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Abstract

Recently, Jahangiri [4] studied the harmonic starlike functions of order
α, and he defined the class TH(α) consisting of functions f = h + ḡ,
where h and g are the analytic and the co-analytic part of the func-
tion f , respectively. In [3] the author introduced the class TH(α, β)
of analytic functions and he proved various coefficient inequalities and
growth and distortion theorems, and obtained the radius of convexity
for the function h if the function f belongs to the classes TH(α) and
TH(α, β). In this paper, we derive various distortion theorems for the
fractional calculus and the fractional integral operator of the function
h, the analytic part of the function f , if the function f belongs to the
class TH(α, β).

Keywords: Harmonic, Analytic and univalent functions. Fractional calculus and
fractional integral operator.
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1. Introduction and Definitions

A continuous complex valued function f = u + iv defined in a simply connected
complex domain D is said to be harmonic in D if both u and v are real harmonic in D.
In any simply connected domain we can write f = h+ ḡ, where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient
condition for f to be locally univalent and sense preserving in D is that |h′(z)| > |g′(z)|
in D.

∗Department of Mathematics, Al al-Bayt University, P.O. Box: 130095, Mafraq, Jordan.

E-mail: bafrasin@yahoo.com URL: http://www.geocities.com/bafrasin/techie.html



2 B.A. Frasin

Let H denote the family of functions f = h+ ḡ that are harmonic, univalent and sense
preserving in the unit disk U = {z : |z| < 1}, and for which f(0) = fz(0) − 1 = 0. Then
for f = h+ ḡ ∈ H we may express the analytic functions h and g as

(1.1) h(z) = z +
∞
∑

n=2

anz
n, g(z) =

∞
∑

n=1

bnz
n, |b1| < 1.

The harmonic function f = h+ ḡ for g ≡ 0 reduces to an analytic function f = h.

In 1984 Clunie and Sheil-Small [1] investigated the class H as well as its geometric
subclasses and obtained some coefficient bounds. Since then, there has been several
papers related to H and its subclasses. Recently, Jahangiri et al. [5], Jahangiri [4],
Silverman [11], Silverman and Silvia [12] studied harmonic starlike functions. Jahangiri
[4] defined the class TH(α) consisting of functions f = h+ ḡ such that h and g are of the
form

(1.2) h(z) = z −

∞
∑

n=2

|an| z
n, g(z) =

∞
∑

n=1

|bn| z
n,

which satisfy the condition

(1.3)
∂

∂θ
(arg f(reiθ)) ≥ α, 0 ≤ α < 1, |z| = r < 1.

Also Jahangiri [4] proved that if f = h+ ḡ is given by (1.1) and if

(1.4)

∞
∑

n=1

(

n− α

1− α
|an|+

n+ α

1− α
|bn|

)

≤ 2, 0 ≤ α < 1, a1 = 1,

then f is harmonic, univalent, and starlike of order α in U. This condition is proved to
be also necessary if f ∈ TH(α). The case when α = 0 is given in [12], and for α = b1 = 0,
see [11].

A function f = h + ḡ ∈ TH(α) is said to be in the class TH(α, β) if the analytic
functions h and g satisfies the condition

(1.5) Re

{

αzh′′(z) +
g(z)

z

}

> 1− |β| , (β ∈ C, α ≥ 0, z ∈ U).

The class TH(α, β) was introduced and studied by Frasin [3].

In the present paper and for f = h+ ḡ ∈ TH(α, β), we give various distortion theorems
for the fractional calculus and the fractional integral operator of the function h, the
analytic part of the function f .

In order to show our results, we shall need the following lemma.

1.1. Lemma. [3] Let the function f = h + ḡ be so that h and g are given by (1.2). If
f ∈ TH(α, β), then

(1.6)
∞
∑

n=2

[

αn(n− 1) |an| −
1− 3α

n+ α

]

≤ |β| ,

where a1 = b1 = 1, 0 ≤ α ≤ 1/3 and β ∈ C. The result is sharp.

2. Fractional Calculus

Many essentially equivalent definitions of the fractional calculus (that is, of fractional
derivatives and fractional integrals) have been given in the literature (cf., e.g., [2, Chap.
13], [6], [8], [9], [10], [13, p.28 et.seq.] and [14]). We find it to be convenient to recall
here the following definitions which were used earlier by Owa [7] (and, subsequently, by
Srivastava and Owa [15]).
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2.1. Definition. The fractional integral of order µ is defined, for a function h(z), by

(2.1) D−µz h(z) =
1

Γ(µ)

z
∫

0

h(ζ)

(z − ζ)1−µ
dζ,

where µ > 0, h(z) is an analytic function in a simply-connected region of the z-plane
containing the origin, and the multiplicity of (z−ζ)1−µ is removed by requiring log(z−ζ)
to be real when z − ζ > 0.

2.2. Definition. The fractional derivative of order µ is defined, for a function f(z), by

(2.2) D
µ

z h(z) =
1

Γ(1− µ)

d

dz

z
∫

0

h(ζ)

(z − ζ)µ
dζ,

where 0 ≤ µ < 1, h(z) is an analytic function in a simply-connected region of the z-plane
containing the origin, and the multiplicity of (z − ζ)−µ is removed as in Definition 2.1
above.

2.3. Definition. Under the hypotheses of Definition 2.2, the fractional derivative of
order j + µ is defined by

(2.3) Dj+µ
z h(z) =

dj

dzj
D
µ

z h(z),

where 0 ≤ µ < 1 and j ∈ N0 = {0, 1, 2, . . .}.

We begin by proving

2.4. Theorem. Let the function f = h + ḡ be so that h and g are given by (1.2). If
f ∈ TH(α, β), then

(2.4)
∣

∣D−µz h(z)
∣

∣ ≥
|z|1+µ

Γ(2 + µ)

{

1−
(2 + α) |β|+ 1− 3α

(2α+ α2)(2 + µ)
|z|

}

and

(2.5)
∣

∣D−µz h(z)
∣

∣ ≤
|z|1+µ

Γ(2 + µ)

{

1 +
(2 + α) |β|+ 1− 3α

(2α+ α2)(2 + µ)
|z|

}

,

for µ > 0 and z ∈ U. The results (2.4) and (2.5) are sharp.

Proof. It is easy to show that

Γ(2+µ)z−µD−µz h(z) = z−

∞
∑

n=2

Γ(n+ 1)Γ(2 + µ)

Γ(n+ 1 + µ)
|an| z

n = z−

∞
∑

n=2

Ψ(n) |an| z
n,

where

Ψ(n) =
Γ(n+ 1)Γ(2 + µ)

Γ(n+ 1 + µ)
(n ≥ 2).

Note that

(2.6) 0 < Ψ(n) ≤ Ψ(2) =
2

2 + µ
.

Furthermore, it follows from Lemma 1.1 that

(2.7)

∞
∑

n=2

|an| <
(2 + α) |β|+ 1− 3α

4α+ 2α2
.
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Therefore, by using (2.6) and (2.7), we obtain

∣

∣Γ(2 + µ)z−µD−µz h(z)
∣

∣ ≥ |z| −Ψ(2) |z|2
∞
∑

n=2

|an| ≥ |z| −
(2 + α) |β|+ 1− 3α

(2α+ α2)(2 + µ)
|z|2

and

∣

∣Γ(2 + µ)z−µD−µz h(z)
∣

∣ ≤ |z|+Ψ(2) |z|2
∞
∑

n=2

an ≤ |z|+
(2 + α) |β|+ 1− 3α

(2α+ α2)(2 + µ)
|z|2 ,

which prove the inequalities of Theorem 2.4. Finally, we can easily see that the results
(2.4) and (2.5) are sharp for the function h(z) defined by

(2.8) D−µz h(z) =
z1+µ

Γ(2 + µ)

{

1−
(2 + α) |β|+ 1− 3α

4α+ 2α2
z

}

.

¤

2.5. Corollary. Let the function f = h+ ḡ be so that h and g are given by (1.2). Then
D−µz h(z) is included in a disk with its center at the origin and radius r0 given by

(2.9) r0 =
1

Γ(2 + µ)

{

1−
(2 + α) |β|+ 1− 3α

4α+ 2α2
z

}

.

2.6. Theorem. Let the function f = h + ḡ be so that h and g are given by (1.2). If
f ∈ TH(α, β), then

(2.10)
∣

∣

∣
D
µ

z h(z)
∣

∣

∣
≥

|z|1−µ

Γ(2− µ)

{

1−
(2 + α) |β|+ 1− 3α

(2α+ α2)(2− µ)
|z|

}

and

(2.11)
∣

∣

∣
D
µ

z h(z)
∣

∣

∣
≤

|z|1−µ

Γ(2− µ)

{

1 +
(2 + α) |β|+ 1− 3α

(2α+ α2)(2− µ)
|z|

}

,

for 0 ≤ µ < 1 and z ∈ U. The results (2.10) and (2.11) are sharp.

Proof. Note that

Γ(2− µ)z
µ

D
µ

z h(z) = z +
∞
∑

n=2

Γ(n+ 1)Γ(2− µ)

Γ(n+ 1− µ)
|an| z

n = z +
∞
∑

n=2

Φ(n)n |an| z
n,

where

Φ(n) =
Γ(n)Γ(2− µ)

Γ(n+ 1− µ)
, (n ≥ 2).

It is easy to see that

(2.12) 0 < Φ(n) ≤ Φ(2) =
1

2− µ
.

From Lemma 1.1, we can see that

(2.13)
∞
∑

n=2

n |an| ≤
(2 + α) |β|+ 1− 3α

2α+ α2
,

consequently, with the aid of (2.12) and (2.13), we have

∣

∣

∣
Γ(2− µ)z

µ

D
µ

z h(z)
∣

∣

∣
≥ |z| −Φ(2) |z|2

∞
∑

n=2

n |an| ≥ |z| −
(2 + α) |β|+ 1− 3α

(2α+ α2)(2− µ)
|z|2 ,

which gives (2.10) and

∣

∣

∣
Γ(2− µ)z

µ

D
µ

z h(z)
∣

∣

∣
≤ |z|+Φ(2) |z|2

∞
∑

n=2

n |an| ≤ |z|+
(2 + α) |β|+ 1− 3α

(2α+ α2)(2− µ)
|z|2 ,
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which shows (2.11). Finally, by taking the function h(z) defined by

(2.14) D
µ

z h(z) =
z1−µ

Γ(2− µ)

{

1−
(2 + α) |β|+ 1− 3α

(2α+ α2)(2− µ)
z

}

,

the results (2.10) and (2.11) are easily seen to be sharp. ¤

2.7. Remark. Letting µ = 0 in Theorem 2.4 and µ −→ 1 in Theorem 2.6, we have the
growth and distortion theorems for the function h(z) obtained in [3].

3. Fractional integral operator

We need the following definition of the fractional integral operator given by Srivastava
et al.[16].

3.1. Definition. For real numbers λ > 0, γ and δ, the fractional integral operator Iλ,γ,δ0,z

is defined by

(3.1) Iλ,γ,δ0,z h(z) =
z−λ−γ

Γ(λ)

z
∫

0

(z − t)λ−1F (λ+ γ,−δ;λ; 1− t/z)h(t)dt,

where the function h(z) is analytic in a simply-connected region of the z-plane containing
the origin with the order

h(z) = O
(

|z|ε
)

(z → 0),

with ε > max{0, γ−δ}−1. Here F (a, b; c; z) is the Gauss hypergeometric function defined
by

(3.2) F (a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n(1)n

,

where (ν)n is the Pochhammer symbol defined by

(3.3) (ν)n =
Γ(ν + n)

Γ(ν)
=

{

1 (n = 0)

ν(ν + 1)(ν + 2) · · · (ν + n− 1) (n ∈ N+),

and the multiplicity of (z − t)λ−1 is removed by requiring log (z − t) to be real when
z − t > 0.

3.2. Remark. For γ = −λ, we note that

Iλ,−λ,δ0,z h(z) = D−λz h(z).

In order to prove our result for the fractional integral operator, we have to recall here
the following lemma due to Srivastava et al. [16].

3.3. Lemma. If λ > 0 and n > γ − δ − 1, then

(3.4) Iλ,γ,δ0,z zn =
Γ(n+ 1)Γ(n− γ + δ + 1)

Γ(n− γ + 1)Γ(n+ λ+ δ + 1)
zn−γ .

With aid of Lemma 3.3, we prove

3.4. Theorem. Let λ > 0, γ > 2, λ+ δ > −2, γ − δ < 2 and γ(λ+ δ) ≤ 3λ, and let the
function f = h+ ḡ be so that h and g are given by (1.2). If f ∈ TH(α, β), then

(3.5)
∣

∣

∣
Iλ,γ,δ0,z h(z)

∣

∣

∣
≥

Γ(2− γ + δ) |z|1−γ

Γ(2− γ)Γ(2 + λ+ δ)

{

1−
[(2 + α) |β|+ 1− 3α](2− γ + δ)

(2α+ α2)(2− γ)(2 + λ+ δ)
|z|

}
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and

(3.6)
∣

∣

∣
Iλ,γ,δ0,z h(z)

∣

∣

∣
≤

Γ(2− γ + δ) |z|1−γ

Γ(2− γ)Γ(2 + λ+ δ)

{

1 +
[(2 + α) |β|+ 1− 3α](2− γ + δ)

(2α+ α2)(2− γ)(2 + λ+ δ)
|z|

}

for z ∈ U0, where

(3.7) U0 =

{

U (γ ≤ 1),

U−{0} (γ > 1).

The equalities in (3.5) and (3.6) are attained for the function h(z) defined by

(3.8) Iλ,γ,δ0,z h(z) =
Γ(2− γ + δ)z1−γ

Γ(2− γ)Γ(2 + λ+ δ)

{

1−
[(2 + α) |β|+ 1− 3α](2− γ + δ)

(2α+ α2)(2− γ)(2 + λ+ δ)
z

}

Proof. By using Lemma 3.3, we have

Iλ,γ,δ0,z h(z) =
Γ(2− γ + δ)

Γ(2− γ)Γ(2 + λ+ δ)
z1−γ

−

∞
∑

n=2

Γ(n+ 1)Γ(n− γ + δ + 1)

Γ(n− γ + 1)Γ(n+ λ+ δ + 1)
|an| z

n−γ , (z ∈ U0).

Letting

H(z) =
Γ(2− γ)Γ(2 + λ+ δ)

Γ(2− γ + δ)
zγIλ,γ,δ0,z h(z) = z +

∞
∑

n=2

∆(n) |an| z
n,

where

∆(n) =
(2− γ + δ)n−1(1)n

(2− γ)n−1(2 + λ+ δ)n−1

, (n ≥ 2),

we can see that the function ∆(n) is non-increasing for integers n ≥ 2, and we have

(3.9) 0 < ∆(n) ≤ ∆(2) =
2(2− γ + δ)

(2− γ)(2 + λ+ δ)
.

Therefore, by using (2.7) and (3.9), we have

(3.10)

|H(z)| ≥ |z| −∆(2) |z|2
∞
∑

n=2

|an|

≥ |z| −
[(2 + α) |β|+ 1− 3α](2− γ + δ)

(2α+ α2)(2− γ)(2 + λ+ δ)
|z|2

and

(3.11)

|H(z)| ≤ |z|+∆(2) |z|2
∞
∑

n=2

|an|

≤ |z|+
[(2 + α) |β|+ 1− 3α](2− γ + δ)

(2α+ α2)(2− γ)(2 + λ+ δ)
|z|2

for z ∈ U0, where U0 is defined by (3.7). This completes the proof of Theorem 3.4. ¤

3.5. Remark. Taking γ = −λ = −µ in Theorem 3.4, we again obtain the result of
Theorem 2.4.
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