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Abstract: We drive efficient and reliable finite difference methods for fractional differen-
tial equations (FDEs) based on recently defined conformable fractional derivative. We
first derive fractional Euler and fractional Taylor methods based on the fractional Taylor
expansion. This fractional Taylor series are the generalized fractional Taylor series that
are independent of initial point. We show that the proposed methods are more efficient and
faster by applying these methods on first order FDEs and second order oscillatory FDEs.
Our second approach is based on inverting FDEs to a weakly singular integral equation
that is approximated by product integration rule. This new definition has no special
functions and thus the proposed numerical methods will be more accurate and easier to
implement than existing methods for FDEs. We prove the stability and convergence of the
proposed methods. Numerical examples are given to support the theoretical results.

Conformable Kesirli Diferansiyel Denklemlerinin Taylor ve Sonlu Farklar Metodu ile Sayısal
Çözümleri

Anahtar Kelimeler
Kesirli diferansiyel denklemler,
Kesirli euler metodu,
Kesirli adams metodu,
Riemann-liouville ve caputo
türevi,
Conformable kesirli türev,
Taylor metodu

Özet: Bu çalışmada yeni tanımlanan conformable kesirli türevli denklemler için güvenilir
ve etkili bir metot türettik. Kesirli Taylor açılımından ilk önce Euler ve Taylor metodunu
geliştirdik. Bu Taylor açılımı başlangıç noktasından farklı bir noktada açılmış genelleştir-
ilmiş Taylor serisiridir. Öngörülen metotlar daha etkili ve hızlı olduğunu birinci dereceden
kesirli diferansiyel denklemlere ve ikinci dereceden salınımlı kesirli diferansiyel den-
klemlere uygulayarak gösterdik. İkinci metodumuz ise kesirli diferansiyel denklemi zayıf
tekil integral denklemine dönüştürüp, çarpım intagrasyon kuralını uygulayarak çözmek
olacaktır. Bu yeni tanımda özel tanımlı fonksiyonlar olmadığı için, metotlar daha doğru
sonuç verecek ve bilgisayar programlaması daha kolay olacaktır. Bu öngörülen metotların
kararlılık ve yakınsaklıkları ispatlanmış olup, teorik sonuçları destekleyen sayisal örnekler
verilmiştir.

1. Introduction

Recently, fractional differential equations (FDEs) become
more attractive and have been developed in theory and
applications in science and mathematics. Applications and
the theories of fractional differential equations increasingly
get more attention nowadays both in science and engineer-
ing. Some applications of FDEs can be founded in chem-
istry, mechanics, physics, control theory and so on. For
more details on the application of FDEs, we refer the reader
to the references [1–3]. Unlike the ordinary differential
equations, the analytic solutions of fractional differential
equations may not be available. Thus, efficient and reliable
numerical methods for solving fractional differential equa-
tions are essential and important. Almost all the definitions
of the fractional derivative have been defined globally and
in non local sense so that they involve fractional integral

equations with weakly singular kernels and some special
functions such as Gamma and Mittag-Leffler functions. All
these definitions does not obey some standard rules and
important properties of ordinary derivative such as chain
rule or semi-group property. Recently, much simpler and
compatible definition of fractional derivative obeying chain
rule and semi-group properties based on the basic limit
processing so called the conformable fractional derivative
has been given in [4]. This new definition of fractional
derivative have came to the many researcher’s attention
and the fundamental properties and some applications of
this new fractional derivative have been studied and devel-
oped [5]. Further developments and several application
can be found in [6–9] and references therein.

Khalil et al. [4] define the conformable fractional deriva-
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tive of order α ∈ (0,1] of a function f : [a,∞)→ R by

(T a
α f )(t) = lim

h→0

f (t +h(t−a)1−α)− f (t)
h

, (1)

An easy consequence of this definition is that if f has the
classical derivative, then we have the following relation [4]

(T a
α f )(t) = (t−a)1−α f ′(t), (2)

where f ′(t) is the classical derivative of f . We immediately
see that the conformable fractional derivative of a constant
function is zero. Some basic properties of this conformable
fractional derivative can be found in [4, 5] in details. This
new definition intuitively is a natural extension of standard
derivative to non-integer order. Unlike the existing defini-
tions of fractional derivative, there are no special functions
such as the Gamma, Beta and Mittag-Leffler functions that
are not easy to evaluate and implement in the solutions.
This conformable derivative has the physical interpretation
as a modification of the classical derivative in direction
and magnitude of physical quantity [10].
In this article, we consider the following conformable frac-
tional nonlinear differential equation (FDEs){

(T a
α y)(t) = f (t,y(t)), t ∈ (a,T ], T > a≥ 0,

y(k)(a) = y(k)0 , k = 0,1,2, . . . ,n−1.
(3)

where α > 0 and n = dαe is the smallest integer greater
or equal to α and (T a

α y)(t) is the conformable fractional
derivative of y(t) of order α defined as

(T a
α y)(t) = (T a

β
y(n))(t), β = α−n ∈ (0,1],

where (T a
β

y(n))(t) defined by (1).

For easy presentation, we restrict the case when α ∈ (0,1].
The results that we will find in this paper can be easily
extended to the case α ≥ 1.
The other commonly used fractional derivatives are the
Riemman–Liouville and Caputo derivative defined by, re-
spectively

RLDα
0 f (t) =

1
Γ(n−α)

dn

dtn

∫ t

0
(t− s)n−1−α f (s)ds, (4)

and

CDα
0 f (t) =

1
Γ(n−α)

∫ t

0
(t− s)n−1−α f (n)(s)ds, (5)

The corresponding initial value problem can be written as
[11]{

RLDα
a y(t) = f (t,y(t)), α ∈ (n,n+1], t ∈ (a,T ],

y(k)(a) = y(k)0 , k = 0,1,2, . . . ,n−1.
(6)

Usually, the initial value problems for fractional differen-
tial equations are ill-posed because of singularity of the
solution at the initial conditions. In general, the differential
equation (6) is converted to the following Volterra integral
equation

y(t) = y0 +
1

Γ(α)

∫ t

a
(t− x)α−1 f (x,y)dx. (7)

If the solution of (6) is smooth enough, then it also solves
(7) and vice versa. The integral equation (7) is singular
if α ∈ (0,1) and this singularity makes the numerical so-
lution inefficient and reqıires some special techniques to
approximate the solution of (7). On the other hand, the
solution of (7) can be written as an expansion of integer
and non-integer powers [12]

y(t) = y0 +
∞

∑
i, j=1

(t−a)i+α jYi j. (8)

As we see from the equation (8), the solution is not smooth
at t = a and present mixed powers of integer and non-
integer . This non-smooth property of the solution makes
the numerical solution of the integral equation difficult
to approximate. The main difference in between classi-
cal derivative and fractional derivative is the non local
properties of the fractional calculus. This leads to intense
computational methods and high order numerical methods
that are very limited in literature. Numerical methods for
(6), to our knowledge, are based on Riemann-Liouville or
Caputo [12] and the Grünwald–Letnikov approach [13].
Several numerical methods such as finite difference [11],
finite element [14] and spectral methods for numerical
solution of (6) or (7) have been proposed and developed
during the last few decades. In [15], the author discussed
the stability of the numerical methods for the equation (7)
and gave the the disc of stability of predictor-corrector
methods. Diethelm et al. [16] proposed Adams-type pre-
dictor–corrector method for equation (7) and if the Caputo
derivative of the solution is smooth enough, they gave
the error bound for the method. Li and Zeng [17] dis-
cussed the finite difference method for fractional differ-
ential equations. Recently, in the book [18], finite differ-
ence methods and finite element methods have been stud-
ied and analyzed for fractional ordinary differential and
partial differential equations. Usually, the weakly singu-
lar kernel of the Volterra type integral equations makes
it difficult to have an efficient and high order numeri-
cal method. To overcome this inefficiency, the integral
equation

∫ t
a(t− x)α−1 f (x,y)dx have been approximated

by choosing suitable quadrature numerical methods. Prod-
uct integration rule that is a class of convolution quadrature
is one of the methods to numerically solve this kind of inte-
gral equation introduced in [19]. Different quadrature rule
gives the different numerical method such as fractional
Euler and fractional Adams methods.
In this article, we use two numerical approaches to the
problem (3). We first derive a fractional power series that
have been used to obtain fractional Euler scheme and high
order Taylor numerical method for the equation (3). To
the best of our knowledge, this is the first finite difference
method for FDEs in the sense of conformable fractional
derivative. The power series obtained are not dependent
on the initial point or the point in which the conformable
fractional derivative is defined. Our second approach is
based on the following Volterra-type integral equation with
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weakly singular kernel by converting FDEs (3) with the
help of the relation (2)

y(t) = y0 +
∫ t

a
(x−a)α−1 f (x,y)dx.

This form is significantly different from the one given in
(7) because there is no delay argument in this formulation.
Unless otherwise stated, we always assume α ∈ (0,1) in
this article and numerical methods we proposed here can
be extended to α ∈ (n,n+1] for any n ∈ N.
Numerical methods for FDEs are costly with high compu-
tational times and have expensive storage since the number
of operations increase at each time step because of the
singular kernel in the equivalent Volterra integral equation.
However, the newly defined fractional derivative is based
on limit process and the number of operation increase lin-
early. Thus, developing numerical methods based on this
newly defined fractional derivative is important and has
many advantages compared to the existing methods.
This paper is organized as follows. In Section 2 the ba-
sic definitions and background for FDEs are reviewed. In
Section 3 we establish the existence and uniqueness of
the problem (3) and reformulation of FDEs in terms of
integral equation. Then we introduce numerical methods
for solving Equation (3) with uniform meshes in section
4. In Section 5, we prove the stability and error estimates
of these numerical schemes. Finally, various numerical
examples are given to show that the numerical results con-
firm the theoretical findings in Section 6 and last section
includes the concluding remarks.
Throughout, the notations C and c, with or without a sub-
script, denote generic constants, which may differ at differ-
ent occurrences, but are always independent of the mesh
size.

2. Definitions and Background on Fractional Calcu-
lus

The left and right conformable fractional α th order deriva-
tive of a function f : [a,∞)→ R given by [4]

(T a
α f )(t) = lim

h→0

f (t +h(t−a)1−α)− f (t)
h

,

(bTα f )(t) =− lim
h→0

f (t +h(b− t)1−α)− f (t)
h

.

The conformable fractional integral operator of order α is
given by [4]

Ia
α( f )(x) =

∫ t

a
(x−a)1−α f (x)dx. (9)

Lemma 2.1. [5] If f : [a,∞)→ R is smooth, then we have
the relations for α ∈ (0,1] and t > a.

T a
α Ia

α( f )(t) = f (t), (10)
Ia
α T a

α ( f )(t) = f (t)− f (a). (11)

Lemma 2.2. [5] If y : [a,∞)→ R is infinitely α- differen-
tiable function, for some α ∈ (0,1] at a neighborhood of a

point a , then y has the fractional power series expansion:

y(t) =
∞

∑
k=0

(T a
α y)(k)(a)(t−a)kα

αkk!
, a < t < R1/α ,R > 0.

(12)
Here (T a

α y)(k)(a) means the application of the fractional
derivative k times.

We use the following Banach Contraction Principle ( see
e.g., [20])

Theorem 2.3. Caccioppoli
Let Y be a nonempty closed subset of a Banach space X
such that for each n≥ 1, there exists a constant cn ≥ 0 such
that ∑

∞
n=0 cn < ∞. If the operator A : Y → Y satisfies

‖Any−Anz‖ ≤ cn‖y− z‖,

for all n∈N, then A has a unique point y∗ so that Ay∗= y∗

3. Existence and Uniqueness of the Solution

In this section, we present the existence and uniqueness of
the solution of equation (3). Similar to the classical ordi-
nary differential equation, we first assume the function f
is continuous on some domain for proving the existence of
the problem and then to prove the uniqueness, we assume
it has a a Lipschitz condition with respect to the second
variable; i.e.,

| f (x,y)− f (x,z)| ≤ L|y− z|,

with some constant L > 0 independent of x, y, and z. Now
we ready to establish the following two theorems.

Theorem 3.1. For some d > 0 and δ > 0, let D := [0,d]×
[y0− δ ,y0 + δ ] and the real valued function f be contin-
uous on D. If T − a := min{d,( δα

‖ f‖ )
1/α}, then there is a

function y : (a,T ]→ R that solves the problem (3).

Theorem 3.2. For some d > 0 and δ > 0, let D := [0,d]×
[y0− δ ,y0 + δ ]. If T − a := min{d,( δα

‖ f‖ )
1/α}, and f is

bounded on D and satisfies the Lipschitz condition above,
then there is unique solution function y : (a,T ]→ R that
solves the problem (3).

The proof of these two theorem will be based on the fol-
lowing observation.

Lemma 3.3. If the forcing function f is smooth, then the
problem (3) can be converted to the following Volterra type
integral equation with α ∈ (0,1]

y(t) = y0 +
∫ t

a
(x−a)α−1 f (x,y)dx. (13)

Proof. With the help of (2), we can re-write the problem
(3) as

y′(x) = (x−a)α−1 f (x,y).

Now, integrating both side from a to t to obtain the desired
result (13).
Proof.(Proof of Theorem 3.1 and Teorem 3.2)
We introduce the set Bδ = {y ∈C([a,x]) : ||y(t)− y0||∞ ≤
δ} for fixed x≤ T . This is a closed subset of the Banach
space of all continuous functions on [a,T ], equipped with
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the maximum norm. Obviously, this set is not empty. Thus,
we define the operator A : Bδ → Bδ given by

(Ay)(t) := y0 +
∫ t

a
(x−a)α−1 f (x,y(x))dx. (14)

We show that the operator A has a unique point that solves
the equation Ay = y by showing that An is a contraction
operator for n sufficiently large. First, we demonstrate Ay
is a continuous function. To do this, we choose a≤ t1 ≤
t2 ≤ T and we write

|(Ay)(t2)− (Ay)(t1)|=
∫ t2

a
(x−a)α−1 f (x,y)dx

−
∫ t1

a
(x−a)α−1 f (x,y)dx

=
∫ t2

t1
(x−a)α−1 f (x,y)dx

≤
‖ f‖∞

α

(
(t2−a)α − (t1−a)α

)
.

So, if t2− t1 → 0 then (Ay)(t2)− (Ay)(t1)→ 0 showing
that Ay is a continuous function. Next, we prove that if
y ∈ Bδ then Ay ∈ Bδ meaning that A is self-mapping of Bδ .
To this end, note that

|(Ay)(t)− y0|= |
∫ t

a
(x−a)α−1 f (x,y)dx|

≤
‖ f‖∞

α
(T −a)α

≤
‖ f‖∞

α

αδ

‖ f‖∞

= δ .

Finally we prove that An is a contraction operator for n∈N.
More precisely we have for t ∈ (a,T )

‖Any−Anz‖∞ ≤
(L(t−a)α)n

αnn!
‖y− z‖∞. (15)

We prove this fact by induction on n. For n = 0, it is
obvious. Assume that (15) is true for n = k−1. Now, we
write

‖Any−Anz‖∞ = ‖A(An−1y)−A(An−1z)‖∞

=
∣∣∫ t

a
(x−a)α−1( f (x,An−1y)− f (x,An−1z)

)
dx
∣∣

≤ L
∫ t

a
(x−a)α−1∣∣An−1y(x)−An−1z(x)

∣∣dx

≤ L
∫ t

a
(x−a)α−1‖An−1y−An−1z‖∞ dx.

Using the induction hypothesis, we obtain

‖Any−Anz‖∞ ≤
Ln‖y− z‖∞

αn−1(n−1)!

∫ t

a
(x−a)α−1(x−a)α(n−1) dx

=
Ln‖y− z‖∞

αn−1(n−1)!

∫ t

a
(x−a)αn−1 dx

=
Ln‖y− z‖∞

αn−1(n−1)!
(t−a)αn

αn

=
Ln(t−a)αn‖y− z‖∞

αnn!
.

According to Theorem 2.3, if the sum ∑
∞
n=0 cn converges

with cn =
Ln(t−a)αn

αnn!
, then the operator A has a unique

point so that the problem (3) has a unique solution. In fact,
the fractional calculus (see e.g., [5]) implies that the series

∑
∞
n=0

Ln(t−a)αn

αnn!
converges to exp(

L(t−a)α

α
). Thus, the

proof is completed.

4. Numerical Methods

In this section, we will derive the numerical schemes for
approximating the problem (3). To do this, we introduce
the following notations:

For a given positive integer N, let tn = nh + a, n =
0,1, . . . ,N be a uniform meshes of the interval (a,T ] where
step size h ( for the sake of simplicity assumed to be con-
stant) is then given by h = tn− tn−1. Let y(tn) be approxi-
mated by yn at the point t = tn.

Numerical methods proposed in this work for the fractional
differential equation (3) will be based on the Taylor expan-
sion by the help of Lemma 2.2. We stress out that Lemma
2.2 allows to obtain a fractional power expansion for a
function in terms of its Conformable fractional derivatives
evaluated at the initial point a. We now obtain a similar
Taylor expansion at any other point a1 > a, so the expan-
sion can be expressed independently from the initial point
a.

Theorem 4.1. If y : [a,∞)→ R is infinitely α- differen-
tiable function, for some α ∈ (0,1] at a neighborhood of
a point a1 ∈ (a,∞) , then y has the fractional power series
expansion:

y(t) = y(a1)+
(T a

α y)(a1)δ1

α
+

(T a
α y)(2)(a1)δ2

2α2

+
(T a

α y)(3)(a1)δ3

3!α3 +
(T a

α y)(4)(a1)δ4

4!α4 +R4(x,a1,a), (16)

where R4(t,a1,a) is the reminder term and

δ1 = Hα −Lα ,

δ2 = H2α −L2α −2Lα
δ1,

δ3 = H3α −L3α −3Lα
δ2−3L2α

δ1,

δ4 = H4α −L4α −4Lα
δ3−6L2α

δ2−4L3α
δ1,

and H = t−a and L = a1−a.

Proof. Using the power series expansion (12)
for y(t),(T a

α y)(t),(T a
α y)(2)(t),(T a

α y)(3)(t) and (T a
α y)(4)(t)
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with t replaced by the points a1, we have

y(a) =y(a1)−
(T a

α y)(a)Lα

α
−

(T a
α y)(2)(a)L2α

2α2

−
(T a

α y)(3)(a)L3α

3!α3 −
(T a

α y)(4)(a)L4α

4!α4 +R0
4,

(T a
α y)(a) =(T a

α y)(a1)−
(T a

α y)(2)(a)Lα

α

−
(T a

α y)(3)(a)L2α

2α2 −
(T a

α y)(4)(a)L3α

3!α3 +R1
4,

(T a
α y)(2)(a) = (T a

α y)(2)(a1)−
(T a

α y)(3)(a)Lα

α

−
(T a

α y)(4)(a)L2α

2α2 −
(T a

α y)(5)(a)L3α

3!α3 +R2
4,

(T a
α y)(3)(a) = (T a

α y)(3)(a1)−
(T a

α y)(4)(a)Lα

α

−
(T a

α y)(5)(a)L2α

2α2 −
(T a

α y)(6)(a)L3α

3!α3 +R3
4,

(T a
α y)(4)(a) = (T a

α y)(4)(a1)−
(T a

α y)(5)(a)Lα

α

−
(T a

α y)(6)(a)L2α

2α2 −
(T a

α y)(7)(a)L3α

3!α3 +R4
4,

where R j
4 is the reminder of the fractional Taylor series of

(T a
α y)( j)(a) at the point a1 for j = 1,2,3,4.

Then every expansions above are substituted in (12) up
to order of fourth Taylor series and we obtain the equa-
tion (16). Furthermore, the reminder term R4(t,a1,a) is
resulted from the reminder R j

4 of each Taylor expansion
for j = 1,2,3,4.

4.1. The Construction of Numerical Methods Based
on Taylor Expansions

Similar to that done in the standard numerical approach
to the Cauchy problems for ODE, we construct numerical
schemes to solve FDE (3) based on the application of
fractional Taylor power series. The first numerical method
that is relatively simpler and easier is numerical integration
method having a disadvantage of restricted time stepping.
Suppose that y(t) is the solution of the conformable frac-
tional differential equation (3) with α ∈ (0,1].
By using Theorem 4.1, the fractional Taylor expansion of
y(tn+1) at t = tn gives that

y(tn+1) = y(tn)+(T a
α y)(tn)

δ1

α
+R1(tn+1, tn,a),

where δ1 = hα((n+1)α −nα). Since

(T a
α y)(tn) = f (tn,y(tn))

by the FDEs (3), we have

y(tn+1) = y(tn)+ f (tn,y(tn))
hα bn

α
+R1(tn+1, tn,a), (17)

where
bn = (n+1)α −nα . (18)

Next, we define Fractional Euler method that approximates
the solution y(t) at the points tn, n = 0,1,2, . . . ,N for the
values yn = y(tn) so that the algorithm is then given by

yn+1 = yn +
hα bn

α
f (tn,yn), (19)

y0 = y(a).

Now, we estimate the reminder term R1(tn+1, tn,a) in terms
of the step size h and the parameter α . By the fractional
Taylor expansion (12), the reminder can be written as (see
e.g., [5])

R1(tn+1, tn,a) = h2α

[A1nα bn

α2 − A2n2α bnhα

2α3 +
A3n2α

2α2

]
,

(20)
where bn defined by (18) and all the coefficients A1,A2 and
A3 are bounded constants. Local truncation error at tn+1
can be defined by

τ(tn+1) =
y(tn+1)− yn+1

hα
. (21)

From (20), the truncation error τ(tn+1) = hα so that the
error can be given by

|y(tn+1)− yn+1| ≤Chα . (22)

By a similar argument for the construction of Euler meth-
ods, we define high order fractional Taylor methods. These
fractional Taylor methods are based on the fractional Tay-
lor expansion (16) and have high order approximations
up to desired order. Here, we derive second and fourth
order fractional Taylor methods that are frequently used
in applications. However, one can derive fractional Taylor
methods of any order. A disadvantage of the high order ap-
proximations is that they require the fractional derivatives
of the function up to the order of the method. Because
of the singularity of the solution, the high order Taylor
methods may not be available.
Now, we derive 2α order fractional Taylor methods for
the problem (3). We approximate the solution y(t) at the
points tn, n = 0,1,2, . . . ,N for the values yn = y(tn) so that
the algorithm is then given by

yn+1 = yn +
hα((n+1)α −nα)

α
f (tn,yn)

+
h2α

2α2 (T
a

α f )(tn,yn)
[
(n+1)2α −n2α −2nα bn

]
,

(23)

y0 = y(a),

where bn is defined by (18).
The same idea above gives 4α order fractional Taylor
method for approximating the problem (3); For n =
1,2, . . . ,N

yn+1 = yn +
hα bn

α
f (tn,yn)+

h2α
2bn

2α2 (T a
α f )(tn,yn)

+
h3α

3bn

3!α3 (T a
α f )(2)(tn,yn)+

h4α
4bn

4!α4 (T a
α f )(3)(tn,yn),

(24)

y0 = y(a),
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where bn is defined by (18) and

2bn = (n+1)2α −n2α −2nα bn, (25)

3bn = (n+1)3α −n3α −3nα
2bn−3n2α bn,

4bn = (n+1)4α −n4α −4nα
3bn−6n2α

2bn−4n3α bn.

The truncation error for the fractional Taylor methods can
be obtained similarly as in the Euler Methods. However,
we only give outline of the proof because of very long
algebraic expressions.
Usually, the reminder for the fractional Taylor series is of
order h(N+1)α when the series have order of N. We first
find all the reminder of the fractional Taylor series for y(t)
up to N order and then substituting all the reminder will
be of the same order or greater, thus the reminder of the
fractional Taylor series for y(tn+1) at t = tn would be of
order h(N+1)α . Thus, the local truncation error (21) will be
of order hNα . This outline generalizes the truncation error
of classical Taylor method to the fractional Taylor method.
In the next section, we give some numerical results for the
numerical methods discussed here. We test three methods
described above for FDEs so that the exact solutions are
available. We first test the numerical methods for the first
order FDEs and secondly we give numerical results for
second order FDEs that is converted to first order systems
of FDEs so that we compare the obtained results with the
previous results based on symplectic schemes given in [15]
with Caputo definition.

4.1.1. Numerical Examples

The first problem to be tested is the fractional Cauchy
problem given by

Example 1.

(T 0
α y)(t) = λy(t), t ∈ [0,5], α ∈ (0,1], (26)

y(0) = y0.

The exact solution is given by y(t) = y0 exp(λ tα/α). This
is a simple linear test problem so that we easily find frac-
tional derivatives up to desired order. The successive frac-
tional derivatives give that (T 0

α y)(k)(t) = λ ky(t) for each
k ∈ N. Based on this observation, the numerical methods
are given as follows:
Fractional Euler Method

yE
n+1 = yE

n

(
1+bn

λhα

α

)
,

Fractional Taylor of order 2α Method

zn+1 = zn

(
1+bn

λhα

α
+2 bn

λ 2h2α

2α2

)
,

Fractional Taylor of order 4α Method

wn+1 = wn

(
1+bn

λhα

α
+ 2bn

λ 2h2α

2α2 + 3bn
λ 3h3α

3!α3

+ 4bn
λ 4h4α

4!α4

)
,

where bn,2 bn,3 bn and 4bn are defined by (25) and yE
0 =

z0 = w0 = y0.

We plot the solutions of the numerical methods and exact
solution for different α and the initial value y0 = 1 in Fig-
ure 1. We take λ =−10. As we can see from the Figure 1,
the fractional Taylor of order 4α closes to the exact solu-
tion and observe that as α increases, the errors decrease as
expected due to the error depends on the fractional power
of h.
We emphasize here that if one uses the Caputo or Riemann-
Lioville definition of fractional derivative, then the Cauchy
problem (26) leads to the exact solution of the form y(t) =
y0Eα(λ tα) where Eα(z) is the e Mittag-Leffler function
[15] that generalizes the standard exponential function
exp(z) for complex number z. Therefore, one needs some
algorithm to evaluate this special function even in this
simple case. However, we have a simple solution to the
problem similar to the classical differential equation so that
we believe that our methods are faster and more efficient
to approximate FDEs.

Example 2.

(T 0
α y)(t) =−y(t)+ t4−α exp(−tα/α), t ∈ [0,1], (27)

y(0) = 0.

The exact solution is y(t) = t4exp(−tα/α) for α ∈ (0,1].
We take α = 0.5 and we show the errors and the estimated
order of convergence of the fractional Euler and fractional
Taylor methods in Table 1 below.

α = 0.5 F. Euler F. Taylor 2α F. Taylor 4α

h Error Error Error
1/4 5.46e-02 3.01e-02 3.55e-03
1/8 2.90e-02 1.25e-02 8.75e-04

1/16 1.50e-02 5.45e-03 2.15e-04
1/32 7.63e-03 2.48e-03 5.28e-05
1/64 3.85e-03 1.17e-03 1.31e-05
EOC 0.986 1.083 2.010

Table 1. The maximum error for the fractional Euler and
Taylor methods for for Example 2 at T = 1

By EOC, we show the estimated order of convergence that
is given by the formula that log2(

e(h,T )
e(h/2,T ) ) where e(h,T ) is

the error with the step-size h at t = T .
We note that EOC of the fractional Taylor method of order
2α is O(h) and the fractional Taylor method of order 4α

is O(h2) as we expect. Moreover, the fractional Euler
method is of order O(h) in this numerical solution because
the exact solution is smooth.
Next, we show that our methods are more efficient and
faster than previous proposed finite difference methods in
the literature by demonstrating the results on the second
order FDEs given below.

Example 3. We now consider a second order FDEs given
as

(T 0
α y)(2)(t) =−ω

2y(t), α ∈ (0,1],

y(0) = y0, (T 0
α y)(0) = z0.

(28)

Note that we have two initial conditions that depend on y(t)
and the first conformable fractional derivative (T 0

α y)(t) at
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Figure 1. Plots for the solutions of the Cauchy FDEs
(26) for different α and absolute errors for N = 40

t = 0. This FDEs is known as Fractional Oscillator and
studied in [21]. Similar to the idea in ODE, we first convert
this FDEs to the system of first order FDEs as follows

(T 0
α y)(t) = z(t), α ∈ (0,1],

(T 0
α z)(t) =−ω

2y(t),

y(0) = y0, z(0) = z0.

(29)

In [21], the authors have used the following numerical
scheme with the Caputo definition

zn+1 = z0−
ω2hα

Γ(α +1)

n

∑
k=0

yk

[
(n+1− k)α − (n− k)α

]
,

yn+1 = y0 +
hα

Γ(α +1)

n

∑
k=0

zk+1

[
(n+1− k)α − (n− k)α

]
,

(30)

where Γ(z) is the Gamma function. Note that numerical
scheme (30) requires high number of operations that in-
creases as N2 after N steps since all the previous steps are
needed for the next step. This increases the computation
time. However, this is not the case for our method since
the methods require only the previous step to get next step
so the operations increase only linearly with N after N
steps. Now, we approximate the system of FDEs (29) by
proposed methods defined by
Fractional Euler Method

yE
n+1 = yE

n +bn
zE

n hα

α
,

zE
n+1 = zE

n −bn
ω2yE

n hα

α
.

Fractional Taylor of order 2α Method

yT
n+1 = yT

n +bn
zT

n hα

α
− 2bn

yT
n ω2h2α

2α2 ,

zT
n+1 = zT

n −bn
ω2yT

n hα

α
− 2bn

zT
n ω2h2α

2α2 .

Fractional Taylor of order 4α Method

T yn+1 =
T yn +bn

T znhα

α
− 2bn

T ynω2h2α

2α2

− 3bn

T znω2h3α

3!α3 + 4bn

T ynω4h4α

4!α4 ,

T zn+1 =
T zn−bn

T ynω2hα

α
− 2bn

T znω2h2α

2α2

+ 3bn

T ynω4h3α

3!α3 + 4bn

T znω4h4α

4!α4 ,

where bn,2 bn,3 bn and 4bn are defined by (25) and yE
0 =

yT
0 = T y0 = y0 and zE

0 = zT
0 = T z0 = z0.

The exact solution of the second order FDEs (28) is given
by

φ(t) = φ(0)exp(iωtα/α) = y0 cos(
ωtα

α
)+

z0

ω
sin(

ωtα

α
).

In Figure 2, we show the exact solution and numerical
solutions with their corresponding absolute errors for the
problem (28). We take ω = 5,y(0) = 1 with z(0) = 0 and
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Figure 2. The exact and numerical solutions of the FDEs
(28) for different α and absolute errors for N = 50.

different values of α . Similar results to the first order FDEs
solutions, we expect the errors decrease as α converges
to 1. Also, we see that the fractional Taylor method of
4α order is much closer to the exact solution while the

fractional Euler and fractional Taylor method of 2α order
oscillate frequently as ω gets bigger. Table 2 and Table 3
show that the fractional Euler and the fractional Taylor of
order 2α have oscillatory behavior when ω > 1 or have
poor convergence while the fractional Taylor method of
order 4α still much closer to the exact solution.

F. Euler F. Taylor 2α F. Taylor 4α

h Error Error Error
1/10 39.512 37.269 0.916
1/20 0.355 1.031 0.371
1/40 1.785 1.851 0.101
1/80 0.952 0.937 0.070

1/160 0.487 0.463 0.039
Table 2. The maximum error for the fractional Euler and
Taylor methods for for Example 28 at T = 4 with α = 0.5
and ω = 5

F. Euler F. Taylor 2α F. Taylor 4α

h Error Error Error
1/80 0.763 0.739 0.024

1/160 0.323 0.313 0.014
1/320 0.150 0.145 0.008
1/640 0.072 0.070 0.004

1/1280 0.035 0.034 0.002
Table 3. The maximum error for the fractional Euler and
Taylor methods for for Example 28 at T = 4 with α = 0.9
and ω = 5

4.2. Numerical Schemes Based on Weakly Singular In-
tegral Equations

Our second numerical approaches we introduce here
depend heavily on the following integral: for n =
0,1, . . . ,N−1,

In+1 :=
∫ tn+1

tn
(t−a)α−1 f (t,y(t))dt. (31)

Now, we approximate f (x,y(x)) by choosing suitable nu-
merical approximation g(x,y(x)) of f (x,y(x)) on the in-
terval [tn, tn+1] and different choice will lead to different
numerical scheme for numerical solution of the problem
(3) or equivalently (13) as shown below.

1. If we choose g(x,y(x))≈ f (tn,y(tn)) then we have an
explicit method, i.e., yn+1 is given explicitly in terms
of known quantities yn and f (tn,yn) and we call this
method as the fractional forward Euler (FFE) method
defined as follows

yn+1 = yn +
hα

α
bn f (tn,yn), (32)

where bn = (n+1)α −nα .

2. If we choose g(x,y(x))≈ f (tn+1,yn+1) then we have
an implicit method and we call this fractional back-
ward Euler (FBE) method defined by

yn+1 = yn +
hα

α
bn f (tn+1,yn+1), (33)

where bn is defined as above.
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3. If we choose g(x,y(x)) ≈ P(x), where P(x) is an
interpolating polynomial as an approximation of
f (x,y(x)), more precisely, if we choose g(x,y(x)) as
follows

P(x) = f (tn+1,yn+1)
x− tn

tn+1− tn
+ f (tn,yn)

x− tn+1

tn− tn+1
,

(34)
then we have the fractional trapezoid method is given
by

yn+1 = yn +
hα

α(α +1)

n+1

∑
k=0

(
ak,n+1 f (tk,yk)

)
, (35)

where ak,n+1 defined by

ak,n+1 = 1, if k = 0 or n+1 (36)

ak,n+1 = (k+1)α+1−2kα+1 +(k−1)α+1, (37)
if k = 1,2, ,̇n.

Since the trapezoidal method is implicit and can not
be solved directly, we naturally propose the following
fractional Adams predictor–corrector method for (13)

yP
n+1 = yn +

hα

α
bn f (tn,yn), (38)

yn+1 = y0 +
hα

α(α +1)

[ n

∑
k=0

ak,n+1 f (tk,yk) (39)

+an+1,n+1 f (tn+1,yP
n+1)

]
, (40)

where ak,n+1 defined by (37).

High-order predictor-corrector methods for fractional dif-
ferential equation have been proposed in [11]. The au-
thors use the interpolation function for approximating
f (x,y(x)) based on first and second degree Lagrange in-
terpolation and spline functions. In [22], more similar
predictor-corrector approach to ours have been introduced
and analyzed for the time fractional Fokker–Planck equa-
tion.

5. Stability and Error Analysis

In this section, we will examine the stability and error
estimates for the methods introduced above. Stability esti-
mates are similar to the stability analysis of standard finite
difference method for the fractional Euler methods and
based on characteristic equation for the amplification fac-
tor yn = y0rn. The stability analysis of Adams methods
means that a small change in the initial condition will not
cause the huge error in the numerical solution. In the se-
quel, we need the following auxiliary lemmas for stability
and error analysis.

5.1. Lemmas

Lemma 5.1. If α ∈ (0,1], then we have for x ∈ [0,1]

1− xα ≤ (1− x)α , (41)

and for n≥ 1

0≤ (n+1)α −nα ≤C(n+1)α−1 ≤ 1, (42)

(n+1)α+1−2nα+1 +(n−1)α+1 ≤Cn.α−1 (43)

Proof. Consider the function h(x) = 1− xα − (1− x)α for
x ∈ [0,1]. Note that this function is subharmonic on [0,1]
since h′′(x) = −α(α − 1)xα−2−α(α − 1)(1− x)α−2 ≥
0 for x ∈ [0,1]. Thus by the well known maximum
principle, the function h(x) attains its maximum at the
boundary of the closed interval [0,1] . Observe that
h(0) = h(1) = 0. That concludes h(x)≤maxx∈[0,1] h(x) =
max{h(0),h(1)}= 0 which proves the inequality (41).
For the inequality (42), by applying the mean value theo-
rem for the function f (x) = ( n+x

n+1 )
α , we observe that

f (1)− f (0) = f ′(s) for some s ∈ (0,1).

This leads to get

1− nα

(n+1)α
=

α

n+1
(

n+ s
1+n

)α−1,

or
(n+1)α −nα

(n+1)α−1 = α(
1+n
n+ s

)1−α ≤ 1.

The inequality (43) can be proved similarly so we omit the
proof of it. Thus, the proof is now completed.

Lemma 5.2. (Gronwall Inequality [12]) Let a,b ≥ 0 and
{ζn} satisfy

|ζn| ≤ b+ah
n−1

∑
i=0
|ζi|, n = k,k+1, . . . ,nh < T,

then

|ζn| ≤ exp(aT )(b+akhM0), n≥ k,nh < T,

where M0 = max{|ζ0|, . . . , |ζk−1|}.
Lemma 5.3. If α ∈ (0,1] and y(t) solves the equation (13)
and f (t,y(t)) bounded on the domain then there is a con-
stant Cα independent of h so that the following inequality
holds for small h with t ∈ [a,T −h],

|y(t +h)− y(t)| ≤Cα hα . (44)

Proof. By the help of(13), we write

y(t +h)− y(t) = y0 +
∫ t+h

a
(x−a)α−1 f (x,y)dx

−
(
y0 +

∫ t

a
(x−a)α−1 f (x,y)dx

)
=
∫ t+h

t
(x−a)α−1 f (x,y)dx.

Since f is bounded, there is a constant M so that | f | ≤M,
and we obtain

|y(t +h)− y(t)| ≤M
∫ t+h

t
(x−a)α−1 dx

=
M
α

(
(t +h−a)α − (t−a)α

)
.

Now, since (t + h− a)α − (t − a)α = (t + h− a)α
(
1−

( t−a
t+h−a )

α
)
, we can appeal the inequality (41) and finally

have the desired result

|y(t +h)− y(t)| ≤
M
α

hα .
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Lemma 5.4. If α ∈ (0,1] and y(t) solves the equation (13)
and f (t,y(t)) is smooth and satisfies the Lipschitz condi-
tion with respect to second variable with a constant L then
there exists a constant C1

α independent of h so that we have
the following inequality for small h with t ∈ [a,T ],∣∣∣∫ tn+1

a (t−a)α−1 f (t,y(t))dt−
hα

α

n

∑
k=0

bk f (tk,y(tk))
∣∣∣

≤C1
α T α hα .

Proof.

Since
∫ tk+1

tk (t−a)α−1 dt =
hα

α
bk, we write

∣∣∣∫ tn+1

a
(t−a)α−1 f (t,y(t))dt−

hα

α

n

∑
k=0

bk f (tk,y(tk))
∣∣∣

=
∣∣∣ n

∑
k=0

∫ tk+1

tk
(t−a)α−1

(
f (t,y(t))− f (tk,y(tk))

)
dt
∣∣∣

≤
n

∑
k=0

∫ tk+1

tk
(t−a)α−1

(
| f (t,y(t))− f (t,y(tk))|

+ | f (t,y(tk))− f (tk,y(tk))|
)

dt

≤
n

∑
k=0

∫ tk+1

tk
(t−a)α−1

(
L|y(t)− y(tk)|

+ | f ′(τ,y(tk))(t− tk)|
)

dt,

where τ is between t and tk and L is the Lipschitz con-
stant. Here we have used the mean value theorem stating
that | f (t,y(tk))− f (tk,y(tk))| = | f ′(τ,yk)||t − tk|. Next,
we appeal (44) to find |y(t)− y(tk)| ≤ Cα(t − tk)α . Let
K := max{LCα , f ′(τ,y(tk))}. We then have

n

∑
k=0

∫ tk+1

tk
(t−a)α−1

(
L|y(t)− y(tk)|+ | f ′(τ,y(tk))(t− tk)|

)
dt

≤K
n

∑
k=0

∫ tk+1

tk
(t−a)α−1

(
(t− tk)α +(t− tk)

)
dt

≤2Khα
n

∑
k=0

∫ tk+1

tk
(t−a)α−1 dt

=
2Khα(tn+1−a)α

α
=C1

α T α hα .

The proof is completed.

Remark 1. In Lemma 5.4, we can improve the bound by
h if the solution y(t) and f (t,y(t)) are sufficiently smooth.
For the future reference, we remark this fact as follows.

Lemma 5.5. If α ∈ (0,1] and y(t) solves the equation (13)
and also y(t) and f (t,y(t)) are sufficiently smooth and
f (t,y(t)) satisfies the Lipschitz condition with respect to
second variable with a constant L then there is a constant
C2

α independent of h so that we have the following inequal-
ity for small h with t ∈ [a,T ],

|
∫ tn+1

a
(t−a)α−1 f (t,y(t))dt−

hα

α

n

∑
k=0

bk f (tk,y(tk))|

(45)

≤C2
α T α h.

Lemma 5.6. If α ∈ (0,1] and y(t) solves the equation (13)
and f (t,y(t)) is sufficiently smooth, then we have the fol-
lowing inequality for small h with t ∈ [a,T ],∣∣∣∫ tn+1

a
(t−a)α−1 f (t,y(t))dt (46)

−
hα

α(α +1)

n+1

∑
k=0

ak,n+1 f (tk,y(tk))
∣∣∣≤ ‖ f‖∞

α
T α h2. (47)

Proof. From the interpolation error estimate, there is ck ∈
(tk, tk+1) so that

| f (t,y(t))− f (tk+1,yk+1)
t− tk

tk+1− tk
− f (tk,yk)

t− tk+1

tk− tk+1

∣∣∣
≤ (1/2)| f ′′(ck,y(ck))(t− tk)(t− tk+1)|.

Now we write∣∣∣∫ tn+1

a
(t−a)α−1 f (t,y(t))dt−

hα

α(α +1)

n+1

∑
k=0

ak,n+1 f (tk,y(tk))
∣∣∣

=
∣∣∣ n

∑
k=0

∫ tk+1

tk
(t−a)α−1

(
f (t,y(t))− f (tk+1,yk+1)

t− tk
tk+1− tk

− f (tk,yk)
t− tk+1

tk− tk+1

)
dt
∣∣∣

≤
‖ f‖∞

2
h2

n

∑
k=0

∫ tk+1

tk
(t−a)α−1 dt =

‖ f‖∞

2α
h2tα

n+1h2 ≤
‖ f‖∞

2α
T α h2.

Hence, the proof is completed.

5.2. Stability Analysis

In this subsection, we prove the stability estimates for
the methods we introduced in Section 4 for α ∈ (0,1]. If
α ≥ 1 then standard way of proving the stability analysis
based on Gronwall’s inequalities can be used. First, we
prove the stability analysis of the fractional forward Euler
method given by (32). We show the stability of the pro-
posed methods by showing that a small perturbation in the
initial conditions does not lead to substantial changes in
the numerical solution as time progresses.

Theorem 5.7. If yk for k = 1,2, . . . ,n+1 are the solutions
of the fractional Euler methods (32) and f satisfies the Lips-
chitz condition with respect to second variable locally with
a Lipschitz constant L, then the fractional Euler method
(32) is conditionally stable.

Proof. Suppose that ŷ0 and ŷn are the initial perturbations
for y0 and yn for k = 0,1, . . . ,n + 1 and n = 1,2, . . . ,N
respectively.
We then have the following perturbed equations by using
(32)

yn+1 + ŷn+1 = yn + ŷn +
hα

α
bn f (tn,yn + ŷn),

ŷn+1 = ŷn +
hα

α
bn

(
f (tn,yn + ŷn)− f (tn,yn)

)
,

ŷn+1 = ŷ0 +
hα

α

n

∑
k=0

bk

(
f (tk,yk + ŷk)− f (tk,yk)

)
.
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Now using the Lipschitz condition, Lemma 5.1 and Lemma
5.2 and the fact that hα bn ≤ hα(n+ 1)α−1 ≤ T α−1h for
n = 0,1, . . . ,N−1, we get∣∣∣ŷn+1

∣∣∣≤M+
Lhα

α

n

∑
k=0

bk|ŷk|,∣∣∣ŷn+1

∣∣∣≤M+
Lh
α

n

∑
k=0
|ŷk|,∣∣∣ŷn+1

∣∣∣≤CM,

where M = |ŷ0|.
By the same argument used in the previous theorem, we
can prove the following

Theorem 5.8. If yk for k = 1,2, . . . ,n+1 are the solutions
of the fractional Euler methods (33) and f satisfies the Lips-
chitz condition with respect to second variable locally with
a Lipschitz constant L, then the fractional Euler method
(33) is stable.

Next, we examine the stability analysis of the fractional
Adams method and the technique that is similar to the
given in [11] and based on the idea of perturbations in the
initial condition does not lead to the larger error in the
numerical solution.

Theorem 5.9. If yk for k = 1,2, . . . ,n+1 are the solutions
of the fractional Adams methods (38) and f satisfies the
Lipschitz condition with respect to y locally with a Lips-
chitz constant L, then the fractional Adam’s methods (38)
are unconditionally stable.

Proof. Suppose that ŷk and ŷP
n+1 are the initial perturbations

for yk and yP
n+1 for k = 0,1, . . . ,n+1 and n = 1,2, . . . ,N−

1, respectively.
We have the following perturbed equations by using (38)

ŷP
n+1 = y0 +

n

∑
k=0

hα

α
bk

(
f (tk,yk + ŷk)− f (tk,yk)

)
,

ŷn+1 = y0 +
hα

α(α +1)

[ n

∑
k=0

ak,n+1

(
f (tk,yk + ŷk)− f (tk,yk)

)
+an+1,n+1

(
f (tn+1,yP

n+1 + ŷP
n+1)− f (tn+1,yP

n+1)
)]

.

Since an+1,n+1 = 1, we have

|ŷn+1| ≤ |y0|+
hα

α(α +1)

[ n

∑
k=0

(
ak,n+1

∣∣∣ f (tk,yk + ŷk)

− f (tk,yk)
∣∣∣+ ∣∣∣ f (tn+1,yP

n+1 + ŷP
n+1)− f (tn+1,yP

n+1)
∣∣∣]

≤|y0|+
Lhα

α(α +1)

( n

∑
k=0

ak,n+1|ŷk)|+ |ŷP
n+1|

)
≤|y0|+

Lhα

α(α +1)

n

∑
k=0

(
ak,n+1 +

Lhα

α
bk

)
|ŷk|

≤|y0|+
2Lhα

α(α +1)

n

∑
k=0

(
(n+1− k)α−1

)
|ŷk|.

Here we used the fact that f is Lipschitz and inequalities
(42) and (43) and h is sufficiently small.

Finally, We appeal Lemma 5.2 (the Gronwall’s inequality)
to yield

|ŷn+1| ≤C|y0|. (48)

This shows that the Fractional Adam’s methods are uncon-
ditionally stable.
Note that α = 1 than this FFE and FBE methods are re-
duced to the standard Euler methods and the trapezoidal
method and our findings are consistent with the known
facts.

5.3. Error Estimates

In this section, we will derive error estimates for the nu-
merical methods we proposed in the previous section. We
first give error analysis for the FFE method (32) in the
following theorem.
Theorem 5.10. If y(t) solves (13) and yn solves the FFE
(32), and assume that f (t,y(t)) is sufficiently smooth and
satisfies the Lipschitz condition with respect to second
variable with a constant L then we have the following error
estimate for FFE method for α ∈ (0,1].

|y(tn+1)− yn+1| ≤Chα . (49)

Proof. Let the error difference en is defined as en =
y(tn)− yn with e0 = 0. Subtracting (32) from (13) gives
the following error equation

y(tn+1)− yn+1 = y0 +
∫ tn+1

a
(x−a)α−1 f (x,y)dx

−
(
y0 +

n

∑
k=0

hα

α
bk f (tk,yk)

)
=
∫ tn+1

a
(x−a)α−1 f (x,y)dx−

n

∑
k=0

hα

α
bk f (tk,yk).

Therefore, we obtain

en+1 ≤
∣∣∣∫ tn+1

a
(t−a)α−1 f (t,y(t))dx−

n

∑
k=0

hα

α
bk f (tk,y(tk))

∣∣∣
+

n

∑
k=0

hα

α
bk
∣∣ f (tk,y(tk))− f (tk,yk)

∣∣.
Appealing Lemma (5.4) and Lemma (42) and using the
Lipschitz condition, we obtain

|en+1| ≤Chα +
Lhα

α

n

∑
k=0
|ek|.

Now using the discrete Gronwall’s inequality [23], we find
that

|en| ≤Chα .

The proof is now completed.
For more detailed Gronwall’s inequality for fractional dif-
ferential equation, we refer the reader to the paper [23].
With the same argument done in the proof of above theo-
rem, we can prove the following theorem
Theorem 5.11. If y(t) solves (3) and yn solves the FBE
(33), and assume that f (t,y(t)) is sufficiently smooth and
satisfies the Lipschitz condition with respect to second
variable with a constant L then we have the following error
estimate for FBE method for α ∈ (0,1].

|y(tn+1)− yn+1| ≤Chα . (50)
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Next, we will prove an error analysis for the fractional
Adam’s methods in the following theorem

Theorem 5.12. If y(t) solves (13) and yn solves the frac-
tional Adam’s methods (FAM) (38) and assume that
f (t,y(t)) is sufficiently smooth and satisfies the Lipschitz
condition with respect to second variable with a constant L
then there is a constant C independent of h so that we have
the following error estimate for FAM for α ∈ (0,1].

|y(tn+1)− yn+1| ≤Ch1+α . (51)

Proof. Let ek = y(tk)− yk be the error at t = tk, then sub-
tracting the equation (13) from (38) and letting e0 = 0, we
find the following error equation

|y(tn+1)− yn+1|=
∣∣∣∫ tn+1

a
(t−a)α−1 f (t,y(t))dt

−
hα

α(α +1)

n

∑
k=0

(
ak,n+1 f (tk,yk)+an+1,n+1 f (tk+1,yP

k+1)
)∣∣∣

=
∣∣∣∫ tn+1

a
(t−a)α−1 f (t,y(t))dt

−
hα

α(α +1)

[ n

∑
k=0

(
ak,n+1 f (tk,yk)+an+1,n+1 f (tk+1,yP

k+1)

+ak,n+1 f (tk,y(tk))−ak,n+1 f (tk,y(tk))
)

+an+1,n+1 f (tn+1,y(tn+1))−an+1,n+1 f (tn+1,y(tn+1))
]∣∣∣

≤
∣∣∣∫ tn+1

a
(t−a)α−1 f (t,y(t))dt

−
hα

α(α +1)

n+1

∑
k=0

ak,n+1 f (tk,y(tk)
∣∣∣

+
hα

α(α +1)

n

∑
k=0

ak,n+1

∣∣∣ f (tk,y(tk))− f (tk,yk)
∣∣∣

+
hα

α(α +1)
an+1,n+1

∣∣∣ f (tn+1,y(tn+1))− f (tn+1,yP
n+1)

∣∣∣
:=T1 +T2 +T3.

To finish the proof, we need to find the bound for Ti for
i = 1,2,3. The first term T1 is bounded by Lemma 5.6 so
that

T1 ≤Ch2 where C =
‖ f‖∞

2α
T α .

Using the Lipschitz condition on f with a Lipschitz con-
stant L, we have

T2 ≤ L
T α

α(α +1)

n

∑
k=0

ak,n+1

∣∣∣y(tk)− yk

∣∣∣
= L

T α

α(α +1)

n

∑
k=0

ak,n+1ek.

Finally we estimate the last term T3 using the Lipschitz
condition on f with a Lipschitz constant L and an+1,n+1 =

1 as follows

T3 ≤ L
hα

α(α +1)

∣∣∣y(tn+1)− yP
n+1

∣∣∣
=L

hα

α(α +1)

∣∣∣∫ tn+1

a
(t−a)α−1 f (t,y(t))dx−

n

∑
k=0

hα

α
bk f (tk,yk)

∣∣∣
≤L

hα

α(α +1)

∣∣∣∫ tn+1

a
(t−a)α−1 f (t,y(t))dx−

n

∑
k=0

hα

α
bk f (tk,y(tk))

∣∣∣
+L

hα

α(α +1)

∣∣∣ n

∑
k=0

hα

α
bk f (tk,y(tk))−

n

∑
k=0

hα

α
bk f (tk,yk)

∣∣∣
≤C1h1+α +

L2T 2α

α2(α +1)

n

∑
k=0

bkek,

where we used the Lemma 5.5 and C1 :=
LMT α

α(α +1)
.

Thus, we get

en+1 ≤ T1 +T2 +T3

≤Ch2 +C1h1+α +L
T α

α(α +1)

n

∑
k=0

ak,n+1ek +
L2T 2α

α(α +1)

n

∑
k=0

bkek

=Ch2 +C1h1+α +L
T α

α(α +1)

n

∑
k=0

(
ak,n+1 +

LT α

α

)
ek.

Now, the result follows from the well-known Gronwall’s
inequality (see e.g.,[5])

en+1 ≤Ch1+α .

Thus, the proof is now completed.

6. Numerical Examples

In this section, we will give some numerical examples that
verify the theoretical findings that we have established in
the previous sections.

Example 4. Consider the following the fractional differen-
tial equation with α ∈ (0,1],[15]{
(T α

o y)(t) = 2t2−α − t1−α − y2(t)+(t2− t +1)2, t ∈ (0,1]
y(0) = 1.

(52)

The exact solution is y(t) = t2− t +1.
In this example, we test the FFE (32) and FAM (38) and
the numerical results are shown in Table 4 and Table 5. We
measure the error by the maximum norm defined by

‖eN‖ := max0≤k≤N |y(tk)− yk|.

In Table 4, we choose the different mesh size h = 1/N
for N = 20.2`, ` = 1,2,3,4,5. and different α and we
find that the estimated order of convergence (EOC) of
the fractional Euler’s methods is O(h) which support our
theoretical results. The order of convergence is estimated
by the formula log2(‖e(h,T )/e(h,T )). As we see from
the Table 4, the error gets smaller as the fractional order α

closes the 1.
In Table 5, we find the EOC and the maximum errors for
different h and α for the fractional Adams method and we
see that results agree with the theoretical findings.
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h α = 0.3 α = 0.5 α = 0.7 α = 0.9
1/40 1.03e-02 9.37e-03 8.33e-03 7.60e-03
1/80 5.14e-03 4.61e-03 4.05e-03 3.72e-03

1/160 2.56e-03 2.27e-03 1.97e-03 1.82e-03
1/320 1.27e-03 1.12e-03 9.62e-04 8.96e-04
1/640 6.37e-04 5.54e-04 4.68e-04 4.40e-04
EOC 0.9954 1.0155 0.9940 1.0395

Table 4. The maximum error for the fractional forward
Euler method for for Example 4 at T = 1

h α = 0.3 α = 0.5 α = 0.7 α = 0.9
1/40 2.39e-04 3.08e-04 9.42e-04 1.98e-03
1/80 6.09e-05 6.82e-05 3.64e-04 9.05e-04

1/160 2.53e-05 9.03e-06 1.46e-04 3.25e-04
1/320 1.05e-05 3.98e-06 7.02e-05 1.11e-04
1/640 2.10e-06 1.42e-07 2.15e-05 2.59e-05
EOC 1.2546 1.507 1.707 2.092

Table 5. The maximum error for the fractional Adams
method for for Example 4 at T = 1

Example 5. Consider the following linear fractional differ-
ential equation with α ∈ (0,1],{

(T α
o y)(t) =−2y(t), t ∈ (0,2)

y(0) = 1
(53)

The exact solution is y(t) = exp(−2tα/α).

h α = 0.3 α = 0.5 α = 0.7 α = 0.9
1/40 1.08e-03 1.49e-03 3.09e-04 1.16e-03
1/80 8.36e-04 1.20e-03 1.83e-04 5.43e-04

1/160 6.35e-04 9.15e-04 1.13e-04 2.48e-04
1/320 4.81e-04 6.80e-04 6.80e-05 1.11e-04
1/640 3.66e-04 4.97e-04 4.16e-05 4.78e-05
EOC 0.3941 0.472 0.708 1.059

Table 6. The maximum error for the fractional forward
Euler method for for Example 5 at T = 2

h α = 0.3 α = 0.5 α = 0.7 α = 0.9
1/40 2.39e-04 3.08e-04 9.42e-04 1.98e-03
1/80 6.09e-05 6.82e-05 3.64e-04 9.05e-04

1/160 2.53e-05 9.03e-06 1.46e-04 3.25e-04
1/320 1.05e-05 3.98e-06 7.02e-05 1.11e-04
1/640 2.10e-06 1.42e-07 2.15e-05 2.59e-05
EOC 1.2546 1.507 1.707 2.092

Table 7. The maximum error for the fractional Adams
method for for Example 5 at T = 2

Again we use the same mesh size and different α as Exam-
ple 4. The fractional Euler methods and Adams methods
are applied to this problem for T = 2 and the results are
given in Table 6 and Table 7. This example verifies that
numerical results agree with the theoretical findings given
in this paper.

7. Conclusion

In this work, we have proposed two numerical approaches
to derive the numerical methods for fractional differential

equations and examined the stability and convergence of
the fractional Euler method, the fractional Adams method
based on newly defined fractional derivative definition. We
first find the fractional Taylor series for the conformable
fractional derivative. The conformable fractional Taylor se-
ries have been given at the starting point called Maclaurin
fractional Taylor series. To the our best knowledge, this is
is the first paper giving the generalized conformable Tay-
lor series any other point that is different from the initial
point. From this generalization, we obtain the fractional
Euler and fractional Taylor methods of desired order. Fre-
quently used Taylor methods are the Taylor methods of
order 2 and order of 4, so we investigate the fractional Tay-
lor methods of order 2α and of order 4α . We have applied
these proposed methods to FDEs with known solutions.
Generally, numerical methods for FDEs are based on the
integral equations that are inverted from differential equa-
tions, and then one uses some techniques to approximate
the integral equations to derive a numerical scheme for
approximating FDEs. Most of these schemes require large
number of operations and computations. However, the
fractional Taylor methods need only the previous step to
compute the solution at the next step. This shows that the
number of operations and computations increases linearly
unlike the existing methods in the literature. Thus, the
proposed methods in this paper are much easier to apply
and simpler to implement since they involve no special
functions to evaluate, and thus the methods more accurate
when compared to the existing finite difference methods
for FDEs. Our second approach for numerical methods for
FDEs is based on so called product integral rule. Using
this technique, we derive fractional Euler and fractional
Adams methods and we prove stability and error analysis
for these methods. We established new inequalities in this
article. We also gave some numerical examples to verify
the theoretical findings. The methods can be extended to
consider the numerical methods for solving the fractional
partial differential equations that will be the future work.

Acknowledgement

The author would like to thank the anonymous reviewer
for his/her valuable and constructive comments and sug-
gestions that helped to improve the manuscript.

References

[1] Zaslavsky, G. M., 2012. Chaos, fractional kinetics,
and anomalous transport, Phys. Rep., 371 (2012),
461–580.

[2] Miller, K., Ross, B. 1993. An Introduction to the
Fractional Calculus and Fractional Differential Equa-
tions,1st Edition. Wiley, New York, 1993.

[3] Podlubny, I. 1999. Fractional Differential Equations,
Mathematics in Science and Engineering. Academic
Press Inc., San Diego, CA, 1999.

[4] Khalil, R., Horani, M. ,Yousef, A., Sababheh, M. 2014.
A new definition of fractional derivative. Journal of
Computational and Applied Mathematics, 264 (2014),
65–70.

862
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