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Abstract – In many applications, circuits containing lumped elements are preferred because they are small in size. Also the 

losses in the designed circuits should be kept as low as possible. Unfortunately, especially at microwave frequencies, it is not 

possible to avoid the losses caused by the connections between the lumped elements. However, the use of these connections as 

circuit elements will improve the performance of the circuit. Therefore, it is inevitable to use circuits containing mixed 

(lumped and distributed) elements at microwave frequencies. Mixed lumped and distributed element two-port networks are 

described by means of two-variable scattering equations. So it is necessary to obtain the solutions of these equations to design 

this kind of networks. In literate, the solutions of these equations for some classes of low-order ladder networks are given 

under some restrictions. But in this paper, a broadband matching network is designed by using explicit solutions of the 

equations without any restrictions. Then the obtained results and the results obtained in the literature have been compared. 
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I. INTRODUCTION 

Mixed-element networks (lumped and distributed element) 

are important for microwave engineers [1]. If the connections 

between lumped elements are considered as transmission 

lines, and they are utilized to form network functions, they do 

not destroy the performance of the network, and they are used 

to obtain the desired response from the network. 

Since these networks have two different kinds of elements, 

their network functions are defined in terms of two variables; 

for lumped elements  jp   classical frequency variable 

and for distributed elements )tanh(  p  Richards variable 

(here   is the delay of distributed elements). Notice that 

there is a hyperbolic dependence between two variables, so 

transcendental functions can be used to define these kinds of 

networks. But if p  and   are assumed to be independent, 

mixed-element networks can be defined by using two-

variable functions [2-5]. In the literature, although there are 

many works about these kinds of networks, there is no any 

analytical general method to solve these functions. But there 

is a semi-analytic approach [6-13]. In this approach, two-

variable scattering equations are utilized and it can be applied 

for only a limited range of network topologies; LC ladder 

networks separated by unit element (UE). 

 

 
Fig. 1  Mixed-element low-pass structure (LPLU) [9] 

 

In the literature, the solutions of scattering equations under 

some restrictions are given for low-order low-pass LC ladder 

networks separated by unit elements (Fig. 1) by means of the 

mentioned semi-analytic approach. But in this work, by 

means of the solved equations without any restrictions, a 

broadband matching network is designed, and the obtained 

results are compared with the results obtained in the 

literature. 

II. DEFINITION OF MIXED-ELEMENT TWO-PORT NETWORKS 

By means of two-variable polynomials fhg ,, , scattering 

parameters of a two-port with mixed lumped and distributed 

elements can be written as [6-15] 
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here 1  is a constant. 

 

These two- followingvariable polynomials have the

features: 

 ),( pg , ),( ph  and ),( pf  are two-variable 

polynomials with real coefficients. 

 ),( pg  is a scattering Hurwitz polynomial. 

 ),( pf  is formed by using the transmission 

zeros of the two-port network. 

 ),( pg , ),( ph  and ),( pf  thehave

following relation; 

).,(),(),(),(

),(),(









pfpfphph

pgpg
 

127 



 International Journal of Multidisciplinary Studies and Innovative Technologies, 2019, 3(2): 127 – 130 

The polynomial ),( pg  is a nnp   order scattering 

Hurwitz polynomial with real coefficients [14] and can be 

defined as 
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In a similar manner, the polynomial ),( ph  is a nnp   

order polynomial with real coefficients [14] and can be 

defined as 
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The polynomial ),( pf  can be formed by using the 

transmission zeros of the two-port network [14] and can be 

defined as 

 

)()(),(  DL fpfpf      (4) 

 

here the polynomials )( pfL  and )(Df  are formed by using 

the transmission zeros of lumped and distributed sections, 

respectively. 

If unit elements are connected cascade, then the 

polynomial )(Df  can be defined as 

 
2/2)1()(  n

Df      (5) 

 

here n  is the number of unit elements [14]. 

If there are transmission zeros at only DC, the polynomial 

)( pfL  can be defined as 

 
k

L ppf )(      (6) 

 

here k  is the number of transmission zeros at DC [14]. 

As a result, the following form is a practical one for the 

polynomial ),( pf  

 
2/2)1(),(  nkppf  .    (7) 

 

If 0  is used in ),( pg  and ),( ph , single-variable 

polynomials describing lumped element section are obtained. 

The coefficients of these polynomials can be found in the 

first column of (2b) and (3). In a similar manner, if 0p  is 

used in ),( pg  and ),( ph , single-variable polynomials 

describing unit element section are obtained. The coefficients 

of these polynomials can be found in the first row of (2b) and 

(3). 

Since two-port network is lossless, then the following 

equation is satisfied 

 

IpSpS T  ),(),(      (8) 

 

here I  is the unity matrix [14]. If (1) is substituted in this 

equation, the following equation is reached 
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In the design of this kind on networks, to be able to write 

the coefficients in matrices (2b) and (3), (9) must be solved. 

In the literature, if 000 h , there are solutions for low-order 

low-pass structures [9]. In [16], without any restriction, the 

solutions are given for low-order low-pass structures. In the 

example below, a broadband matching network is designed 

by using the explicit solutions given in [16] and the results 

are compared with the results obtained in the literature. 

III. EXAMPLE 

In this work, the example given in [9] is solved to be able 

to compare the results. A broadband low-pass matching 

network with mixed elements (two lumped and two init 

elements) is designed by using the explicit solutions without 

any restriction. 

In the design, the first row and column coefficients 

( 2010020100 ,,,, hhhhh ) of the matrix h  and the delay ( ) are 

selected as the optimization parameters. The constant 2  is 

assumed to be –1. The sign of the other constant 1  is going 

to be the sign of 20h  and it is defined after optimization. If 

20h  is negative, then 11  , and if 20h  is positive, 

11  . The unknown coefficients of the matrices h  and 

g  are computed by using the explicit solutions without any 

restriction. 

In broadband matching problems, it is desired to transfer 

power from a complex generator to a complex load. So the 

selected optimization parameters ( 2010020100 ,,,, hhhhh  and  ) 

are optimized until obtaining maximum power transfer within 

the passband. After completing the non-linear optimization 

process, the following coefficient matrices are reached: 
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The designed matching network with normalized element 

values is given in Fig. 2. The simulation of the network is 

realized by using “Microwave Office (Applied Wave 

Research Inc.)” [17]. 
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Fig. 2  Designed mixed-element matching network; proposed: 

7916.1L , 392.1C , 137.01 Z , 701.02 Z , 2.0 , 8982.0n , 

Ref [9]: 126.2L , 751.0C , 161.01 Z , 341.02 Z , 21.0 . 

 

Transducer power gain graph of the designed network is 

depicted in Fig. 3. For comparison purposes, the gain graph 

obtained in [9] is also given in the same figure. 

 

 
Fig. 3  The performance of the designed matching network with mixed-

elements. 

 

It can be seen in Fig. 3 that the gain value obtained in [9] 

at DC is unity. But then the gain drops to about 0.95 [18,19]. 

Since the ideal gain level for the interested load is very close 

to unity, the drop in the gain graph is not noticible. If the 

normalized capacitor value in the load is raised to 3, then the 

ideal gain level is 0.8 [18,19]. In this case, if the matching 

network is designed via the solutions given in [9], the gain at 

DC is stil unity, but then it drops to about 0.6 as can be seen 

in Fig. 4. If the explicit solutions without any restriction are 

used during the design, a flatter gain graph fluctiating about 

0.8 is obtained (Fig. 4). 

 

 
Fig. 4  The performance of the matching network with C=3. 

 

IV. RESULTS 

In the given broadband matching network design example, 

it is seen that it is possible to design networks with mixed 

lumped and distributed elements. Since the distributed 

elements between lumped elements are being used as circuit 

elements, they are not destroying the performance of the 

circuit; on the contrary, they contribute to the performance of 

the circuit. 

V. DISCUSSION 

The networks with mixed lumped and distributed elements 

are defined in terms of two variables: p  for lumped elements 

and   for distributed elements. In this work, these kinds of 

networks are defined in terms of scattering parameters with 

the polynomials fhg ,, . Then as an example, a broadband 

matching network with mixed-elements is designed. The 

explicit expressions obtained from the solutions of the 

equations derived from the losslessness equation ( 

),(),(),(   pgpgpG  ) are used to compute the 

coefficients of the matrices h  and g . Then an 

optimization process is started to make the transferred gain 

computed by using these matrices maximum. Obtained gain 

graph and the graph in the literature are compared. It is seen 

that there is no sudden drop in the obtained graph and the 

gain value at DC is more compatible with the values in the 

passband. So as a result, a flatter gain graph is obtained in the 

passband. 

VI. CONCLUSION 

The explicit solutions of the scattering equations without 

any restrictions can be used to design mixed lumped and 

distributed element networks. 
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