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Abstract:  The Norepinephrine transporter (NET) is a Na+/Cl- coupled neurotransmitter transporter
responsible  for  reuptake  of  released  norepinephrine  (NE)  into  neural  terminals  in  the  brain,  an
important therapeutic agent used in the treatment of psychiatric disorders. A quantitative structural
activity  relationship  (QSAR)  investigation  was  carried  out  on  50  Molecules  of  NET  Inhibitors  to
investigate  their  inhibitory  potencies  against  norepinephrine  transporter  as  novel  agents  for  anti-
psychotic disorders. The molecules were optimized by employing Density functional theory (DFT) with
basis set of B3LYP/6-31G*. The genetic function Algorithm (GFA) approach was used to generate a
highly predictive and statistically significant model with good correlation coefficient R2  

Train = 0.952,
Cross validated coefficient Q2

cv = 0.870 and adjusted squared correlation coefficient R2
adj = 0.898. The

predictability and accuracy of the developed model was evaluated through external validation using
test  set  molecules,  Y-randomization and applicability  domain techniques.  The results  of  Molecular
docking simulation by using two neurotransmitter transporters PDB ID 2A65 (resolution = 1.65 Å )
and PDB ID 4M48 (resolution = 2.955 Å) showed that two of the ligands (compound numbers 12 and
44) having higher binding affinity were observed to inhibit the targets by forming hydrogen bonds and
hydrophobic interactions with amino acids of the two receptors respectively. The results of this study
are  envisaged  to  provide  very  important  new  insights  into  the  molecular  basis  and  structural
requirements that would help in designing more potent and more specific therapeutic anti-psychotic
agents. 
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INTRODUCTION

Mental disorder or psychotic disorder is a clinical
syndrome  in  which  some  loss  of  contact  with
reality has occurred and it is generally applied to
persons whose mental functioning is sufficiently
impaired to interfere with their capacity to meet
the  ordinary  demand  of  life  (1).  Psychotic
disorders are common to all countries and cause
immense  human  suffering,  social  exclusion,
disability,  poor  quality  of  life,  staggering
economic and social  costs.  It  is  estimated that
one  in  every  four  people  have  a  mental
disorder(1).  The  combined  costs  of  mental
disorder,  including  loss  of  productivity,  loss  of
earning  due  to  illness  and  social  costs,  are
estimated  to  total  at  least  USD  113  billion
annually  (2).  The  major  depressive  disorders
(MDDs)  had  been  estimated  as  the  second
largest global burden among all diseases by 2030
which  makes  the  discovery  of  novel  and
e cacious anti-psychotic drugs very urgent  fficacious anti-psychotic drugs very urgent (3).
Persons  with  psychotic  disorder  are  at  risk  for
complications  and  derivatives’  effects  of
psychosis  such  as  suicide  attempts,  substance
abuse, homelessness, victimization by others and
committing act of violence (4).

Norepinephrine  (NE)  is  a  neurotransmitter,  a
crucial  neurochemical  messenger  employed  in
central noradrenergic and peripheral sympathetic
synapses (5) responsible for reuptake of released
norepinephrine (NE) into nerve terminals in the
brain.  Dysregulation  of  this  neurotransmitter  is
associated  with  many  debilitating  psychotic
disorders and mental illnesses  (6). Inhibition of
the norepinephrine transporter by NET inhibitors
has  emerged as  important  drug  targets  with  a
multitude  of  therapeutic  potentials  for  the
treatment  of  psychiatric  disorders  and  mental
diseases (7). 

Quantitative  structure-activity  relationship
(QSAR)  analysis  is  a  useful  technique  to  find
correlations  between  biological  activities  and
molecular  descriptors  of  different  classes  of
compound  (8). QSAR plays a significant role in
novel drug discovery, and it finds application in
predicting  the  activity  of  novel  compounds  by
mathematical  expression  which  figure  out  the
relationships  between  a  chemical  structure  to
their biological activity and a QSAR models give
information that  is  very  useful  for  drug  design
and medicinal chemistry.

In  recent  time,  computer  assisted  drug  design
base  on QSAR has  been  of  great  important  to
develop novel  medications for the treatment of
different ailments (9). 

The aim of this study is to build up a QSAR model
to  explore  the  inhibitory  potency  of  some NET
inhibitors  and  likewise  to  elucidate  the
interactions  between  the  inhibitor  compounds,
and the receptor sites. 

MATERIALS AND METHODS

Dataset  collection  and  Geometry
optimization
A  dataset  of  fifty  (50)  compounds  of
norepinephrine transporter (NET) inhibitors were
sourced from CHEMBL Database. 

Optimization  is  the  process  of  finding  the
equilibrium  or  concept  energy  geometry  of
molecules.  Chemdraw  software  Ultra-version
12.0 was used to draw the chemical structures of
the compounds and subsequently imported into
Spartan  14  software  (10) to  optimize  the
molecular  geometry  at  the  Density  Functional
Theory (DFT) using the B3LYP at 6-31G* basis set
(11) to  generate  quantum  chemical  and
molecular descriptors. 

Division of Dataset 
The  dataset  of  the  studied  compounds  was
partitioned into a training set and a test set by
using  Kennard  stone  algorithm  (12) “Dataset
Division GUI 1.2” software. The training set was
used to develop the QSAR model, while the test
set  was  employed  to  validate  the  developed
model.
 
Model Building
A  statistical  analysis  by  genetic  function
approximation (GFA) techniques in  the  Material
studio software 8.0 version was used to build the
QSAR models. GFA has a distinctive attribute to
generate a population of model equations rather
than a singular  model  as  most  other  statistical
methods  do.  It  also  selects  the  basic  function
genetically,  generate  better  models  than  those
made using stepwise regression techniques. The
range of variations in this population gives added
information on the quality of fit and importance
of the descriptors  (13). The Friedman’s Lack of
Fit (LOF) was employed to evaluate the quality of
the model as a method that measures fitness of a
model.  LOF  is  estimated  by  this  mathematical
expression;
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LOF=
SEE

(1−(C+d×p)/M )
2

 (1)

Where c is the number of basic functions, d is the
smoothing  parameter,  M  is  the  number  of
samples in the training set,  SSE is  the sum of
square  error  and  p  is  the  sum  number  of
descriptors contained in the model.

Molecular descriptors calculation
Molecular descriptors are arithmetical values that
describe properties of molecules obtained from a
well-defined  algorithm  or  experimental
procedure.  The  OD,  ID,  2D  and  3D  molecular
descriptors  were  calculated  using  paDel-
Descriptor software 2.20 version (14) in addition
to  quantum  chemical  descriptors  generated  by
the Spartan 14 software.

Data pre-treatment
Data pre-treatment for the generated molecular
descriptors after normalization was done by using
“Data pretreatment GUI 1.2” software that uses
V-WSP  algorithm  (15) to  remove  noise  and
redundant  data.  This  helps  to  overcome
productivity  and  generalization  failure  of  the
model  due  to  constant  value  and  highly
correlated descriptors in forming QSAR models. 

Data  normalization  and  Descriptors
Transformation
Molecular descriptors values were normalized by
employing " normalized data 1.0 version software
" to give each variable the same opportunity and
make  the  relationship  between  descriptors
considerably  less  demanding.  The  molecular
descriptors of the training set were transformed
through  normalization  (16) using  the
mathematical equation below:

xn=
X−Xmax
Xmax−Xmin  (2)

Where Xn
 is the normalized descriptor, Xmax is the

maximum value in a descriptor column and Xmin is
the minimum value in the column of the training
dataset.

Assessing Quality Assurance of the Model
Statistical  parameters  of  the  model  were
reviewed and evaluated to ascertained its fitting
ability, reliability, predictive ability, stability and
robustness of the model generated. The quality
assurance of a developed model is guaranteed if

the following parameters are satisfied; R2
pred>0.5,

Q2>0.6, 𝑃 (95%) <0.05, high value of F-test, low
values of R2

random and Q2
random.

Validation of the Model
Leave-one-out  cross  validation  technique  was
employed to determine the predictive  power of
the  model.  This  was  evaluated  by  using  this
mathematical expression:

Qcv
2
=1−[ ∑ (Y pred−Y exp)

2

∑ (Y exp− ¯Y training) ] (3)

Where  Ypred,  Yexp and  training  symbolized  the

experimental, the predicted and mean values of
experimental activity of training set compounds.

Also, the square of the correlation coefficient for
the test set (R2

test) was evaluate for the predictive
capacity of the developed model as part of the
external  validation  technique.  The  closer  the
value of R2

test value to 1.0 the better the model.
The R2

test is evaluated by using this mathematical
equation:

Rtest
2

=1−
∑ (Y pred−Y test)

2

∑ (Y pred−Y training)
2

 (4)

Where  Ypred and  Ytest are  the  predicted  and
experimental  activity  values  of  the  test  set

compounds. training is the mean (average) activity

value of the training set. 

Y – Randomization test
Y  –  randomization  is  an  important  external
validation  technique  to  ascertained  that  a
developed QSAR model is strong and reliable and
is  not  inferred by luck.  Y-randomization test  is
performed  on  the  training  dataset.  The  low
values  of  R2 and  Q2 is  an  indication  that  the
model is very robust and highly reliable, and the
CR2

P value of the model must be greater than 0.5
to pass the Y-randomization test. The CR2

P value is
calculated by using this mathematical formula:

cR p
2
=R×[R2−(Rr)

2
]
2

 (5)

Where 
CR2

P  =  coefficient  of  determination  for  Y-
Randomization
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R= Coefficient of correlation for Y-Randomization
Rr =  Average “R” of random models.

Degree  of  contribution  of  selected
descriptors
The level of contribution of each descriptor in the
model  is  determined  by  calculating  its
standardized regression coefficients  bj using this
mathematical equation:

b j=
s jb j
SY

=J=1 , .....d
(6)

Where  bj is  the  regression  coefficient  of
descriptor j. Sj and Sy are the standard deviations
for each descriptor and activity respectively.

The  descriptor  of  higher  absolute  standardized
coefficient  implies  a  greater  importance  to  the
rest of molecular descriptors.  

Multi-co-linearity evaluation
Multi-co-linearity  estimation  among  descriptors
selected  by  GFA  analysis  is  evaluated  using
variance  inflation  factor  (VIF)  by  the
mathematical expression below:

VIF i=
1

1−Rij
2

 (7)

Where  R2
ij  is  the  correlation  coefficient  of  the

multiple regression between the descriptor i and
the  rest  j  descriptors  in  the  developed  model
(17). 

Assessment  of  the  applicability  domain  of
the model
Evaluation of the applicability domain of a model
is a significant step to confirm that the developed
model  is  capable  to  make  a  reliable  prediction
within  the  chemical  space  for  which  it  was
developed  (16).  To  describe  the  applicability
domain  of  the  QSAR  model,  the  leverage
approach was employed.

Leverage of a given dataset hi, is defined by this
mathematical expression:

H i=xi(X
T X )

−1X i
T

 (8)

Where  the  descriptor  row  is  vector  of  the

considered compound i, hi is the n x k descriptor

matrix  of  the  training  set  compound  used  to
generate the model.

The warning leverage (h*) is the limit of normal
values  of  x  outliers  and  is  expressed
mathematically as: 

h*=
3( p+1)
n  (9)

Where n = number of training compounds and P
is the number of predictor variables (descriptors)
in the model.
If the leverages hi < h* for the test compounds, it
considered  to  be  reliably  predicted  by  the
developed model.
The  relevance  area  of  the  model  in  terms  of
chemical  space  is  visualized  by  the  plot  of
standardized  residuals  against  leverage  values
(Williams plot).

MOLECULAR DOCKING SIMULATION

The molecular  interactions  studies  were  carried
out on a Dell  computer system, with processor
properties  of  Intel  ®  Core  i5-6100U  CPU
Dual@2.30GHz,  12  GB  (RAM)  between  the
ligands  and  two  neurotransmitter  transporters
(targets);  the Crystal  structure  of  LEUTAA,  a
bacterial  homolog  of  Na+/Cl--dependent
neurotransmitter  transporters  and  X-ray
structure  of  dopamine  transporter  elucidates
antidepressant mechanism as to elucidate which
of the NET inhibitors will  have the best binding
affinity  against  any  of  these  two  receptors,
because the current structural findings of human
monoamine  neurotransmitters  transporters
(MATs)  is  based  on  X-ray  crystal  structures  of
bacterial and invertebrate homologs (18). 

Making of Ligand and Target 
All the compounds were optimized using Spartan
software  initially  saved  as  SDF  files  and  were
appropriately  later  saved as  Protein  Data  Bank
(PDB)  files.  Subsequently,  crystal  structure  of
LEUTAA,  a  bacterial  homolog  of  Na+/Cl--
dependent neurotransmitter transporters and X-
ray structure of dopamine transporter elucidates
antidepressant  mechanism  (targets)  were
downloaded from Protein Data Bank website with
PDB  codes  2A65  and  4M48  respectively.  Fig.1
below  displays  the  prepared  structure  of  the
receptors.
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(a)  PDB Code 2A65 (1.65Å) (b) PDB Code 4M48 ( 2.99 Å)

Figure 1: Prepared structures of the targets.

Docking process
The  docking  of  the  prepared  ligands  with  the
receptors 2A65 and 4M48 were conducted using
the AutoDock Vina version 4.0 of Pyrex software.
Hence,  Discovery  Studio  software  was  used  in
visualizing  the  molecular  interactions  of  the
stable complex.

RESULTS AND DISCUSSIONS

QSAR  study  was  explored  to  investigate  the
structure–activity  relationship  of  50  compounds
with  distinguishing  organic  fragments  acting  as
norepinephrine transporter (NET) inhibitors. The
nature of models in a QSAR study is expressed
by its fitting the data points through regression
and making predictions of isolated dataset.

QSAR on pKi of norepinephrine transporter
(NET) inhibitors
A data set of 50 compounds was divided into a
training set of 36 compounds used in developing
the model and a test set of 14 compounds was
used  to  evaluate  the  predictive  ability  of  the
QSAR model for the inhibition of norepinephrine
transporter.  The  predicted  and  experimental
activities  alongside  with  their  residual  values
were presented in Supplementary Table S1. The

low  residual  values  resulted  from  the
experimental  and predicted activities  is  a  good
indication  that  the  developed  model  has  good
predictability.

The  descriptive  statistics  parameters  for  the
training  set  and  test  set  activities  value  were
reported in Table 2. Comparison the  descriptive
statistics  parameters  between training  and  test
set  in  Table  2,  the  values  for  the  training  set
were approximately equal to that of test set. This
shows that the test set is interpolative within the
training  set,  and  the  similarity  in  the  activity
distribution of training set and test set. This is a
good  quality  assurance  that  Kennard  Stone’s
algorithm used in this research generates a test
set that is a true reflection of the training set.

The genetic  algorithm-multiple  linear  regression
(GA-MLR) examination prompted the choice of 6
descriptors,  which  were  eventually  used  to
amassed a linear regression model for calculating
pKi of norepinephrine transporter inhibitors within
the chemical space of the model. The model with
statistical  significance  was  selected  and
represented by equation (10) below:
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                                                                  …………………….. (10)
Ntrain= 36, R2

train= 0.9156, R2
adjusted= 0.8982, Q2

LOO= 0.8755, Outliers > 3.0 =0 Ntest= 14, R2
test=

0.5832

N is the total number of the datasets, R2 is the
squared  correlation  coefficient,  Q2

LOO is  the
squared  cross-validation  coefficients  for  leave
one out.  In  the  model,  the number of  ratio  of
training  set  data  to  the  ratio  number  of
descriptors  present  in  the  model  was 6 and in
agreement  with  Topliss  ratio  (19).  This  implies
that  the  developed  model  obeyed  the  QSAR
semi-empirical rule of thumb (20). The name and
the symbol of the descriptors, the standardized
regression  coefficients  (degree  of  contribution)
and  percentage  contribution  of  the  descriptors
were reported in Table 5. The combined presence
of 2D and 3D descriptors in the developed model
is an evidence that these types of descriptors are
able to characterize good antipsychotic activity of
the  compounds.  The  sign,  magnitude  and

percentage contribution of each descriptor is not
only  to give critical information on the direction
of influence of the descriptor but also pinpoint the
strength  of  contribution  to  the  activity  of  the
compound.

The model  generated was subjected to internal
and external validations. The outcome of internal
and  external  validations  of  the  model  is  in
conformity to Occam's razor rule. The generally
acceptable QSAR Model Validation Tools and the
validated  parameters  of  the  model  were
presented  in  Table  1.  The  values  of  validation
parameters of the model were in agreement with
generally acceptable QSAR Model Validation Tools
reported in Table 1. This confirmed the reliability,
stability and robustness of the developed model.

Table 1: Accepted QSAR Model Validation Tools (21).
Validatio
n Tools

Interpretation Acceptable
Value

Developed
model
Value

Remarks

R2 Co-efficient of determination ≥0.6 0.911 pass

 P(95%)  Confidence interval at 95% confidence level <0.05 2.446 pass

Q2cv  Cross-Validation Co-efficient >0.5 0.870 pass

R2-Q2cv Difference between R2 and Q ≤0.3 0.04 pass

N Ext testset Minimum number of external and test sets ≥5 14 pass

R2 Testset Co-efficient of determination of external and
test set

≥0.5 0.5850 pass

cR2
p Coefficient  of  determination  for  𝑌-

randomization 
>0.5 0.840 pass

R2
adj Adjusted R-squared >0.6 0.893 Pass

VIF Variance Inflation Factor <10 1.4-4.4 Pass

t-test t-Statistic value >2 5-9 Pass

The  Pearson’s  correlation  matrix  and  other
statistical  tools  employed  for  validation  of  the
model were reported in Table 3. The low value in
correlation  coefficients  between  each  pair  of
descriptors (<7.0) is a clear indication that there
was  no  significant  multi-collinearity  among  the
descriptors in the developed model. The Variance

Inflation Factor (VIF) values reported in Table 3
were less than 10 and the t-statistics values were
greater than 2 for all  the descriptors. This is a
quality assurance that the developed model was
statistically  significant,  and  the  descriptors
contributed  appreciably  to  the  model  at  95%
level (21) and they were orthogonal.
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Table 2: Descriptive statistical analysis of NET inhibitor compounds
Descriptive
values

Training
dataset 

Test
dataset

 
Dataset Number    36      14
 
Standard Error  0.185      0.296

Median    7.054       7.497
Standard
Deviation    1.108

               1.
106

Sample Variance    1.227 1.223

Kurtosis  -0.632 2.677

Skewness   0.229 -1.264

Range   4.439 4.436

Minimum   5.084 4.500

Maximum   9.523 8.936

Mean 6.940 7.394      

Table 3: Pearson’s correlation matrix and model quality assurance

       VIF
t-
statistics p value

 ALogP AATS7i ATSC3p IC2 GGI10 RDF75u  

ALogP 1 1.5021 7.5604      2.47E08

AATS7i -0.3321 1 1.4789 7.4649 3.16E-08

ATSC3p -0.2592 -0.2991 1 1.4376 9.4970 2.1E-10

IC2 -0.2742 0.0487 0.0765 1 1.4177 5.8502 2.4E-06

GGI10 -0.2382 0.0921 -0.1711 0.5005 1 4.5022 -9.5663 1.79E-10

RDF75u -0.2940 0.2215 -0.1337 0.4759 0.6377 1 4.3800 6.7912 1.87E-07
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Table 4: Y-randomization table for QSAR Analysis 

Model R R^2 Q^2

Original 0.9545 0.9111 0.8702

Random 1 0.4197 0.1762 -0.2759

Random 2 0.3402 0.1157 -0.4558

Random 3 0.3943 0.1555 -0.3333

Random 4 0.4690 0.2199 -0.2220

Random 5 0.4408 0.1943 -0.1861

Random 6 0.1560 0.0243 -0.6456

Random 7 0.3589 0.1288 -0.3166

Random 8 0.3237 0.1048 -0.3536

Random 9 0.3323 0.1104 -0.4357

Random 10 0.3646 0.1329 -0.3307

Random Models Parameters

Average r : 0.3599

Average r^2 : 0.1363

Average Q^2 : -0.3555

cRp^2 : 0.8439

Table 5: Names of the model descriptors and their respective degree of contribution

Descriptor Descriptor Name Type
Degree  of
contribution

percentage  of
contribution

ALogP Ghose-Crippen LogKow 2D 0.513 13.3

AATS7i

Average Broto-Moreau autocorrelation
- lag 7 / weighted by first ionization
potential 2D 0.500 13.0

ATSC3p

Centered  Broto-Moreau
autocorrelation - lag 3 / weighted by
polarizabilities 2D 0.631 16.4

IC2
Information  content  index
(neighborhood symmetry of 2-order) 2D 0.383 10.0

GGI10 Topological charge index of order 10 2D -1.061 27.6

RDF75u
Radial  distribution  function  -  075  /
unweighted 3D 0.756 19.7

The model generated was used to predict the test
set  data,  and  the  results  were  reported  in
Supplementary  Table  S1.  The  predicted  pKi
values for the training and test sets were plotted
against the experimental pKi values as shown in
Figure 3. Similarly, the plot of the standardized
residuals values  for  both  the  training  and  test

sets  against  the  leverage  values  of  the
descriptors in the model were shown in Fig. 4. As
can  be  seen  from  Supplementary  Table  S1,
Figure 3 and Figure 4, the calculated values for
the pKi   were in excellent agreement with those
of the test set, as a result of this, no any form of
error was displayed by the model.
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Figure 2: Plot of predicted pKi values against Experimental pKi values for Training.

Figure 3: Plot of predicted pKi values against Experimental pKi values for Training and Test sets.
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Figure 4: A Williams plot for the data set of pKi standardized residual against its descriptor space.

 
         (12a3D)                                                                                     (12a2D)
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(12m3D)                                                                                 12m2D

 
(38a3D)                                                               (38a2D)

 
 (38m3D)                                                                    (38m2D)
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(44a3D)                                                                       (44a2D)

 
(44m3D)                                               (44m2D)
Figure 5. (12a 2D&3D), (38a 2D&3D) and (44a 2D&3D) depict 2D and 3D interactions at the binding
site between receptor PDB code 2A65 with ligand 12, 38 and 44 while (12m 2D&3D), (38m 2D&3D)
and (44m 2D&3D) show 2D and 3D interactions at the binding site between receptor PDB code 4M48
with ligand 12, 38 and 44 respectively.

QSAR model validation
The  internal  coherence  of  the  training  set  was
established  by  using  leave-one-out  cross-
validation technique to ascertained the strength
and reliability of  the developed model,  because
the candid significance of a QSAR model is not
merely their ability to mimic known activities of
chemicals,  set  by  their  fitting  power  (R2),  but
above  all  is  their  prospective  for  guessing
biological activity accurately. The great value of
Q2

LOO for  pKi  of  NET  inhibitors  used  (0.8755)
speak well of a fully clad internal validation of the
model.

The  plot  of  experimental  pKi  values  against
predicted  pKi  values  for  training  set  was
presented  in  Figure  2.  The  displayed  of  linear

relationship was observed in the plot between the
experimental  and  predicted  activities  of  the
training set (R2 = 0.911). The fact that all these
results were in agreement with QSAR validation
tools presented in Table 1 is a confirmation of the
reliability,  robustness  and  stability  of  the
developed model (21).

The Fig. 4, depicts the Williams plot of the NET
dataset, in which the standardized residuals for
each  compound  in  the  dataset  were  plotted
against  their  leverage  values,  coming  about  to
acknowledgment  of  likely  outliers  and
outstanding chemicals in the models. 

The applicability domain is set up inside a defined
domain where all the data point were within the
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boundary  ±3  for  residuals  and  a  leverage
threshold h*(h* =  3p0 /  n)   where  p0 is  the
number  of  model  parameters  and  n  is  the
number  of  compounds)  (15).  Based  on  our
findings,  it  is  clear  that  every  one  of  the
compounds of the training set and test set for the
dataset  were  inside  the  domain  (square  area)
and  no  statistical  value  far  from  others
compounds (outlier)  with standardized residuals
> 3d  for the dataset exist. 

The percentage of contribution was calculated to
determine  the  relative  importance  and  the
contribution of every descriptor in the model. The
degree  of  contribution  of  each  descriptor  and
variance  inflation  factor  (VIF)  of  the  descriptor
were estimated to evaluate the percentage and
the significance of contribution of the descriptors
as reported in Table 3 and Table 5 respectively.
The  descriptor  GGI10  showed  highest
contribution value (27.6%) in the model with VIF
value of 4.502 as reported in the two tables, but
the contribution negatively affects the model as it
is  observed in  the  equation (10)  with  negative
regression coefficient.

The robustness and reliability of the model was
evaluated  through  Y-randomization  test  to
ascertain  whether  the  developed  model  is  by
chance  correlation  or  not.  After  few  repeated
trials  to compare the stemmed scores with the
scores of the original model with non-randomized
data,  the  new  QSAR  model  generated  was
observed  to  have  low  R2 and  Q2

 LOO values  as
reported in Table 4. The results of this test were
clearly in agreement with QSAR validation tools
presented in Table 1. This is an indication that
the  developed  model  is  robust,  good  and
dynamic. The fact that cR2

p value > 0.5, confirms
that the model possesses good quality assurance
and that the model is not only inferred by chance
but also very powerful.

Elucidation of Descriptors in NET pKi model
By  interpreting  the  molecular  descriptors
presented in the model (Table 5), it is possible to
increase  supportive  chemical  functional  groups,
fingerprints  and  pharmacophores  into  the
activities  of  the  NET  inhibitors.  Therefore,  a
sufficient  interpretation  of  the  QSAR  results  is
given below.

ALogP is a 2D type molecular descriptor, and the
first  in  our  QSAR model.  It  defined  as  Ghose-
Crippen  LogKow  or  Ghose-Crippen-Viswanathan
octanol-water  partition  coefficient.  (ALogP)  is

calculated from the AlogP model consisting of a
regression equation based on the hydrophobicity
contribution  of  115  atom  types(22)(23).  AlogP
estimates  are  provided  only  for  compounds
having atoms of types C, H, O, N, S, Se, P, B, Si,
and halogens.

 Each atom in  every  structure  is  classified into
one of the 115 atom types. Then, estimated logP
for any compound is given by:

AlogP=∑
i

niai

where n is the number of atom of type i and ai is
the  corresponding  hydrophobicity  constant.  The
list  of  the  atom  types  with  the  corresponding
hydrophobicity  contributions  is  given  under  the
list  of atom-centered fragments.  This  descriptor
tells us the higher the number of hetero atoms in
a  molecule,  the  higher  the  tendency  for  this
molecule  to  be  less  hydrophobic.  Since  the
percentage contribution of the descriptor in this
model is 13%, it indicates that more than 10% of
the bioactivity of a lead compound will improve
should  the  number  of  heteroatoms  present  be
increased.

AATS7i  and  ATSC3p  are  defined  as  Average
Broto-Moreau autocorrelation - lag 7 / weighted
by first ionization potential and Centered Broto-
Moreau  autocorrelation  -  lag  3  /  weighted  by
polarizabilities  respectively.  They  are  both  2D
autocorrelation  descriptors  and  their  respective
percentage contribution to the models are given
as 13 and 16.4% respectively in Table 2. The ATS
descriptor describes how a property is distributed
along  the  topological  structure.  It  is  a  spatial
autocorrelation on a molecular graph, which can
be used to improve the activity of the compounds
by  altering  the  ionization  potential  and
polarizability  of  the  compounds.  Since  these
molecular  descriptors  contributed  positively  to
the model the pKi values of the compounds can
be  improved  by  adding  fragments  to  the
compounds that can increase the polarity of the
compounds thereby creating the charge stability
of the ligands’ interaction with the binding sites.
GGI10 is a topological charge descriptor defined
as Topological charge index of order 10. GGI10
gave the highest contribution in the model, but
since its contribution negatively affect the model,
then the steady reduction in this descriptor value
can improve  the  Ki  values  of  the  dataset.  The
ability  of  topological  charge  indices  to  describe
molecular  charge  distribution  has  been
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established by correlating them with  the  dipole
moment of a heterogeneous set of hydrocarbons,
and  so  reducing  the  number  of  heterogeneous
hydrocarbons presently correlated with the dipole
moment of the molecule will lead to an increase
in the bioactivity of the compounds.

IC2 is defined in Table 2 as Information content
index (neighborhood symmetry of 2-order), it is a
2D type information content descriptor. It gave
the  least  contribution  to  the  model,  but  10%
contribution can be significant depending on the
nature  of  the  molecule.  The  IC2  molecular
descriptor  suggests  that  by  introducing  other
bonds at that carbon, the structural complexity of
the molecules will be increased and the Shannon
entropy  will  also  be  increased  thereby  easily
activating the interactions of  the molecule with
the binding site.

RDF75u is an RDF descriptor (Radial Distribution
Function descriptors), this descriptor is based on
the  distance  distribution  in  the  geometrical
representation of  a  molecule  and  constitute  a
radial distribution function code  (RDF code) that
shows certain characteristics in common with the
3D-MORSE code.  The radial distribution function
in this form meets all the requirements for a 3D
descriptor,  it  also  provides  further  valuable
information such as bond distances, ring types,
planar  and  non-planar  systems.  This  fact  is  a
most  valuable  consideration  for  a  computer-
assisted  code  elucidation(24).  The  positive
regression  coefficient  of  this  descriptor  in  the
model as contained equation (7) with the highest
value  of  degree  of  contribution  as  reported  in
Table  5  is  a  good  indication  of  its  influential
contribution  to  the  antipsychotic  activity  with
variation in the bond distance and ring types of
the studied compounds.

Docking results
The docking result of this study is presented in
terms of binding affinity (kcal/mol) as reported in
Supplementary  Table  S1.  All  the  ligands  were
docked into the active site of the receptors, the
Crystal structure of LEUTAA, a bacterial homolog
of  Na+/Cl--dependent  neurotransmitter
transporters  and  X-ray  structure  of  dopamine
transporter elucidates antidepressant mechanism
in order to evaluate their abilities to inhibit these
neurotransmitters. The current available findings
of  human   neurotransmitters  transporters  are
based on X-ray crystal structures of bacterial and
invertebrate  homologs which  includes  the
bacterial  amino  acid  transporters  LeuT  (PDB:

2A65)  and  the  Drosophila  melanogaster  (PDB:
4M48)  (18) as employed in this study. 

The binding affinity values of the two receptors
(PDB: 4M48 and PDB: 2A65) for all the studied
compounds  ranged  from  4.4  kcal/mol to  10.3
kcal/mol and  were  reported  in  Supplementary
Table S1. Ligands 8, 12,26, and 38 had higher
binding affinity with the receptor PDB 4M48 and
Ligands 9, 10,12,38 and 44 had higher binding
affinity with the receptor PDB 2A65 respectively.
The  Discovery  Studio  Visualizer  was  used  to
visualize and analyze the three ligands of higher
binding affinity that were found to display higher
binding affinity and common to the two receptors
as shown in Fig. 5. 

The binding affinity, hydrogen bond, hydrophobic
and electrostatic interactions of the three ligands
having  higher  binding  affinity  with  the  two
receptors were reported in Table 6. The number
12a,38a & 44a represent the interactions of the
Ligands (compound 12, 38 and 44 ) between the
receptor (PDB ID 2A65) while 12m, 38m & 44m
depict the interaction of the ligands (compound
12,  38 and 44)  between the receptor  (PDB ID
4M48) respectively.

All the three ligands (compound 12, 38 and 44)
with the higher binding affinity were observed to
inhibit  the  targets  by  forming  hydrogen  bonds
and hydrophobic interactions with amino acids of
the two receptors (PDB ID 2A65) and (PDB ID
4M48)  respectively  except  compound  38  that
could not form hydrogen bond with the receptor
(PDB ID 2A65) as reported in Table 6. This may
inform  the  higher  resolution  (2.99 Å)  of  the
receptor  (PDB ID 4M48)  compare  to  the  lower
resolution (1.65 Å) of the other receptor (PDB ID
2A65)  (https  ://www.  rcsb.org).  The  three
ligands  were  found  to  be  firmly  bonded  with
hydrogen bonds of the receptor (PDB ID 4M48)
pocket amino acids (SER31, ASP25, PRO514 and
TRP519). The higher number of hydrogen bonds
were observed in the two ligands (compound 12
and 44) with  the  target pockets of the receptor
(PDB ID 4M48) which might be connected to their
higher activity (compound 12 ,pKi = 7.383 and
compound 44, pKi = 5.607) contrast with to the
other ligand (compound 38, pKi =5.084) with the
lowest  activity  which  formed  just  a  single
hydrogen bond with  the  receptor.  This  infers  a
direct relationship  between  the  binding  affinity
and inhibitory activity of the studied compounds
proved from the number  of  hydrogen  bonds
formed  between  the  ligands  and  the  receptor.
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However,  high binding affinity is evident in the
ligand 38 and this might be because of its large
number of hydrophobic  interactions  and
electrostatic effect due to the presence of fluorine
atom, Pi- Cation, Pi- Sigma, Pi-Pi- stacked, Pi-Pi-
T-shaped,  Pi-Alkyl  with  amino  acid  residues
(ILE491,ILE410,  TRP406,TRP99,
PHE494,ARG487,LEU464.ALA464,ILE472). 

CONCLUSIONS

The  QSAR  investigation  was  successfully
performed  on  dataset  of  50  norepinephrine
transporter (NET) inhibitors, mined from CHEMBL
database. The result of the QSAR modelling was
reliable because it satisfied the OECD criteria set
for a model development. The combination of 2D
and  3D  descriptors  generate  a  good  model  to
predict  the  inhibitory  activity  of  the  studied
compounds.  The  internal  validation  reported  in
the work as Q2cv was estimated to 0.870, while
the  external  validation  reported  as  R2

Pred was
given to be 0.583. This is an excellent indication
of a good predictive ability of the model.

The  result  of  Applicability  Domain  (AD)  shows
that all  the studied compounds were within the
defined  domain.  Molecular  docking  study  were
carried  out  on  all  the  compounds  using  two
neurotransmitter  transporters  (receptors)  PDB
IDs 2A65 and 4M48 respectively.  Three ligands
(compound number 12,38 and 44) showed higher
binding affinity were found to best inhibit the two
receptors by forming strong hydrogen bonds and
hydrophobic interactions with amino acids of the
targets.  However,  higher  number  of  hydrogen
bonds were observed between the receptor (PDB
ID 4M48) and two ligands (compound 12 and 44)
out  of  the  three  ligands  with  higher  activity,
compound 12 (pKi = 7.387) and compound 44

(pKi= 5.607) compare to compound 38 with the
lowest  activity  (pKi=  5.084).  This  suggests  a
good correlation between the binding affinity and
inhibitory  activity  of  the  ligands  and  that  the
mechanisms  or  mode  of  action  of  the  ligands
could  be  a  direct  interaction  with  the  receptor
(PDB ID 4M48) of higher resolution value (2.99
Å). Therefore, the two ligands, compound 12, [1-
(2-(benzhydryloxy)ethyl)-3-(((3-
phenylpropyl)ammonio)methyl)piperidin-1-ium]
and  compound  44  [3-((bis(4-
fluorophenyl)methyl)ammonio)-8-(3-oxo-3-
(phenylamino)propyl)-8-azabicyclo[3.2.1]octan-
8-ium]  proved  to  be  the  most  promising  hit
compounds and the receptor PDB ID 4M48 (2.99
Å)  shows  to  be  a  better  receptor  for  this
investigation which could be linked to its higher
resolution value.

The  information  derived  from  the  QSAR
investigation  and  molecular  docking  analysis  of
this  study  could  find  a  robust  application  in
pharmaceutical  industries  to  design  novel  NET
inhibitors  with  more  potent  and  more  specific
therapeutic anti-psychotic agents. 
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Table 6. Molecular interactions between the three ligands of higher binding affinity and the two receptors.

Ligand  CHEMBL
ID

Ligand
Number

Binding
Affinity
(kcal/mol)

Hydrogen
bond Hydrophobic interactions

Electrostatics
Interactions

Amino acid Bond length (Å) Amino Acid Amino Acid

CHEMBL67078 12a -9.3 LYS398 2.15279
ILE111, ALA319, VAL154, LEU162, LEU400,
LEU25

12m -7.35 SER31 2.76717 PHE513,TYR32 TYR32

SER31 2.31044

CHEMBL197384 38a -10.3
ILE491,  ILE410,  TRP406,TRP99,
PHE494,ARG487,LEU464.ALA464,ILE472 PHE414

38m -7.5 ASP25 2.53334 TYR337, TYR59, ARG92 ASP25

CHEMBL200310 44a -9.9 GLN34 2.62533
ILE475,  TYR471,  ILE245,
LYS474,ARG30,ALA319 ASP404

44m -8.45 PRO514 2.15327 PHE513, VAL101

SER31 2.76554
TRP519 2.1523
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