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Abstract

We propose a new estimator for the population variance using an aux-
iliary variable in simple random sampling. We obtain the mean square
error (MSE) equation of the proposed estimator and show that the
proposed estimator is more efficient than the traditional ratio and re-
gression estimators, suggested by Isaki [2], under certain conditions. In
addition, we support this theoretical result with the aid of a numerical
illustration.
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1. Introduction

Ratio-type estimators take advantage of the correlation between the auxiliary variable,
x and the study variable, y. When information is available on the auxiliary variable that
is positively correlated with the study variable, the ratio estimator is a suitable estimator
to estimate the population variance. For ratio estimators in sampling theory, population
information of the auxiliary variable, such as the coefficient of variation or the kurtosis,
is often used to increase the efficiency of the estimation for a population variance.

Isaki [2] presented the ratio estimator for the population variance using the auxiliary
information, S2

x, as

(1) s2
ratio = s2

y

S2
x

s2
x

,

where s2
x and s2

y are unbiased estimators of the population variances S2
x and S2

y , respec-
tively. The MSE of this estimator is

(2) MSE(s2
ratio) ∼= λS4

y [β2(y) + β2(x)− 2θ]
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[7], where

λ =
1

n
, β2(y) =

µ40

µ2
20

, β2(x) =
µ04

µ2
02

, θ =
µ22

µ20µ22
and µst =

1

N

N
∑

j=1

(yj−Y )s(xj−X)t

[6]. Here N is the number of units in the population, n is the sample size, X,Y are the
population means and β2(x), β2(y) are the population kurtosis of the auxiliary variate xi

and the variate of interest yi, respectively.

Isaki [2] also considered the regression estimator for the population variance using an
auxiliary variable

(3) s2
reg = s2

y + b(S2
x − s2

x),

where b is a constant, which makes the MSE of the estimator a minimum when b = B =
VR(θ−1)
β2(x)−1

. Here VR =
S2

y

S2
x
[1]. The MSE of this estimator is given by

(4) MSE(s2
reg) ∼= λS4

y

{

[β2(y)− 1]−
(θ − 1)2

β2(x)− 1

}

.

Comparing equations (4) and (2),

−1−
(θ − 1)2

β2(x)− 1
− β2(x) + 2θ < 0 ⇐⇒ −

(θ − 1)2

β2(x)− 1
+ 2(θ − 1)− [β2(x)− 1] < 0

⇐⇒ −

[

(θ∗)2

β∗2 (x)
− 2θ∗ + β∗2 (x)

]

< 0

(letting θ∗ = θ − 1, β∗2 (x) = β2(x)− 1)

⇐⇒ −

[

θ∗
√

β∗2 (x)
−
√

β∗2 (x)

]2

< 0

provided that β∗2 (x) = β2(x)− 1 > 0. We deduce that the regression estimator given in
(3) is more efficient than the ratio estimator given in (1) when β2(x) > 1.

2. The Suggested Estimator

Shabbir and Yaab [8] proposed a ratio-type estimator for the population mean given
by

(5) ȳST = (1− J)ȳ + JtbX,

where J is a constant and tb =
ȳ

x̄

[

1 + ΨCxy

1 + ΨC2
x

]

. Here Cx =
Sx

X
is the population coefficient

of variation of the xi, Cxy = ρxyCxCy, Ψ =
N − n

Nn
, ρxy is the population coefficient of

correlation between the xi and the yi,x̄ and ȳ are the sample means of the xi and yi,
respectively. Note that the optimum value of J is J∗ = ρCy/Cx.

Adapting the estimator of Shabbir and Yaab [8], given in (5), to the estimator for the
population variance, we develop the following estimator:

(6) s2
pr = ω1s

2
y + ω2

s2
y

s2
x

τS2
x,

where ω1 and ω2 are weights that satisfy the condition: ω1 + ω2 = 1, and τ =
1 +ΨCxy

1 + ΨC2
x

is a constant for a fixed sample size. In applications, we suggest to take τ between 0 and
1.
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The MSE of the proposed estimator can be found using the first degree approximation
in the Taylor series method defined by

(7) MSE(s2
pr) ∼= dΣd

′,

where

d =

[

∂h(a, b)

∂a

∣

∣

∣

∣

S2
y, S

2
x

∂h(a, b)

∂b

∣

∣

∣

∣

S2
y, S

2
x

]

Σ =

[

V (s2
y) cov(s2

y, s
2
x)

cov(s2
x, s

2
y) V (s2

x)

]

[9]. Here h(a, b) = h(s2
y, s

2
x) = s2

pr. According to this definition, we obtain d for the
proposed estimator as follows:

d =
(

ω1 + ω2τ −ω2VRτ
)

.

We obtain the MSE of the proposed estimator using (7) as

(8) MSE(s2
pr) ∼= (ω1 + ω2τ)

2V (s2
y)− 2(ω1 + ω2τ)ω2VRτcov(s2

y, s
2
x) + ω2

2V
2
Rτ2V (s2

x),

where

V (s2
y) = λS4

y [β2(y)− 1]

V (s2
x) = λS4

x[β2(x)− 1]

cov(s2
y, s

2
x) = λS2

yS
2
x(θ − 1)

[6]. From (8), we can write

(9) MSE(s2
pr) ∼= λS4

y{(ω1+ω2τ)
2[β2(y)−1]−2(ω1+ω2τ)ω2τ(θ−1)+ω2

2τ
2[β2(x)−1]}.

The optimum values of ω1 and ω2 which minimize the MSE of s2
pr can easily be shown

to be:

ω∗
1 =

[β2(y)− 1](τ − 1) + (θ − 1)(1− 2τ) + τ [β2(x)− 1]

[β2(y)− 1] (1−τ)2

τ
+ 2(θ − 1)(1− τ) + τ [β2(x)− 1]

,

ω∗
2 = 1− ω∗

1 .

Let β∗2 (y) = β2(y)− 1, β∗2 (x) = β2(x)− 1 and θ∗ = θ − 1. Using these notations, we can
also write

ω∗
1 =

τ [β∗2 (y) + β∗2 (x)− 2θ∗] + θ∗ − β∗2 (y)

τ [β∗2 (y) + β∗2 (x)− 2θ∗] + 2θ∗ − 2β∗2 (y) +
β∗
2
(y)

τ

.

Note that when τ = 1, or in other words when ρxy = Cx/Cy, we obtain ω†
1 =

β∗2 (x)− θ∗

β∗2 (x)
,

and ω†
2 =

θ∗

β∗2 (x)
. When we use these expressions instead of ω1 and ω2 in (9), we see

that the MSE equation of the proposed estimator is as same as the MSE equation of the
traditional regression estimator, given in (4).

3. Efficiency Comparison

In this section, firstly we compare the MSE of the proposed estimator with the MSE
of the traditional ratio estimator given in (2). We have the condition as follows:

MSEmin(s
2
pr) < MSE(s2

ratio)

holds if

(10) W 2β∗2 (y)− β2(y)− 2Wω∗
2τθ

∗ + 2θ + (ω∗
2)

2τ2β∗2 (x)− β2(x) < 0,
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where W = ω∗
1 + ω∗

2τ . When the condition (10) is satisfied, the proposed estimator is
more efficient than the traditional ratio estimator given in (1).

Secondly, we compare the equations of the MSE for the proposed estimator and the
traditional regression estimator given in (4) as follows:

MSEmin(s
2
pr) < MSE(s2

reg)

holds if

(11) (W 2 − 1)β∗2 (y)− 2Wω∗
2τθ

∗ + (ω∗
2)

2τ2β∗2 (x) +
(θ∗)2

β∗2 (x)
< 0.

When the condition (11) is satisfied, the proposed estimator is more efficient than the
traditional regression estimator given in (3). Note that when τ = 1, the value of the
expression on the left hand side of (11) as 0. This means that when τ = 1, there is no
difference between the MSE of the proposed estimator and the MSE of the traditional
regression estimator, as mentioned in Section 2.

4. Numerical Illustration and Main Results

In this section we use the same data set that was used by Kadilar and Cingi [3]. How-
ever, we consider data of only the East Anatolia Region of Turkey, as we are interested
in simple random sampling here. We apply the proposed and traditional estimators to
data concerning the level of apple production (in 100 tones) (as the variate of interest),
and the number of apple trees (as auxiliary variate) in 104 villages in the East Ana-
tolia Region in 1999 (Source: Institute of Statistics, Republic of Turkey). These data,
whose statistics are given in Table 1, are used to compute the MSE of the proposed and
traditional estimators.

Table 1. Data Statistics

N = 104 Y = 6.254 λ = 0.050

n = 20 X = 13931.683 Ψ = 0.040

ρ = 0.865 Sy = 11.670 θ = 14.398

Cy = 1.866 Sx = 23026.133 VR = 2.57E − 07

Cx = 1.653 β2(x) = 17.516 ω∗
1 = 0.188

Cyx = 2.668 β2(y) = 16.523 ω∗
2 = 0.812

These estimators have been compared with each other with respect to their MSE values
for various sample sizes, as shown in Table 2.

Table 2. MSE values of variance estimators and the values of
conditions (10) and (11) for various sample sizes.

n Simple Ratio Regression Proposed Cond. (10) Cond. (11) τ

10 28792.39 9723.55 8632.17 8567.78 -0.623 -0.035 0.9954

20 14396.19 4861.77 4316.09 4299.93 -0.606 -0.017 0.9977

30 9597.46 3241.18 2877.39 2870.79 -0.599 -0.011 0.9986

40 7198.10 2430.89 2158.04 2154.76 -0.595 -0.007 0.9991

50 5758.48 1944.71 1726.43 1724.64 -0.593 -0.005 0.9994

60 4798.73 1620.59 1438.70 1437.67 -0.592 -0.003 0.9996
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When we examine Table 2 in detail, we observe that the proposed estimator has the
smallest MSE values for all sample sizes. This is an expected result because conditions
(10) and (11) are always satisfied for this data set, as partially shown in Table 2. In
addition, it is worth pointing out that when the sample size increases, τ gets closer to 1,
and that this decreases the difference in the MSE values between the proposed estimator
and the traditional regression estimator. It should be noted that when τ = 1, or in other
words, when C2

x = Cxy, the MSE of the proposed estimator is equal to the MSE of the
traditional regression estimator, as shown theoretically in Section 2 and Section 3. As a
result, we propose to take τ < 1 in (6). By these simulation results, we can infer that
the proposed estimator is more efficient than the traditional regression estimator when
C2
x > Cxy.

5. Conclusion

We have developed a new estimator whose MSE value is smaller than the MSE values
of the traditional ratio and of the regression estimators under the conditions (10) and
(11), respectively. This theoretical inference has also been illustrated by the result of an
application with original data given in Kadilar and Cingi [3]. It is worth pointing out
that the proposed estimator is more efficient than traditional estimators in applications.

In future work, we hope to adapt the estimator, presented here, to stratified random
sampling, as in Kadilar and Cingi [4], and hope to develop a variance estimator using
two auxiliary variables as the estimator in Kadilar and Cingi [5].
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