{\infty} a_k z^k \in \mathcal{A}_p$. Then $f \in S_{\mathbb{P}}(\gamma)$ if and only if $\left| \frac{zf'(z)}{f(z)} - p \right| \le Re\left\{ \frac{zf'(z)}{f(z)} - \gamma \right\}, z \in \Delta, -1 \le \gamma < 1.$

He also defined the class $UCV^p(\gamma)$ of functions f for which $zf' \in S_{\mathbb{P}}(\gamma)$. In this paper we obtain this class by letting $\gamma = 0$, that is $S_{\mathbb{P}}(0) = S_{\mathbb{P}}$.

2.5. Theorem. Let $D^{\lambda}S(z) \in S_{\mathbb{P}}$,

(9)
$$D^{\lambda}t(z) = \frac{p}{\alpha z^{(1/\alpha)-1}} \int_0^z t^{(1/\alpha)-2} D^{\lambda}S(t)dt, \ \alpha > 0, \ \lambda > -1, \ p \in \mathbb{N},$$

and let $1/\alpha$ be a positive integer. Then $D^{\lambda}d(z) \in S^*(\frac{1}{2}p)$.

Proof. By using logarithmic differentiation, from (9) we have

$$\frac{(D^{\lambda}d(z))'}{D^{\lambda}d(z)} = \frac{pz^{(1/\alpha)-2}D^{\lambda}S(z)}{p\int_{0}^{z}t^{(1/\alpha)-2}D^{\lambda}S(t)dt} - \frac{(1-\alpha)z^{(1/\alpha)-2}}{\alpha z^{(1/\alpha)-1}}$$
$$= \frac{z^{(1/\alpha)-2}D^{\lambda}S(z) - (\frac{1}{\alpha}-1)z^{-1}\int_{0}^{z}t^{(1/\alpha)-2}D^{\lambda}S(t)dt}{\int_{0}^{z}t^{(1/\alpha)-2}D^{\lambda}S(t)dt}$$

 \mathbf{So}

(10)
$$\frac{z(D^{\lambda}d(z))'}{D^{\lambda}d(z)} = \frac{z^{(1/\alpha)-1}D^{\lambda}S(z) + (1-1/\alpha)\int_{0}^{z} z^{(1/\alpha)-2}D^{\lambda}S(z)dz}{\int_{0}^{z} t^{(1/\alpha)-2}D^{\lambda}S(t)dt} = \frac{z\mu'(z) + (1-1/\alpha)\mu(z)}{\mu(z)},$$

where $\mu(z) = \int_0^z t^{(1/\alpha)-2} D^\lambda S(t) dt$. Now we have

$$Re\left\{\frac{[z\mu'(z) + (1 - 1/\alpha)\mu(z)]'}{\mu'(z)}\right\} = \\ = Re\left\{\frac{z\mu''(z)}{\mu'(z)} + 2 - 1/\alpha\right\} \\ = Re\left\{\frac{z[(1/\alpha - 2)z^{(1/\alpha) - 3}D^{\lambda}S(z) + z^{(1/\alpha) - 2}(D^{\lambda}S(z))']}{Z^{(1/\alpha) - 2}D^{\lambda}S(z)} + 2 - 1/\alpha\right\} \\ = Re\left\{\frac{z[(D^{\lambda}S(z))']}{D^{\lambda}S(z)}\right\} \\ > \frac{1}{2}p$$

as $D^{\lambda}S(z) \in S_{\mathbb{P}}$. Hence, $Re\left\{\frac{[z\mu'(z)+(1-1/\alpha)\mu(z)]'}{\mu'(z)}\right\} > \frac{1}{2}p$. By a Lemma of Libera [3], $Re\left\{\frac{z\mu'(z)+(1-1/\alpha)\mu(z)}{\mu(z)}\right\} > \frac{1}{2}p, \ z \in \Delta.$

Therefore, by (10) we have $Re\left\{\frac{z(D^{\lambda}d(z))'}{D^{\lambda}d(z)}\right\} > \frac{1}{2}p \ z \in \Delta$. Then $D^{\lambda}d(z) \in S^*(\frac{1}{2}p)$ (classes of starlike function of order $\frac{1}{2}p$) and the proof is complete.

4

2.6. Corollary. For $\lambda = 0$ and p = 1 we get the result due to C. Selvaraj [8].

2.7. Theorem. If $\eta(z) \in \text{CUCV}_{\beta}^{p,\lambda}$ and $F_{\lambda}(z) = \frac{1}{2}[zD^{\lambda}\eta(z)]'$, then $F_{\lambda}(z)$ is close-toconvex of order β for |z| < 1/2.

Proof. Because $\eta(z) \in \text{CUCV}^{p,\lambda}_{\beta}$ there exists a function $h(z) \in \text{UCV}^p$ such that

$$Re\left\{\frac{(D^{\lambda}\eta(z))'}{(D^{\lambda}h(z))'}\right\} > \beta, z \in \Delta$$

and since $h(z) \in \text{UCV}^p$ we have $D^{\lambda}h(z) \in \text{UCV}^p$ which implies $z(D^{\lambda}h(z))' \in S_{\mathbb{P}}$. Therefore we have $Re\left\{\frac{z(D^{\lambda}\eta(z))'}{z(D^{\lambda}h(z))'}\right\} > \beta$, so $Re\left\{\frac{z(D^{\lambda}\eta(z)'}{H_{\lambda}(z)}\right\} > \beta$ where $H_{\lambda}(z) = z(D^{\lambda}h(z))' \in S_{\mathbb{P}}$. If $G_{\lambda}(z) = \frac{1}{2}[zH_{\lambda}(z)]'$, from Livingston [4] we have $G_{\lambda}(z) \in S^*, |z| < \frac{1}{2}$.

To prove F_{λ} is close-to-convex of order β , it is sufficient to show that $Re\left\{\frac{zF'_{\lambda}(z)}{G_{\lambda}(z)}\right\} > \beta$ for $|z| < \frac{1}{2}$. Now proceeding as in Theorem 3 of [5], we get F_{λ} is close-to-convex of order β for $|z| < \frac{1}{2}$. This completes the proof.

2.8. Corollary. For $p = 1, \lambda = 0$ and $\beta = 0$ we get the result due to C. Selvaraj [8].

2.9. Theorem. Let $\mu(z) \in \text{QUCV}_{\beta,\alpha}^{p,\lambda}$ and let $F_{\lambda}(z) = \frac{1}{2} [zD^{\lambda}\mu(z)]', z \in \Delta$. Then F_{λ} is close-to-convex of order β for $|z| < \frac{1}{2}$.

Proof. Since $\mu(z) \in \text{QUCV}_{\beta,\alpha}^{p,\lambda}$, by Theorem 2.1 we have

(11)
$$D^{\lambda}\phi(z) = (1-\alpha)D^{\lambda}\mu(z) + \alpha z (D^{\lambda}\mu(z))', \quad z \in \Delta$$

such that $\phi(z) \in \text{CUCV}_{\beta}^{p,\lambda}$. Suppose $H_{\lambda}(z) = \frac{1}{2} [zD^{\lambda}\phi(z)]'$. By Theorem 2.7, $H_{\lambda}(z)$ is close-to-convex of order β for $|z| < \frac{1}{2}$. From (11) we have

$$(D^{\lambda}\phi(z))' = (1-\alpha)(D^{\lambda}\mu(z))' + \alpha(D^{\lambda}\mu(z))' + \alpha z[D^{\lambda}\mu(z)]''.$$

Therefore

(12)
$$\frac{1}{2} [zD^{\lambda}\phi(z)]' = \frac{1}{2} [D^{\lambda}\phi(z) + z(D^{\lambda}\phi(z))'] \\ = \frac{1}{2} [(1-\alpha)(zD^{\lambda}\mu(z))' + \alpha z[z(D^{\lambda}\mu(z))'' + 2(D^{\lambda}\mu(z))'].$$

To prove F_{λ} is close-to-convex, we have to prove $G(z) = (1 - \alpha)F_{\lambda}(z) + \alpha z(F_{\lambda}(z))'$ is close-to-convex of order β for $|z| < \frac{1}{2}$ and for $\alpha \ge 0$ (by Theorem 2.1), where $F_{\lambda}(z) = \frac{1}{2}[zD^{\lambda}\mu(z)]'$, $z \in \Delta$, so we have

$$G(z) = (1 - \alpha) \frac{1}{2} [zD^{\lambda}\mu(z)]' + \alpha z \frac{1}{2} [D^{\lambda}\mu(z) + z(D^{\lambda}\mu(z))']$$

= $\frac{1}{2} [(1 - \alpha)(zD^{\lambda}\mu(z))' + \alpha z(D^{\lambda}\mu(z))' + \alpha z^{2}(D^{\lambda}\mu(z))'']$
= $\frac{1}{2} [zD^{\lambda}\phi(z)]'$ (by (12)).

So G(z) is close-to-convex of order β in $|z| < \frac{1}{2}$ and consequently $F_{\lambda}(z)$ is close-to-convex of order β in $|z| < \frac{1}{2}$, and the proof is complete.

In the final theorem we obtain a necessary condition for a function belonging to $\operatorname{QUCV}_{\beta,\alpha}^{p,\lambda}$.

2.10. Theorem. Let $f(z) = z^p + \sum_{n=2}^{\infty} a_n z^n$. If $f(z) \in \text{QUCV}_{\beta,\alpha}^{p,\lambda}$ then

(13) $\sum_{n=2}^{\infty} n\delta(\lambda, n) [\beta b_n - a_n(1 + \alpha(n-1))] < p\delta(\lambda, p) [(1-\beta) + \alpha(p-1)], \ p \in \mathbb{N}, \ 0 \le \beta \le p$ where $g(z) = z^p + \sum_{n=2}^{\infty} b_n z^n$ is in UCV^p.

 $\tilde{n}=2$

Proof. Let $f(z) \in \text{QUCV}_{\beta,\alpha}^{p,\lambda}$. By Definition 1.4 we have

(14)
$$Re\left\{(1-\alpha)\frac{(D^{\lambda}f(z))'}{(D^{\lambda}g(z))'} + \alpha\frac{[z(D^{\lambda}f(z))']'}{[D^{\lambda}g(z)]'}\right\} > \beta,$$
or

$$\left|\frac{(D^{\lambda}f(z))' + \alpha z (D^{\lambda}f(z))''}{(D^{\lambda}g(z))'}\right| > \beta.$$

So we have

$$\left|\frac{p\delta(\lambda,p)z^{p-1}(1+\alpha(p-1))+\sum_{n=2}^{\infty}n\delta(\lambda,n)a_n(1+\alpha(n-1))z^{n-1}}{p\delta(\lambda,p)z^{p-1}+\sum_{n=2}^{\infty}n\delta(\lambda,n)b_nz^{n-1}}\right| > \beta$$
$$\implies p\delta(z,p)|z|^{p-1}(1+\alpha(p-1))+\sum_{n=2}^{\infty}n\delta(\lambda,n)a_n(1+\alpha(n-1))|z|^n$$
$$-\beta p\delta(\lambda,p)|z|^{p-1}-\beta\sum_{n=2}^{\infty}n\delta(\lambda,n)b_n|z|^{n-1} > 0.$$

Now letting $z \to 1^-$ we obtain

$$\sum_{n=2}^{\infty} n\delta(\lambda, n) [\beta b_n - a_n(1 + \alpha(n-1))] < p\delta(\lambda, p) [(1-\beta) + \alpha(p-1)].$$

Hence the proof is complete.

References

 Goodman, A. W. On uniformly convex functions, Annals Polonici Mathematici XVI (1), 8– 22, 1991.

- [2] Khalida, I. On Quasi-convex functions, Car. J. Math. 3, 1–8, 1984.
- [3] Libera, R. J. Some classes of regular functions, Proc. Amer. Math. Soc. 16, 755–758, 1965.
 [4] Livingston, A.E. On the radius of univalence of certain analytic functions, Proc. Amer.
- Math. Soc. 16, 352–357, 1965.
- [5] Padmanabhan, K.S. On certain sub-classes of Bezilevic functions, Indian J. Math. 9 (3), 1–16, 1997.
- [6] Rajagopal, R. and Selvaraj, C. On a class of uniformly quasi-convex functions, Bull. Cal. Math. Soc. 95 (1), 2003.
- [7] Rønning, F. On starlike functions associated with parabolic regions, Ann. Univ. Marie Curie, Sklo, Sect. A 45, 117–122, 1991.
- [8] Selvaraj, C. On Alpha Quasi Uniformly convex functions, J. of Indian Acad. Math. 25 (1), 169–185, 2003.