ON THE FANO SUBPLANES OF THE LEFT SEMIFIELD PLANE OF ORDER 9

Ziya Akça*, İbrahim Günaltılı* and Özgür Güney*

Received 10:02:2006 : Accepted 02:05:2006

Abstract

In this paper, we consider the projective plane of order 9 , coordinatized by elements of a left semifield. It is shown that the number of Fano subplanes of this projective plane is at least 155760 .

Keywords: Projective plane, Fano plane, Left semifield.
2000 AMS Classification: $51 \mathrm{E} 12,51 \mathrm{E} 15,51 \mathrm{E} 30$.

1. Introduction

It is well known that every projective plane also has an algebraic structure obtained by coordinazation. Conversely, certain algebraic structures can be used to construct projective planes. Therefore, a general method of generating semifield has been given by Hall (1959).

A Fano plane is a projective plane of order 2. A Fano plane also occurs as a subplane of many larger projective planes. Therefore, the discovery of the Fano plane has played an important role in the improvement of the theory of finite geometries. Fano subplanes in some projective planes have been examined by many authors. For instance, RoomKirpatrick [6], Çifçi-Kaya [2], Akça-Kaya [1], etc. A left semifield of order 9 is defined as follows:
1.1. Definition. A left semifield is a system (S, \oplus, \odot), where \oplus and \odot are binary operations on the set S and:
(1) S is finite,
(2) (S, \oplus) is a group, with identity 0 ,
(3) $(S \backslash\{0\}, \odot)$ is a semi-group with identity 1 ,
(4) $x \odot 0=0$ for all $x \in S$,
(5) \odot is left distributive over \oplus, that is $x \odot(y \oplus z)=(x \odot y) \oplus(x \odot z)$ for all $x, y, z \in S$,

[^0](6) Given $a, b, c \in S$ with $a \neq b$, there exists a unique $x \in S$ such that $-a \odot x \oplus b \odot x=c$.

Let $\left(F_{3},+, \cdot\right)$ be the field of integers modulo 3 . Let

$$
S=\left\{a+\lambda b: a, b \in F_{3}, \lambda \notin F_{3}\right\},
$$

and consider the addition and multiplication on S given by
(1.1) $\quad(a+\lambda b) \oplus(c+\lambda d)=(a+c)+\lambda(b+d)$
and

$$
(a+\lambda b) \odot(c+\lambda d)= \begin{cases}a c+\lambda(a d), & \text { if } b=0, \tag{1.2}\\ a c-b^{-1} d f(a)+\lambda(b c-(a-1) d), & \text { if } b \neq 0\end{cases}
$$

where $f(t)=t^{2}-t-1$ is an irreducible polynomial on F_{3}.
If, for the sake of brevity, we use $a b$ instead of $a+\lambda b$ in equations (1.1) and (1.2), then the addition and multiplication tables are as follows:

Table 1

\oplus	00	01	02	10	11	12	20	21	22
00	00	01	02	10	11	12	20	21	22
01	01	02	00	11	12	10	21	22	20
02	02	00	01	12	10	11	22	20	21
10	10	11	12	20	21	22	00	01	02
11	11	12	10	21	22	20	01	02	00
12	12	10	11	22	20	21	02	00	01
20	20	21	22	00	01	02	10	11	12
21	21	22	20	01	02	00	11	12	10
22	22	20	21	02	00	01	12	10	11

Table 2

\odot	00	01	02	10	11	12	20	21	22
00	00	00	00	00	00	00	00	00	00
01	00	11	22	01	12	20	02	10	21
02	00	21	12	02	20	11	01	22	10
10	00	01	02	10	11	12	20	21	22
11	00	10	20	11	21	01	22	02	12
12	00	20	10	12	02	22	21	11	01
20	00	02	01	20	22	21	10	12	11
21	00	22	11	21	10	02	12	01	20
22	00	12	21	22	01	10	11	20	02

The system (S, \oplus, \odot) is a left semifield of order 9 .
Finally, we consider the projective plane of order 9 coordinatized by elements of the above left semifield, and investigate the Fano subplanes of this plane.

The Plane $P_{2} S$: The 91 points of $P_{2} S$ are the elements of the set

$$
\{(x, y): x, y \in S\} \cup\{(m): m \in S\} \cup\{(\infty)\}
$$

The points of the form (x, y) are called proper points, and the unique point (∞) and the points of the form (m) are called ideal points. The 91 lines of $P_{2} S$ are defined to be sets of points satisfying one of the three conditions:

$$
\begin{aligned}
& {[m, k]=\left\{(x, y) \in S^{2}: y=m \odot x \oplus k\right\} \cup\{(m)\}} \\
& {[\lambda]=\left\{(x, y) \in S^{2}: x=\lambda\right\} \cup\{(\infty)\}} \\
& {[\infty]=\{(m) \in S\} \cup\{(\infty)\}}
\end{aligned}
$$

The 81 lines having the form $y=m \odot x \oplus k$ and the 9 lines having an equation of the form $x=\lambda$ are called the proper lines and the unique line $[\infty]$ is called the ideal line.

The system of points, lines and incidence relation given above defines a projective plane of order 9 , which is the left semifield plane.

A regular quadrangle in a projective plane is a set of four points, no three of which are collinear. If $A B C D$ is a regular quadrangle, the six lines $A B, A C, A D, B C, B D, C D$ are called the sides of the quadrangle, and the three points $V=A B \cap C D, W=A C \cap B D$, $U=A D \cap B C$ are called the diagonal points of the quadrangle. If the diagonal points of a regular quadrangle are collinear then the incidence structure $(\mathcal{P}, \mathcal{L})$ with

$$
\mathcal{P}=\{A, B, C, D, U, V, W\}
$$

and

$$
\mathcal{L}=\{A B V, A C W, A D U, B C U, B D W, C D V, U V W\}
$$

is a Fano plane. Such a Fano plane is called the completion of the regular quadrangle. If the diagonal points V, W, U are not collinear it is said that the quadrangle does not determine a Fano subplane.

2. Fano Subplanes of $P_{2} S$

Let $O=(0+\lambda 0,0+\lambda 0):=(00,00), I=(1+\lambda 0,1+\lambda 0):=(10,10), X=(0+\lambda 0):=(00)$ and $P_{i}=(a+\lambda b, c+\lambda d):=(a b, c d), i \in\{1,2, \ldots, 6\}$.

A regular quadrangle $O I X P_{i}$ can be completed to a Fano plane if and only if the diagonal points $O I \cap X P_{i}=V_{i}, O P_{i} \cap I X=U_{i}, O X \cap I P_{i}=W_{i}, i \in\{1,2, \ldots, 6\}$, are collinear.
2.1. Proposition. There are exactly eighteen Fano subplanes of $P_{2} S$ which are completions of the regular quadrangles $O I X P$ with $P=(a 0, c d), d \neq 0, a 0 \neq c d, a, c, d \in$ $\{0,1,2\}$,
Proof. Consider the quadrangles $O I X P$ with $O=(00,00), I=(10,10), X=(00)$ and $P=(a 0, c d), a, c, \in \mathbb{F}_{3}, d \in \mathbb{F}_{3} \backslash\{0\}$. If $a=0$ then $O I X P$ is a regular quadrangle with the diagonal points $(c d, c d),((c+1) d, 00)$ and $(00,01)$. Thus the completion of OIXP is a Fano plane. If $a=1$ then $O I X P$ is a regular quadrangle with the diagonal points $(c d, c d),((c+2) d, 10)$ and $(10,00)$. Thus, the completion of the regular quadrangle is also Fano plane. If $a=2$ then the proof is similar to that of the above cases.

It seems useful to find these Fano subplanes obtained in Proposition 2.1. For this, replace $P=(a 0, c d)$ by P_{i}, R_{i} or $S_{i}, i \in\{1,2,3,4,5,6\}$ according as P is on the line $x=00, x=10$, or $x=20$, respectively. The list of these 18 Fano subplanes is given below by their diagonal points and the incidence tables:

Fano subplanes which are completions of $O I X P_{i}$:

1) $P_{1}=(00,01)$

$$
\begin{array}{lccccccc}
O I \cap X P_{1}=(01,01)=V_{1} & U_{1} & P_{1} & W_{1} & O & I & X & V_{1} \\
O P_{1} \cap I X=(00,01)=U_{1} & P_{1} & W_{1} & O & I & X & V_{1} & U_{1} \\
O X \cap I P_{1}=(11,00)=W_{1} & O & I & X & V_{1} & U_{1} & P_{1} & W_{1}
\end{array}
$$

2) $P_{2}=(00,02)$

$$
\begin{array}{lccccccc}
O I \cap X P_{2}=(02,02)=V_{2} & U_{1} & P_{2} & W_{2} & O & I & X & V_{2} \\
O P_{2} \cap I X=(00,01)=U_{1} & P_{2} & W_{2} & O & I & X & V_{2} & U_{1} \\
O X \cap I P_{2}=(12,00)=W_{2} & O & I & X & V_{2} & U_{1} & P_{2} & W_{2}
\end{array}
$$

3) $P_{3}=(00,11)$

$$
\begin{array}{lccccccc}
O I \cap X P_{3}=(11,11)=V_{3} & U_{1} & P_{3} & W_{3} & O & I & X & V_{3} \\
O P_{3} \cap I X=(00,01)=U_{1} & P_{3} & W_{3} & O & I & X & V_{3} & U_{1} \\
O X \cap I P_{3}=(21,00)=W_{3} & O & I & X & V_{3} & U_{1} & P_{3} & W_{3}
\end{array}
$$

4) $P_{4}=(00,12)$

$$
\begin{array}{lccccccc}
O I \cap X P_{4}=(12,12)=V_{4} & U_{1} & P_{4} & W_{4} & O & I & X & V_{4} \\
O P_{4} \cap I X=(00,01)=U_{1} & P_{4} & W_{4} & O & I & X & V_{4} & U_{1} \\
O X \cap I P_{4}=(22,00)=W_{4} & O & I & X & V_{4} & U_{1} & P_{4} & W_{4}
\end{array}
$$

5) $P_{5}=(00,21)$

$$
\begin{array}{lccccccc}
O I \cap X P_{5}=(21,21)=V_{5} & U_{1} & P_{5} & W_{5} & O & I & X & V_{5} \\
O P_{5} \cap I X=(00,01)=U_{1} & P_{5} & W_{5} & O & I & X & V_{5} & U_{1} \\
O X \cap I P_{5}=(01,00)=W_{5} & O & I & X & V_{5} & U_{1} & P_{5} & W_{5}
\end{array}
$$

6) $P_{6}=(00,22)$

$$
\begin{array}{lccccccc}
O I \cap X P_{6}=(22,22)=V_{6} & U_{1} & P_{6} & W_{6} & O & I & X & V_{6} \\
O P_{6} \cap I X=(00,01)=U_{1} & P_{6} & W_{6} & O & I & X & V_{6} & U_{1} \\
O X \cap I P_{6}=(02,00)=W_{6} & O & I & X & V_{6} & U_{1} & P_{6} & W_{6}
\end{array}
$$

Fano subplanes which are completions of $O I X R_{i}$:

1) $R_{1}=(10,01)$

$$
\begin{array}{lccccccc}
O I \cap X R_{1}=(01,01)=V_{1} & Y_{1} & R_{1} & Z_{1} & O & I & X & V_{1} \\
O R_{1} \cap I X=(21,10)=Y_{1} & R_{1} & Z_{1} & O & I & X & V_{1} & Y_{1} \\
O X \cap I R_{1}=(10,00)=Z_{1} & O & I & X & V_{1} & Y_{1} & R_{1} & Z_{1}
\end{array}
$$

2) $R_{2}=(10,02)$

$$
\begin{array}{lccccccc}
O I \cap X R_{2}=(02,02)=V_{2} & Y_{2} & R_{2} & Z_{1} & O & I & X & V_{2} \\
O R_{2} \cap I X=(22,10)=Y_{2} & R_{2} & Z_{1} & O & I & X & V_{2} & Y_{2} \\
O X \cap I R_{2}=(10,00)=Z_{1} & O & I & X & V_{2} & Y_{2} & R_{2} & Z_{1}
\end{array}
$$

3) $R_{3}=(10,11)$

$O I \cap X R_{3}=(11,11)=V_{3}$	Y_{3}	R_{3}	Z_{1}	O	I	X	V_{3}
$O R_{3} \cap I X=(01,10)=Y_{3}$	R_{3}	Z_{1}	O	I	X	V_{3}	Y_{3}
$O X \cap I R_{3}=(10,00)=Z_{1}$	O	I	X	V_{3}	Y_{3}	R_{3}	Z_{1}

4) $R_{4}=(10,12)$

$$
\begin{array}{lccccccc}
O I \cap X R_{4}=(12,12)=V_{4} & Y_{4} & R_{4} & Z_{1} & O & I & X & V_{4} \\
O R_{4} \cap I X=(02,10)=Y_{4} & R_{4} & Z_{1} & O & I & X & V_{4} & Y_{4} \\
O X \cap I R_{4}=(10,00)=Z_{1} & O & I & X & V_{4} & Y_{4} & R_{4} & Z_{1}
\end{array}
$$

5) $R_{5}=(10,21)$

$$
\begin{array}{lccccccc}
O I \cap X R_{5}=(21,21)=V_{5} & Y_{5} & R_{5} & Z_{1} & O & I & X & V_{5} \\
O R_{5} \cap I X=(11,10)=Y_{5} & R_{5} & Z_{1} & O & I & X & V_{5} & Y_{5} \\
O X \cap I R_{5}=(10,00)=Z_{1} & O & I & X & V_{5} & Y_{5} & R_{5} & Z_{1}
\end{array}
$$

6) $R_{6}=(10,22)$

$O I \cap X R_{6}=(22,22)=V_{6}$	Y_{6}	R_{6}	Z_{1}	O	I	X	V_{6}
$O R_{6} \cap I X=(12,10)=Y_{6}$	R_{6}	Z_{1}	O	I	X	V_{6}	Y_{6}
$O X \cap I R_{6}=(10,00)=Z_{1}$	O	I	X	V_{6}	Y_{6}	R_{6}	Z_{1}

Fano subplanes which are completions of $O I X S_{i}$:

1) $S_{1}=(20,01)$

$O I \cap X S_{1}=(01,01)=V_{1}$	Y_{2}	S_{1}	W_{6}	O	I	X	V_{1}
$O S_{1} \cap I X=(22,10)=Y_{2}$	S_{1}	W_{6}	O	I	X	V_{1}	Y_{2}
$O X \cap I S_{1}=(02,00)=W_{6}$	O	I	X	V_{1}	Y_{2}	S_{1}	W_{6}

2) $S_{2}=(20,02)$

$O I \cap X S_{2}=(02,02)=V_{2}$	Y_{1}	S_{2}	W_{5}	O	I	X	V_{2}
$O S_{2} \cap I X=(21,10)=Y_{1}$	S_{2}	W_{5}	O	I	X	V_{2}	Y_{1}
$O X \cap I S_{2}=(01,00)=W_{5}$	O	I	X	V_{2}	Y_{1}	S_{2}	W_{5}

3) $S_{3}=(20,11)$

$O I \cap X S_{3}=(11,11)=V_{3}$	Y_{6}	S_{3}	W_{4}	O	I	X	V_{3}
$O S_{3} \cap I X=(12,10)=Y_{6}$	S_{3}	W_{4}	O	I	X	V_{3}	Y_{6}
$O X \cap I S_{3}=(22,00)=W_{4}$	O	I	X	V_{3}	Y_{6}	S_{3}	W_{4}

4) $S_{4}=(20,12)$

$O I \cap X S_{4}=(12,12)=V_{4}$	Y_{5}	S_{4}	W_{3}	O	I	X	V_{4}
$O S_{4} \cap I X=(11,10)=Y_{5}$	S_{4}	W_{3}	O	I	X	V_{4}	Y_{5}
$O X \cap I S_{4}=(21,00)=W_{3}$	O	I	X	V_{4}	Y_{5}	S_{4}	W_{3}

5) $S_{5}=(20,21)$

$O I \cap X S_{5}=(21,21)=V_{5}$	Y_{4}	S_{5}	W_{2}	O	I	X	V_{5}
$O S_{5} \cap I X=(02,10)=Y_{4}$	S_{5}	W_{2}	O	I	X	V_{5}	Y_{4}
$O X \cap I S_{5}=(12,00)=W_{2}$	O	I	X	V_{5}	Y_{4}	S_{5}	W_{2}

6) $S_{6}=(20,22)$

$O I \cap X S_{6}=(22,22)=V_{6}$	Y_{3}	S_{6}	W_{1}	O	I	X	V_{6}
$O S_{6} \cap I X=(01,10)=Y_{3}$	S_{6}	W_{1}	O	I	X	V_{6}	Y_{3}
$O X \cap I S_{6}=(11,00)=W_{1}$	O	I	X	V_{6}	Y_{3}	S_{6}	W_{1}

Clearly, each of 18 Fano subplanes of $P_{2} S$ containing O, I and X has a line passing through (∞). It is also known that every Fano subplane of $P_{2} S$ has exactly one ideal point. Clearly, $X=(00)$ is the ideal point of the above 18 Fano subplanes which is paired with (∞).

In any Fano subplane let V be an ideal point with V^{\prime}, and let A and B be two proper points such that $V, V^{\prime} \notin A B$. Then A, B, V can be mapped to O, I, X by a collination mapping the Fano subplane to a Fano subplane containing O, I, X.
2.2. Proposition. The number of Fano subplanes which are completions of AVBP is 155520.

Proof. Let V be an ideal point, paired with V^{\prime}, in $P_{2} S$. Consider a Fano subplane which is completion of a regular quadrangle $A B V P$. As a proper point A can be chosen in 81 different ways, the second proper point B can be chosen in $8 \times 8=64$ different ways since it is not on the lines $A V$ and $A V^{\prime}$. There are 18 possibilities for the proper point P by Proposition 3 in [2]. It follows from the $3!=6$ permutations of the proper points A, B and P that the total number of possibilities for A, B and P is $(81 \times 64 \times 18) / 6=15552$. Finally, the ideal point V can be chosen in 10 different ways since $P_{2} S$ is of order 9 . Consequently the number of Fano planes which are completions of $A B V P$ in $P_{2} S$ is 155520.
2.3. Proposition. If $P=(a b, c d)$ with $b \neq 0, d \neq 0$, then each the completion of OIXP is a Fano subplane denoted by $F_{\text {abcd }}$ (The total number of these subplanes is 30).

Proof. If we check all configurations which are completions of $O I X P$, where $O=(00,00)$, $I=(10,10), X=(00)$ and $P=(a b, c d), b \neq 0, d \neq 0$, then it is easily seen that each completion of $O I X P$ determines a Fano subplane of $P_{2} S$ as follows:

Consider the quadrangles $O I X P$ with $O=(00,00), I=(10,10), X=(00)$ and $P=(a b, c d), d \neq 0, b \neq 0$. If $P=(01,02)$ then $O I X P$ is a regular quadrangle with the diagonal points $O I \cap P X=(02,02), O X \cap I P=(21,00), O P \cap I X=(20,10)$. Thus the completion of $O I X P$ is a Fano plane, denoted by F_{0102}.

$$
\begin{array}{llllllll}
O I \cap P X=(02,02)=D & E & P & F & O & I & X & D \\
O P \cap I X=(20,10)=E & P & F & O & I & X & D & E \\
O X \cap I P=(21,00)=F & O & I & X & D & E & P & F .
\end{array}
$$

Some Collinations of $P_{2} S$: For each $a \in S$ there exists a collination f_{a} of $P_{2} S$, as follows:

$$
\begin{array}{ll}
(x, y) \rightarrow(x, y \oplus a), a \in S & {[m, k] \rightarrow[m, k \oplus a], a \in S} \\
(m) \rightarrow(m) & \text { and } \\
(\infty) \rightarrow(\infty) & {[\lambda] \rightarrow[\lambda]} \\
& {[\infty] \rightarrow[\infty]}
\end{array}
$$

2.4. Proposition. Let $P=(a b, c d), b \neq 0, d \neq 0$ and let $F_{a b c d}$ be the completion of the regular quadrangle $O I X P$. Then, there are exactly 8 different Fano planes $f_{a}\left(F_{a b c d}\right)$ which are isomorphic to $F_{a b c d}$, for each $F_{a b c d}$.

Proof. To show $f_{a}\left(F_{a b c d}\right) \neq f_{b}\left(F_{a_{1} b_{1} c_{1} d_{1}}\right)$, we determine the image points of the diagonal points E and F in each plane $f_{a}\left(F_{a b c d}\right)$ and $f_{b}\left(F_{a_{1} b_{1} c_{1} d_{1}}\right)$, respectively. Then checking the images of this pair of points, it can be easily seen that $f_{a}\left(F_{a b c d}\right)$ and $f_{b}\left(F_{a_{1} b_{1} c_{1} d_{1}}\right)$ contain at least one distinct point. For every $F_{a b c d}$ there exist 8 such Fano planes $f_{a}\left(F_{a b c d}\right)$ with $a \in S$ since there are 8 collinations of $P_{2} S$ distinct from the identity.
2.5. Remark. From the above propositions the number of Fano subplanes of $P_{2} S$ is at least $155520+8 \times 30=155760$.

References

[1] Akca, Z. and Kaya, R. On the Subplanes of the Cartesian Group Plane of order 25, Türk Matematik Derneği X. Ulusal Matematik Sempozyumu, 1-5 Eylül, 1-7, 1997.
[2] Çiftçi, S and Kaya, R. On the Fano Subplanes in the Translation Plane of order 9, Doğa-Tr. J. of Mathematics 14, 1-7, 1990.
[3] Güney, Ö. 9. Mertebeden sol yarıcisim düzleminin altdüzlemleri üzerine (OGÜ, Y. Lisans Tezi 68, 2005).
[4] Hall, M. Jr. Theory of Groups (The Macmillan Company, New York 1959).
[5] Kaya, R. Projektif Geometri, (Osmangazi Üniversitesi 392, 2005).
[6] Room, T. G and Kirkpatrick, P. B. Miniquaternion Geometry (Cambridge University Press, London 177, 1971).
[7] Özcan, M. Cebirsel Yapılardan Projektif Düzlem Elde Edilmesi Üzerine (Anadolu Üniversitesi Y. Lisans Tezi 130, 1998).

[^0]: *Eskişehir Osmangazi University, Faculty of Science and Arts, Department of Mathematics, Eskişehir, Turkey

