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ABSTRACT. This paper proposes an improvement to the Differential Evolution 
algorithm using a fuzzy logic augmentation. The main contribution is to 
dynamically adapt the parameters of mutation (F) and crossover (CR) using a 
fuzzy system, with the aim that the fuzzy system calculates the optimal 
parameters of the differential evolution algorithm during execution for 
obtaining better solutions, in this way arriving to the proposed new fuzzy 
differential evolution algorithm. In this paper experiments are performed with 
a set of mathematical functions using the original algorithm and the proposed 
method. Based on a statistical comparison of the original and proposed method, 
we can state that the fuzzy differential evolution algorithm outperforms the 
original differential evolution method. 

 

1.INRODUCTION 

Recently the use of fuzzy logic in evolutionary computing is becoming a common approach to 
improve the performance of the algorithms [20] [25] [26]. In most of the cases in the literature 
the parameters involved in the algorithms are determined by trial and error. In this aspect we 
propose the application of fuzzy logic, which can then be responsible of performing the dynamic 
adjustment of the mutation and crossover parameters in the Differential Evolution (DE) 
algorithm. This has the goal of providing better performance to Differential Evolution with a 
fuzzy logic augmentation of this algorithm. 

Fuzzy logic or multi-valued logic is based on the fuzzy set theory proposed by Zadeh in 
1965, which can help us with modeling expert knowledge, through the use of if-then fuzzy rules. 
Fuzzy set theory provides a systematic calculus to deal with linguistic information, and improves 
the numerical computation by using linguistic labels stipulated by membership functions [12]. 
Differential Evolution (DE) is one of the latest evolutionary algorithms that have been proposed. 
It was created in 1994 by Price and Storn in an attempt to solve the Chebychev polynomial 
problem. The following years these two authors also proposed the DE for optimization of 
nonlinear and non-differentiable functions on continuous spaces. 

The DE algorithm is a direct search stochastic method, which has proven to be effective, 
efficient and robust in a wide variety of applications, such as the learning of a neural network, 
optimal filter design, and aero dynamical optimization. The DE has a number of important 
features, which makes it attractive for solving global optimization problems, among them are the 
following: it has the ability to handle non-differentiable, nonlinear and multimodal objective 
functions, and usually converges to the optimal solution with few control parameters, etc. 
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The DE belongs to the class of evolutionary algorithms that is based on populations. It 

uses two evolutionary mechanisms for the generation of descendants: mutation and crossover; 
finally a replacement mechanism, which is applied between the father vector and son vector 
determining who survives into the next generation. There exist works, where they are currently 
using fuzzy logic to optimize the performance of metaheuristic algorithms, to name a few, papers 
such as: [1], [2], [4], [6], [7], [31], [8],[10], [29], [22], [27] and [30]. 

Similarly, there are papers on Differential Evolution (DE) applications that use this 
algorithm to solve real world problems. To mention a few: [5], [11], [3], [13], [18], [20],[21], 
[24],[26],[33], [19] and [21]. 

The main contribution of this paper is the proposed Fuzzy Differential Evolution approach that 
is based on using fuzzy systems to dynamically adapt the parameters of the DE algorithm to 
improve the exploration and exploitation abilities of the method. The proposed Fuzzy 
Differential Evolution approach is different from existing works in the literature and for this 
reason is the main contribution of this paper. 

This paper is organized as follows: Section 2 shows the concept of the Differential Evolution 
algorithm. Section 3 describes the proposed methods. Section 4 outlines the Benchmark 
Functions, Section 5 shows experiments with the Differential Evolution algorithm varying F 
(mutation parameter), Section 6 shows experiments with the algorithm of Differential Evolution 
varying CR (crossover parameter), Section 7 presents a fuzzy system for dynamic change of F 
and Cr, Section 8 shows the Statistical Tests, Section 9 shows the Wilcoxon test statistics and 
Section 10 offers theConclusions. 

2.DIFFERENTIAL EVOLUTION 
 

Differential Evolution (DE) is an optimization method belonging to the category of evolutionary 
computation that can be applied in solving complex optimization problems. 

The DE is composed of 4 basic steps: initialization, mutation, crossover, selection. 

This is a non-deterministic technique based on the evolution of a vector population (individuals) 
of real values representing the solutions in the search space. The generation of new individuals 
is carried out by the differential crossover and mutation operators [16]. 

The operation of the algorithm is explained below: 

Population structure 

The Differential Evolution algorithm maintains a pair of vector populations, both of which 
contain Np D-dimensional vectors of real-valued parameters [17]. 

Px,g= (xi,g), i=0,1, … , Np,  g=0,1, …, gmax (1) 

xi,g = (xj,i,g), j=0,1, …, D-1 (2) 

Pv,g =(vi,g), i=0,1, …, Np-1, g=0,1, …, gmax (3) 

vi,g = (vj,I,g),  j=0,1, …, D-1 (4) 

Each vector in the current population is recombined with a mutant vector to produce a trial 
population, Pu, mutant vector ui,g: 
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Pv,g =(ui,g), i=0,1, …, Np-1, g=0,1, …, gmax 
(5) 

ui,g = (uj,I,g),  j=0,1, …, D-1 (6) 

 

 

Initialization 

Before initializing the population, the upper and lower limits for each parameter must be 
specified. These 2D values can be collected by two initialized vectors, D-dimensional, bL and bU, 
for which the subscripts L and U indicate the lower and upper limits respectively. Once the 
initialization limits have been specified a number generator randomly assigns each parameter in 
every vector a value within the set range. For example, the initial value    (g = 0) of the j-th 
vector parameter is i-th: 

xj,i,0 = randj(0,1) ∙ (bj,U – bj,L)+bj,L (7) 

Mutation 

In particular, the differential mutation uses a random sample equation showing how to combine 
three different vectors chosen randomly to create a mutant vector. 

vi,g = xr0,g + F ∙ (xr1,g – xr2,g) 

 
(8) 

The scale factor, F ∈ (0,1) is a positive real number that controls the rate at which the population 
evolves. While there is no upper limit on F, the values are rarely greater than 1.0. 

Crossover 

To complement the differential mutation search strategy, DE also uses uniform crossover. This is 
sometimes known as discrete recombination (dual). In particular, DE crosses each vector with a 
mutant vector: 

( )( ) , ,

, ,

0,1     

, , , .( )  j randj i g

j i g

if rand Cr or j jv

i g j i g x otherwiseU u
 =

= =  

(9) 

 

 

Selection 

If the test vector, Ui,ghas a value of the objective function equal to or less than, its target vector, Xi, 

g, it replaces the target vector in the next generation; otherwise, the target retains its place in the 
population for at least another generation [16]. 
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3.PROPOSED METHOD 

The Differential Evolution (DE) Algorithm is a powerful search technique used for solving 
optimization problems. In this paper a new algorithm called Fuzzy Differential Evolution (FDE) 
with dynamic adjustment of parameters is proposed. The main goal is that the fuzzy system can 
dynamically provide to the algorithm with the optimal parameters during execution for the best 
performance of the DE algorithm. 

We propose exploring the algorithm first by modifying in a separate fashion the mutation and 
crossover parameters respectively. This means having two fuzzy systems for each of the two 
parameters, which means that to dynamically modify the F parameter (mutation) we will have a 
fuzzy system that modifies F in an increase fashion and another fuzzy system that modifies F in a 
decrease fashion. In the same form we will design two fuzzy systems for the Cr (crossover) 
parameter that also changes in increment and decrement. Finally, we will build a fuzzy system 
which gives as output variables both the crossover and mutation parameters, with the idea that 
this fuzzy system can produce better results and to compare with other algorithms that have a 
fuzzy system as well as the algorithm that we proposed. 
In this case the parameters that the fuzzy system optimizes are the crossover and mutation, as 
illustrated in Figure 1. 

 

Fig. 1.The proposed Differential Evolution (DE) algorithm with a fuzzy system to dynamically 
adapt parameters. 
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4. BENCHMARK FUNCTIONS 

In this paper, we consider 6 Benchmark functions for the tests, which are listed below [28] and 
illustrated in Figure 2. 

 

Fig.2 Benchmark mathematical functions 

5.EXPERIMENTS WITH THE DIFFERENTIAL EVOLUTION ALGORITHM VARYING F (PARAMETER 
VARIABLE) 

 
In this section we show simulation results for the Benchmark functions by changing manually 
the F parameter and then by dynamically changing F using a fuzzy system. 
 

5.1 EXPERIMENTS VARYING F MANUALLY 
 

We perform experiments with the of Differential Evolution algorithm for each function, by 
manually changing the F parameter in a range of 0.1 to 0.9 and performing 30 experiments for 
each value of F, in other words 30 experiments for F = 0.1, 30 experiments for 0.2 and up to F = 
0.9, averages are obtained for each value of F. The generations vary in a range of 100 to 5000, 
and an overall average is obtained at the end. Table 1 shows the parameters used to perform the 
experiments where: NP is the number of population, D is the number of the dimension of the 
vector, CR is the crossing, F is the mutation, GEN is the number of generations, L is the lower 
limit and H is the upper limit. 

 
Table 1 Parameters of functions. 

Parameters 
NP = 250 

D = 50 
CR = 0.1 

GEN = 100 hasta 5000 
L = -500 
H = 500 

●Sphere Function     ●Griewank Function   ● Schwefel Function 

●Rastringin Function    ●Ackley Function●Rosenbrock Function 
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For the Ackley and Rosenbrock functions we modified the search spaces, taking the values 
recommended in the literature, what we were looking for the functions used that would have 
equal parameters for the behavior of the Differential Evolution algorithm, but with these two 
functions we did not obtained good results and Table 2 shows the parameters used for the 
Ackley and Rosenbrock functions. 
 
 

Table 2 Ackley and Rosenbrock function parameters. 
Function Ackley Function Rosenbrock 

NP = 250 NP = 250 
D = 50 D = 50 

CR = 0.1 CR = 0.1 
GEN = 100 hasta 5000 GEN = 100 hasta 5000 

L = -32.768 L = - 2.048 
H = 32.768 H = 2.048 

 
Table 3 shows the averages obtained by generation for each function where the variable F is 
modified manually. 

Table 3.Overall average by function modifying F manually. 

 

5.2 FUZZY SYSTEM TO DYNAMICALLY MODIFY F 
 

In previous experiments we realize that as more generations are used the results in the 
functions are better, the next step is to develop a fuzzy system that can help change the F 
parameter, and we have decided to develop a fuzzy system where the F parameter increases and 
another where F decreases. It is important to note that for the experiments, the parameters of 
Tables 1 and 6 are used for this set of functions. 
This work considers two fuzzy systems with which the experiments were performed. It 
considers a fuzzy system which increases the F parameters and another that decreases the F 
parameter. 

We first describe the fuzzy system, in which F is increased dynamically. 

• Contains one input and one output 
• Is of Mamdani type. 

Overall average by manually modifying F 
Generations 

 100 500 1000 2000 3000 4000 5000 

Sphere 2.75E+0
5 

3.42E+0
3 

3.91E+0
1 

9.61E-03 2.39E-06 6.10E-10 1.54E-13 

Griewank 6.99E+0
1 

1.37E+0
0 

2.07E-01 8.79E-04 2.22E-07 5.78E-11 1.52E-14 

Schwefel 1.04E+0
4 

8.10E+0
3 

6.39E+0
3 

4.04E+0
3 

5.49E+0
2 

1.29E-01 1.32E-01 

Rastringin 2.78E+0
5 

3.77E+0
3 

2.25E+0
2 

6.31E+0
1 

4.37E+0
1 

3.12E+0
1 

1.66E+0
1 

Ackley 1.36E+0
1 

1.89E+0
0 

2.77E-01 1.43E-03 2.07E-05 3.27E-07 5.11E-09 

Rosenbroc
k 

1.93E+0
2 

3.91E+0
1 

1.46E+0
1 

5.46E-02 9.64E-06 1.77E-09 3.47E-13 
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• All membership functions are triangular. 
• The input of the fuzzy system is defined by the number of generations and is granulated 

into three membership functions and they are: MF1 = 'Low'[-0.5 0 0.5],   
 MF2 = 'Medium' [0 0.5 1], MF3 = 'High'[0.5 1 1.5]. 

• The output of the fuzzy system is the F parameter is granulated in three membership 
functions which are:  MF1 = 'Low', [-0.5 0 0.5], MF2 = 'Medium', [0 0.5 1] MF3 = 'High', 
[0.5 1 1.5]. 

• The fuzzy system uses 3 rules and what it does is to increase the value of the F variable 
in a range of (0, 1). 

The fuzzy rules are presented in Fig. 3. 

 

Fig. 3 Rules of the fuzzy system. 

Then the fuzzy system, in which F is dynamically decreased, is described as follows: 

• Contains one input and one output 
• Is of Mamdani type. 
• All functions are triangular. 
• The input of the fuzzy system is the number of generations and divided into three 

membership functions and they are: MF1 = 'Low'[-0.5 0 0.5],   MF2 = 'Medium' [0 0.5 1], 
MF3 = 'High'[0.5 1 1.5]. 

• The output of the fuzzy system and the F parameter is divided in three membership 
functions which are:  MF1 = 'Low', [-0.5 0 0.5], MF2 = 'Medium', [0 0.5 1] MF3 = 'High', 
[0.5 1 1.5]. 

• The fuzzy system uses 3 rules and what it does is decreased the value of the F variable in 
a range of (0.1). 
 

The fuzzy rules are presented in Fig. 4. 

 

Fig. 4 Rules of the fuzzy system. 

Experiments using the two proposed fuzzy systems where F dynamically increases and then 
decreases are performed. There are 30 experiments for each number of generations obtaining 
averages for each 30 experiments, where the generations range from 100 up to 5000, the value 
of F is dynamically changing between (0,1). Then we perform a comparison of the Benchmark 
functions with the Differential Evolution algorithm changing F manually, first with the fuzzy 
Differential Evolution (F in increase) and then with the fuzzy Differential Evolution (F in 
decrease).  
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Table 4 shows the comparison of results for the Sphere function, where the first column uses the 
general averages for each generation of Table 3 of the Differential Evolution algorithm. 
 
 
 
 
 

Table 4. Simulation results of the Sphere function. 

 

 

A comparison of results of the Griewank function, where the first column uses the general 
averages for each generation of Table 3 of the Differential Evolution algorithm is presented in 
Table 5. 

Table 5.  Simulation results of the Griewank function. 

 

A comparison of results of the Schwefel function, where the first column uses the General 
averages for each generation of Table 3 of Differential Evolution algorithm is presented in Table 
6. 

 

 

 

 

Sphere Function 
Generations Differential 

Evolution 
Fuzzy Differential Evolution 

with Increasing F 
Fuzzy Differential Evolution 

with Decreasing F 

100 2.75E+05 2.65E+05 1.92E+05 

500 3.42E+03 3.59E+01 1.99E+01 

1000 3.91E+01 4.82E-04 2.41E-04 

2000 9.61E-03 7.29E-14 3.67E-14 

3000 2.39E-06 1.32E-23 5.56E-24 

4000 6.10E-10 1.87E-33 9.45E-34 

5000 1.54E-13 3.20E-43 1.36E-43 

Griewank  Function 
Generations Differential 

Evolution 
Fuzzy Differential 

Evolution with 
Increasing F 

Fuzzy Differential 
Evolution with Decreasing 

F 
100 6.99E+01 6.71E+01 4.81E+01 

500 1.37E+00 6.94E-01 5.14E-01 

1000 2.07E-01 3.42E-05 1.84E-05 

2000 8.79E-04 5.22E-15 2.28E-15 

3000 2.23E-07 0.00E+00 0.00E+00 

4000 5.79E-11 0.00E+00 0.00E+00 

5000 1.53E-14 0.00E+00 0.00E+00 
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Table 6. Simulation results of the Schwefel function. 

 

A comparison of results of the Rastringin function, where the first column uses the general 
averages for each generation of Table 3 of the Differential Evolution algorithm is illustrated in 
Table 7. 

Table 7.  Simulation results of the Rastringin function. 

 

A comparison of results of the Ackley function, where the first column uses the general averages 
for each generation of Table 3 of the Differential Evolution algorithm is summarized in Table 8. 

Table 8. Simulation results of the Ackley function. 

 

A comparison of results of the Rosenbrock function, where the first column uses the general 
averages for each generation of Table 3 of the Differential Evolution algorithm is presented in 
Table 9. 

Schwefel Function 
Generations Differential 

Evolution 
Fuzzy Differential Evolution 

with Increasing F 
Fuzzy Differential Evolution 

with Decreasing F 
100 1.04E+04 1.12E+04 1.09E+04 

500 8.10E+03 5.19E+03 4.84E+03 

1000 6.39E+03 1.45E+01 3.96E+00 

2000 4.04E+03 6.36E-04 6.36E-04 

3000 5.49E+02 6.36E-04 6.36E-04 

4000 1.29E-01 6.36E-04 6.36E-04 

5000 1.32E-01 6.36E-04 6.36E-04 

Rastringin Function 
Generations Differential 

Evolution 
Fuzzy Differential Evolution 

with Increasing F 
Fuzzy Differential Evolution 

with Decreasing F 

100 2.78E+05 2.68E+05 1.85E+05 

500 3.77E+03 3.79E+02 3.42E+02 

1000 2.25E+02 1.44E+02 1.51E+02 

2000 6.31E+01 7.64E+01 8.47E+01 

3000 4.37E+01 4.75E+01 5.79E+01 

4000 3.12E+01 2.42E+01 3.76E+01 

5000 1.66E+01 1.22E-05 1.13E-04 

Ackley   Function 
Generations Differential 

Evolution 
Fuzzy Differential Evolution 

with Increasing F 
Fuzzy Differential Evolution 

with Decreasing F 

100 1.36E+01 1.46E+01 1.33E+01 

500 1.89E+00 4.36E-01 2.60E-01 

1000 2.77E-01 8.44E-04 5.98E-04 

2000 1.43E-03 1.05E-08 7.54E-09 

3000 2.07E-05 1.30E-13 1.02E-13 

4000 3.27E-07 8.94E-15 7.52E-15 

5000 5.11E-09 7.99E-15 6.81E-15 
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Table 9.  Simulation results of the Rosenbrock function. 

 

Comparing the values of Table 9 it can be noted that better results are obtained when using 
Fuzzy Differential Evolution with a Decreasing F parameter. 

In Fig. 5 we show the convergence graphs of the 6 benchmark functions used in the study, where 
the original Differential Evolution algorithm, the Fuzzy Differential Evolution with increasing F 
and Fuzzy Differential Evolution with decreasing F are plotted, and we can clearly notice how 
both fuzzy DE variants outperform the traditional DE. 

Fig. 5 Comparison for the set of Benchmark functions for the F parameter 

 

6. EXPERIMENTATIONS WITH THE DIFFERENTIAL EVOLUTION ALGORITHM WITH A VARYING 
CR (CROSSOVER PARAMETER) 

 
In this section we present results of the Fuzzy Differential method with dynamic changes in the 
crossover parameter. 
 
 

Rosenbrock   Function 
Generations Differential 

Evolution 
Fuzzy Differential Evolution 

with Increasing F 
Fuzzy Differential Evolution 

with Decreasing F 
100 1.93E+02 1.66E+02 1.42E+02 

500 3.91E+01 4.45E+01 3.44E+01 

1000 1.46E+01 3.02E-01 1.55E+00 

2000 5.46E-02 4.32E-12 2.21E-10 

3000 9.64E-06 7.95E-23 2.02E-20 

4000 1.78E-09 0.00E+00 0.00E+00 

5000 3.47E-13 0.00E+00 0.00E+00 
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6.1 EXPERIMENTS VARYING CR MANUALLY 
 

For the experiments of the CR (crossover) parameter we use the same methodology with which 
we performed the experiments of the F parameter (mutation). We first performed the 
experiments with the traditional Differential Evolution algorithm by changing CR manually, and 
we use the same set of Benchmark functions for experiments with CR (crossover) and the 
parameters of Tables 1 and 2. 

Table 11 shows the averages obtained by generation for each function where the variable CR 
parameter is modified manually. 

Table 11.Overall average by function modifying CR manually. 

 

 

 

6.2 FUZZY SYSTEM TO DYNAMICALLY MODIFY CR 
 

The experiments where we vary CR manually using the Differential Evolution algorithm do not 
show an improvement in our set of functions. The following experiments are now performed 
using the Fuzzy Differential Evolution algorithm, but now we dynamically change CR, as we did 
with F, and we perform this in two different ways of varying CR, in increment and decrement. It 
is important to note that for the experiments the parameters of Tables 15 and 20 are used for 
the set of functions. 

This work considers two fuzzy systems with which the experiments are performed. A fuzzy 
system increases that the CR parameter and another that decreases the CR parameter 
dynamically in the algorithm. 

We first describe the fuzzy system, in which CR is dynamically increased. 

• Contains one input and one output 
• Is of Mamdani type. 
• All membership functions are triangular. 
• The input of the fuzzy system is defined by the number of generations and granulated 

into three membership functions and they   are: MF1 = 'Low'[-0.5 0 0.5],   MF2 = 
'Medium' [0 0.5 1], MF3 = 'High'[0.5 1 1.5]. 

• The output of the fuzzy system is the CR parameter and is granulated into three 
membership functions which are:  MF1 = 'Low', [-0.5 0 0.5], MF2 = 'Medium', [0 0.5 1] 
MF3 = 'High', [0.5 1 1.5]. 

• The fuzzy system uses 3 rules and what it does is to increase the value of the CR 
parameter in a range from 0 to 1. 

Overall average by manually modifying CR 

Generations 

Function  100 500 1000 2000 3000 4000 5000 

Sphere 1.18E+04 1.60E+03 1.69E+03 1.98E+03 2.05E+03 2.00E+03 2.30E+03 

Griewank 3.83E+00 5.65E-01 6.70E-01 5.30E-10 0.00E+00 0.00E+00 0.00E+00 

Schwefel 8.37E+03 2.60E+02 1.10E+02 1.09E+02 1.17E+02 1.17E+02 2.28E+01 

Rastringin 1.24E+03 4.32E+02 3.53E+02 3.78E+02 4.00E+02 3.19E+02 3.97E+02 

 Ackley 4.23E+00 6.75E-01 6.50E-01 6.07E-01 6.27E-01 6.10E-01 6.20E-01 

Rosenbrock 3.40E+01 4.24E+00 3.76E+00 3.82E+00 3.73E+00 3.80E+00 3.90E+00 
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The fuzzy rules are shown in Fig. 6. 

 

Fig. 6 Rules of the fuzzy system. 

 

Then the fuzzy system, in which CR is dynamically decreased, is described as follows: 

• Contains one input and one output 
• Is Mamdani type. 
• All functions are triangular. 
• The input of the fuzzy system is the number of generations and it is divided into three 

membership functions and they are: MF1 = 'Low'[-0.5 0 0.5],   MF2 = 'Medium' [0 0.5 1], 
MF3 = 'High'[0.5 1 1.5]. 

• The output of the fuzzy system and the F parameter is divided in three membership 
functions, which are:  MF1 = 'Low', [-0.5 0 0.5], MF2 = 'Medium', [0 0.5 1] MF3 = 'High', 
[0.5 1 1.5]. 

• The fuzzy system uses 3 rules and what it does is to decrease the value of the CR 
parameter in a range of 0 to 1. 
 

The fuzzy rules are shown in Fig. 7. 
 

 

Fig. 7 Rules of the fuzzy system 

Experiments using the two proposed fuzzy systems, where CR dynamically increases and then 
decreases were performed. There are 30 experiments for each case with different number of 
generations, obtaining averages for each case of 30 experiments, where the generations range 
from 100 up to 5000 and the value of CR is dynamically changing between 0 and 1. 
 

Then we perform a comparison of the Benchmark functions with the Differential 
Evolution algorithm changing CR manually, the Fuzzy Differential Evolution (CR in increase) and 
the fuzzy Differential Evolution (CR in decrease). 

 
Table 12 shows the comparison of results for the Sphere function, where the first column 

shows the general averages for each generation of Table 11 of the original Differential Evolution 
algorithm. 
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Table 12. Simulation results of the Sphere function. 

 

Table 13 shows the comparison of results of the Griewank function, where the first column 
shows the general averages for each generation of Table 11 of the Differential Evolution 
algorithm. 

 
 
 

Table 13. Simulation results of the Griewank function. 

 

 

 

 

 

 
 

Table 14 summarizes the comparison of results of the Schwefel function, where the first column 
shows the general averages for each generation of Table 11 of the traditional Differential 
Evolution algorithm. 

Table14. Simulation results of the Schwefel function. 

Sphere Function 
Generations Differential 

Evolution 
Fuzzy Differential 

Evolution with 
Increasing CR 

Fuzzy Differential 
Evolution with 
Decreasing CR 

100 1.18E+04 1.38E+03 1.26E+03 

500 1.60E+03 1.04E-05 6.48E+01 

1000 1.69E+03 6.47E-07 2.43E+02 

2000 1.98E+03 3.58E-17 6.52E+02 

3000 2.05E+03 2.60E-11 3.84E+02 

4000 2.00E+03 1.15E-18 5.51E+02 

5000 2.36E+03 5.62E-05 7.36E+02 

Griewank Function 
Generations Differential 

Evolution 
Fuzzy Differential 

Evolution with 
Increasing CR 

Fuzzy Differential 
Evolution with Decreasing 

CR 
100 3.83E+00 1.37E+00 1.32E+00 

500 5.65E-01 1.14E-06 4.65E-02 

1000 6.70E-01 2.39E-08 2.57E-01 

2000 5.30E-10 0.00E+00 4.30E-01 

3000 0.00E+00 0.00E+00 5.77E-01 

4000 0.00E+00 0.00E+00 6.97E-01 

5000 0.00E+00 0.00E+00 8.98E-01 

Schwefel Function 
Generations Differential 

Evolution 
Fuzzy Differential 

Evolution with 
Increasing CR 

Fuzzy Differential 
Evolution with 
Decreasing CR 

100 8.37E+03 1.11E+04 6.57E+03 

500 2.60E+02 5.14E+03 3.91E-02 

1000 1.10E+02 1.52E+01 6.36E-04 

2000 1.09E+02 6.36E-04 6.36E-04 

3000 1.17E+02 6.36E-04 6.36E-04 

4000 1.17E+02 6.36E-04 6.36E-04 

5000 1.23E+02 6.36E-04 6.36E-04 
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Table 15 illustrates the comparison of results of the Rastringin function, where the first column 
shows the general averages for each generation of the Table 11 of the Differential Evolution 
algorithm. 
 

 

Table 15. Simulation results of the Rastringin function 

 

 

 

 

 

 
 
 
 

 
Table 16 presents the comparison of results of the Ackley function, where the first column 
shows the general averages for each generation of Table 11 of the Differential Evolution 
algorithm. 
 
 

Table 16. Simulation results of the Ackley function 

 

 

 
 
 
 
 
 
 
 
 

 
 
 

Table 17 summarizes the comparison of results of the Rosenbrock function, where the first 
column uses the general averages for each generation of Table 11 of the Differential Evolution 
algorithm. 

 

 

 

Rastringin Function 
Generations Differential 

Evolution 
Fuzzy Differential 

Evolution with 
Increasing CR 

Fuzzy Differential 
Evolution with 
Decreasing CR 

100 2.78E+05 2.68E+05 1.85E+05 

500 3.77E+03 3.79E+02 3.42E+02 

1000 2.25E+02 1.44E+02 1.51E+02 

2000 6.31E+01 7.64E+01 8.47E+01 

3000 4.37E+01 4.75E+01 5.79E+01 

4000 3.12E+01 2.42E+01 3.76E+01 

5000 1.66E+01 1.22E-05 1.13E-04 

Ackley   Function 
Generations Differential 

Evolution 
Fuzzy Differential 

Evolution with 
Increasing CR 

Fuzzy Differential 
Evolution with 
Decreasing CR 

100 4.23E+00 2.98E+00 2.79E+00 

500 6.75E-01 3.37E-07 1.36E-01 

1000 6.50E-01 6.09E-06 3.34E-01 

2000 6.07E-01 8.77E-12 6.38E-01 

3000 6.27E-01 4.22E-11 1.07E+00 

4000 6.10E-01 3.43E-08 1.12E+00 

5000 6.20E-01 4.44E-15 1.08E+00 



197 

 

Table 17. Simulation results of the Rosenbrock function 

 

 

 

 

 

 

 

In Fig. 8 we show the convergence graphs of the benchmark functions used in the experiments, 
where the original Differential Evolution algorithm, the Fuzzy Differential Evolution with 
increasing CR and the Fuzzy Differential Evolution decreasing CR are plotted. From this Figure it 
can be concluded that either one of the two fuzzy differential evolution variants outperforms the 
traditional DE algorithm. 

 

Fig.8 Comparison of the set of Benchmark functions for the CR parameter. 

 

 

 

Rosenbrock Function 
Generations Differential 

Evolution 
Fuzzy Differential 

Evolution with 
Increasing CR 

Fuzzy Differential 
Evolution with 
Decreasing CR 

100 3.40E+01 3.45E+01 2.22E+01 

500 4.24E+00 3.30E-02 4.69E+00 

1000 3.76E+00 8.12E-08 3.18E+05 

2000 3.82E+00 3.30E-02 3.62E+05 

3000 3.73E+00 0.00E+00 8.31E+00 

4000 3.86E+00 3.90E-29 9.09E+00 

5000 3.95E+00 0.00E+00 8.60E+00 
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7.FUZZY SYSTEM FOR DYNAMIC ADAPTATION OF F AND CR 
 

In this section we consider dynamically changing both the parameters in Fuzzy Differential 
Evolution, namely the F (mutation) and CR (crossing) parameters, at the time of executing the 
Differential Evolution algorithm. 
 

Based on the experiments performed previously, where the F and CR parameters are 
changed separately by a fuzzy system, we decided to consider the form of the best results that 
we obtained for our set of benchmark functions. We consider the F parameter to change in 
decrease and for the CR parameter decided to build two fuzzy systems where, CR changes in 
increment and decrement, because in this parameter for certain functions is better to decrease 
and for others to increase, and with this we intend to obtain better results by having the two 
dynamic parameters working in simultaneously the fuzzy Differential Evolution algorithm. 

 

The structure of the fuzzy system, where the F and CR parameters vary in a decrease fashion is 
as follows: 

• Contains one input and two outputs and is of Mamdani type. 
• All membership functions are triangular. 
• The input of the fuzzy system is defined by the generations and is granulated into three 

membership functions and they are: MF1 = 'Low'[-0.5 0 0.5],   MF2 = 'Medium' [0 0.5 1], 
MF3 = 'High'[0.5 1 1.5]. 

• The output of the fuzzy system corresponding to the F parameter is granulated into three 
membership functions, which are:  MF1 = 'Low', [-0.5 0 0.5], MF2 = 'Medium', [0 0.5 1] 
MF3 = 'High', [0.5 1 1.5]. 

• The output of the fuzzy system corresponding to the CR parameter is granulated into 
three membership functions, which are:  MF1 = 'Low', [-0.5 0 0.5], MF2 = 'Medium', [0 
0.5 1] MF3 = 'High', [0.5 1 1.5]. 

• The fuzzy system uses 3 rules and what it does is to decrease the value of the variables F 
and CR in the range (0, 1). 
 

The fuzzy rules are shown in Fig. 9. 

 

Fig. 9 Rules of the fuzzy system 

For the case of the fuzzy Differential Evolution algorithm that decreases the F and Cr parameters 
dynamically within a range of (0, 1), there are 30 experiments for each number of generations, 
where the generations range from 100 up to 5000. In this case for 100 generations 30 
experiments are performed and the averages are obtained for each number of generations. 
We performed experiments using the Fuzzy Differential Evolution algorithm, where the number 
of generations is used as the input and F and CR are used as outputs and these change in 
decrease, using the same set of Benchmark functions for experiments. The parameters to use for 
the first 4 functions Sphere, Griewank, Schwefel, Rastringin, are shown in Table 1 and for the 
Ackley and Rosenbrock functions the search space as shown in Table 2. Table 18 shows the 
results of the set of Benchmark functions we are using for the experiments and Fig. 10 represent 
the comparison. 
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Table 18. Results using the fuzzy system with two outputs F and CR in decrease 

Fuzzy Differential Evolution algorithm(F and CR in decrease) 

Generations Functions 

Sphere Griewank Schwefel Rastringin Ackley Rosenbrock 

100 1.88E+05 4.64E+01 1.32E+04 1.93E+05 1.31E+01 1.61E+02 

500 1.54E+02 1.03E+00 1.09E+04 5.83E+02 9.94E-01 6.35E+01 

1000 2.50E-02 1.04E-03 9.64E+03 2.57E+02 6.88E-03 4.44E+01 

2000 6.95E-10 2.64E-11 7.67E+03 2.03E+02 1.27E-06 2.29E+01 

3000 2.08E-17 0.00E+00 6.09E+03 1.76E+02 2.12E-10 7.47E+00 

4000 6.51E-25 0.00E+00 4.30E+03 1.61E+02 4.25E-14 5.02E-01 

5000 1.84E-32 0.00E+00 2.24E+03 1.44E+02 6.34E-15 2.33E-02 

 

 

 

Fig. 10 Comparison of benchmark functions. 

As we can note the results using the two parameters F and CR dynamically changing do not help 
to improve the results in the Fuzzy Differential Evolution algorithm, and we consider that the 
reason is that both parameter are not interacting in a correct way for improving performance in 
the differential evolution algorithm. 

8.STATISTICAL TESTS 
 

In this section we perform the statistical comparison of the original Differential Evolution 
algorithm with our proposed Fuzzy Differential Evolution method, and we perform the tests for 
the set of Benchmark functions used in this paper. The Fuzzy Differential Evolution algorithm 
that was considered is where the F (mutation) parameter changes dynamically in a decrease 
fashion, which gave us the better results in all functions used. 

We perform statistical Z tests of two samples, and made a comparison between the original 
Differential Evolution algorithm and the proposed Fuzzy Differential Evolution, and this 
comparison is executed in the following manner: 
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Experiments with a manual Differential Evolution algorithm were performed with 5000 
generations where F is changed manually, since the F parameter varies from 0.1 to 0.9 and for 
each F value there are 30 experiments, this gives us a total of 270 experiments of which we will 
take a random sample of 30. Fuzzy Differential Evolution algorithm, where 30 experiments were 
performed with the F parameter changing dynamically, therefore this is our sample to make the 
comparison. 

The statistical test used for comparison is the z-test, whose parameters are defined in Table 20. 

Table 20. Parameters for statistical testing 

 

 

 

 
 

 
The null hypothesis states that the average of the Fuzzy Differential Evolution algorithm is 
greater than or equal to the average of the Differential Evolution algorithm, and on the other 
hand the alternative hypothesis states that the Fuzzy Differential Evolution algorithm average is 
lower than the average of the Differential Evolution algorithm, with a region of rejection for all 
values below - 1.96. 
The equation for the test that was applied is as follows: 
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The data from the values of the means and standard deviations for the original method and the 
proposed method are in Table 21 for the set of benchmark functions used. 

Table 21.  Average and standard deviation values for the set of Benchmark functions 

Original method Proposed method 

Sphere Mean 4.24E-12 Sphere Mean 4.52E-53  
S.E. 6.75E-13 

 
S.E 1.28E-53 

Griewank Mean 1.37467-13 Griewank Mean 0.00E+00  
S.E. 3.28E-14 

 
S.E 0.00E+00 

Schwefel Mean 3.26E-01 Schwefel Mean 6.36E-04  
S.E. 5.24E-01 

 
S.E 0.00E+00 

Rastringin Mean 2.43E+01 Rastringin Mean 2.35E-01  
S.E. 2.85E+01 

 
S.E 2.99E-01 

Ackley Mean 1.69E-08 Ackley Mean 6.81E-15 

 S.E. 2.28E-08  S.E 1.70E-15 

Rosenbrock Mean 9.87E-13 Rosenbrock Mean 0.00E+00 

 S.E. 1.49E-12  S.E 0.00E+00 

 

The parameters for the tests are the ones in Table 20 where the null hypothesis tells us that the 
average of the Fuzzy Differential Evolution algorithm is greater than or equal to the average of 
the Differential Evolution algorithm. On the other hand, the alternative hypothesis establishes 

Parameter Value 
Level of significance 95% 

Alpha 5 % 
H0 µ1≥µ2 
Ha µ1<µ2(claim) 

Critical value -1.96 
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that the average of the Fuzzy Differential Evolution algorithm is less than the average of 
differential evolution algorithm, with a region of rejection for all values less than - 1.96, using the 
values in Table 21 we calculate the Z value for each of the functions, which are shown in Table 
22. This Table also shows that for all the functions we can observe that we reject the null 
hypothesis, since the samples provide us with sufficient statistical evidence to support the 
alternative hypothesis. 

 
 

Table 22. Results of applying the statistical z-test 

Function Original 
method 

Proposed 
method 

Z value Evidence 

Sphere Differential 
Evolution 

F. D. E. with 
Decreasing F 

Z= -3.4344 Significant 

Griewank Differential 
Evolution 

F. D.E. with 
Decreasing F 

Z= -22.9992 Significant 

Schwefel Differential 
Evolution 

F. D. E. with 
Decreasing F 

Z= -3.4025 Significant 

Rastringin Differential 
Evolution 

F. D. E. with 
Decreasing F 

Z= -4.6200 Significant 

Ackley Differential 
Evolution 

F.D. E. with 
Decreasing F 

Z= -4.0661 Significant 

Rosenbrock Differential 
Evolution 

F. D. E. with 
Decreasing F 

Z= -3.6235 Significant 

 

Summarizing the proposed fuzzy differential approach is significantly better than the original 
Differential Evolution method in all the Benchmark functions. 

9. WILCOXON TEST STATISTICS 
 

We decided to check our proposed algorithm of Fuzzy Differential Evolution (FDE) with two 
other fuzzy algorithms, and for this we use the Fuzzy Harmony Search algorithm (FHS) [14] and 
the Fuzzy Bat Algorithm (FBA) [15] since these two algorithms are using fuzzy logic as well for 
dynamic parameter adaptation as our proposed algorithm. 
We considered the experiments with our of Fuzzy Differential Evolution algorithm (FDE) where 
F decreases because it is the way in which better results obtained with the set of Benchmark 
functions previously used. Table 23 shows the new set of functions used. 
 

Table 23. Benchmark Functions 

Function Search Domain f min 
Sphere − 5.12 ≤  xi  ≤ 5.12 0 

Rosenbrock − 5 ≤  xi  ≤ 10 0 
Ackley − 15 ≤  xi ≤ 30 0 

Rastrigin − 5.12 ≤   xi ≤   5.12 0 
}Zakharov − 5 ≤  xi  ≤ 10 0 

Sum Squared − 10 ≤  xi  ≤ 10 0 
 

In Figure 11 we can find the set of Benchmark functions listed in Table 23. 
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Fig.11. Benchmark Mathematical Functions. 

 
Table 24 shows the parameters used for experiments, where F changes dynamically in decrease 
fashion; the search space used is that of each function listed in Table 23. 

 

 

 

Table 24. Parameters of functions 

Parameters 
NP = 10,20,30,40,45 and 50 

D = 10 
CR = 0.1 

GEN = 100 
 

Experiments were carried out for different size of population, 30 experiments for population NP 
= 10, 30 for number of population NP = 20, up to the number of population of 50, later we 
obtained averages and we can observe these in Table 25. 

Table 25. Averages by function 

Average by function 
 N. of population 

Function 10 20 30 40 45 50 

Sphere 1.81E-11 6.94E-43 1.97E-43 9.61E-22 9.60E-22 2.99E-43 

Rosenbrock 4.08E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Ackley 7.98E-04 4.44E-15 4.20E-15 4.20E-15 4.20E-15 4.32E-15 

Rastrigin 1.39E+00 3.32E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Zakharov 2.44E-12 4.41E-58 1.63E-59 3.86E-61 3.31E-61 1.39E-61 

Sum Square 1.03E-06 4.34E-22 2.19E-21 1.17E-21 9.60E-22 1.29E-21 

 

Taking into account the previous experiments we performed statistical testing of Wilcoxon, the 
first test we perform is with Fuzzy Bat Algorithm, the statistical test used for comparison is the 
Wilcoxon matched pairs test for analyzing the data, whose parameters are given in Table 26. 
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Table 26. Parameters for the statistical test 

 

The alternative hypothesis states that the average of the results of the Fuzzy Differential 
Evolution algorithm is different than the average performance of the Fuzzy Bat Algorithm, and 
therefore the null hypothesis tells us that the average of the results of the Fuzzy Differential 
Evolution algorithm is equal to the average of the Fuzzy Bat algorithm. 

To test the hypothesis, first, the absolute values │𝑍𝑖│…│𝑍𝑛│are sorted and assigned its range 
Rank, Sign column indicates that all values obtained are positive, the column signed rank 
indicates the order of these values from lowest to highest. 
The formula for the statistical test is defined as: 

𝑊+ =  ∑ 𝑅𝑖

≈𝑖>0

 (12) 

That is, the sum of the ranges 𝑅𝑖corresponding to positive values𝑍𝑖 . 
The value of 𝑊+ is the sum of the positive ranks, the value W- is the sum of the negative ranks, 
W is the differences between two data samples, and W0 indicates the value of the table for a 
two-tailed test using 30 samples. 

The test to evaluate is as follows: 
If W ≤ W0, 

Then reject Ho. 
Table 31 shows a statistical test applied to the two fuzzy methods is shown. With a confidence 
level of 95% and a value of W= 0 and W0 = 1. So the statistical test results are that: for the 
Fuzzy harmony search, there is significant evidence to reject the null hypothesis and the 
alternative hypothesis is accepted mentioning that the average Fuzzy Differential Evolution is 
different than the average performance of the fuzzy bat algorithm. 
 

Table 31. Values of the parameters for the statistical test 

𝑊− 𝑊+ W Level Significance m = Degrees of 
freedom 

W0 = W α,m = 

0 21 0 0.05 6 1 
 
The following comparison is with the Fuzzy Harmony Search algorithm (FHS), Table 32 shows 
the used parameters. 
 
 
 
 

  
F1 F2 

     

Function No
. 

FBA FDE Difference Abs(Differenc
e) 

Ran
k 

Sig
n 

Signe
d 

Rank 

Spherical 1 3.97E-02 0.00E+00 3.97E-02 3.97E-02 1 1 1 

Rosenbroc
k 

2 
6.85E-01 6.79E-02 6.17E-01 6.17E-01 

6 1 6 

Rastrigin 3 3.68E-01 2.38E-01 1.30E-01 1.30E-01 2 1 2 

Ackley 4 3.66E-01 1.33E-04 3.65E-01 3.65E-01 4 1 4 

Zakharov 5 3.32E-01 0.00E+00 3.32E-01 3.32E-01 3 1 3 

Sum 
Square 

6 
4.40E-01 0.00E+00 4.40E-01 4.40E-01 

5 1 5 
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Table 32. Parameters for the statistical test 

 

The alternative hypothesis states that the average of the results of the Fuzzy Differential 
Evolution algorithm is different than the average performance of the Fuzzy Harmony Search 
algorithm, and therefore the null hypothesis tells us that the average of the results of the Fuzzy 
Differential Evolution algorithm is equal to the average of the Fuzzy Harmony Search algorithm. 
The formula of the statistical test that was applied is number 12. 
The value of 𝑊+ is the sum of the positive ranks, the value W- is the sum of the negative ranks, 
W is the differences between two data samples, and W0 indicates the value of the table for a 
two-tailed test using 30 samples. 

The test to evaluate is as follows: 
If W ≤ W0, then fails to reject Ho. 

Table 33 shows a statistical test applied to the two fuzzy methods is shown. With a confidence 
level of 95% and a value of W= 0 and W0 = 1. 
 

Table 33. Values of parameters for the statistical test 
𝑊− 𝑊+ W Level Significance m = Degrees of 

freedom 
W0 = W α,m = 

15 6 6 0.05 6 1 
 

So the statistical test results are that: 
There is not enough evidence to reject the null hypothesis therefore cannot accept the 

alternative hypothesis, this means that the Fuzzy Differential Evolution algorithm and the Fuzzy 
Harmony Search algorithm are statically the same. 

 
 

10. CONCLUSIONS 
 

We can conclude that setting dynamically the parameters of an evolutionary optimization 
method (in this case the Differential Evolution algorithm) can improve the quality of the results. 
In this work we are using fuzzy logic to dynamically change the F and Cr parameters of the 
algorithm. We have made several modifications to the algorithm and observed that the best 
results were obtained with modified F in decrement method and statistical evidence supports 
the conclusion to reject the null hypothesis in the comparison of the original algorithm against 
the proposed. 
One of the main goals was to make the F and Cr parameters change dynamically in the Fuzzy 
Differential Evolution algorithm, but this combination of dynamic variables that not always the 
results we expected, the reason why we believe that this combination does not work is because 
the Cr variable is selected almost at random without taking into account that we can lose a good 
result, so do experiments by varying only Cr were not very good. 

  
F1 F2 

     

Function  No. FHS FDE Difference abs(Difference) Rank Sign Signed 

Rank 

Spherical 1 1.38E-05 0.00E+00 1.38E-05 1.38E-05 3 1 3 

Rosenbrock 2 9.53E-06 6.79E-02 6.79E-02 6.79E-02 5 0 -5 

Rastrigin 3 0.00E+00 2.38E-01 2.38E-01 2.38E-01 6 0 -6 

Ackley 4 4.73E-05 1.33E-04 8.57E-05 8.57E-05 4 0 -4 

Zakharov 5 1.08E-08 0.00E+00 1.08E-08 1.08E-08 1 1 1 

Sum 

Square 

6 
2.53E-06 0.00E+00 2.36E-06 2.36E-06 

2 1 2 
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However using the Fuzzy Differential Evolution algorithm changing F in decrease we can 
observe that when performing the statistical test of Wilcoxon with other two fuzzy algorithms 
the proposed algorithm is competitive, although we are still working on the way in which our 
proposed algorithm better. 
We can conclude that with only the modification of F change dynamically in the algorithm 
provides good results, in a matter of generations that the proposed algorithm produces better 
results in few generations to the original differential evolution algorithm, with at the runtime of 
the algorithm proposed by us is better. In general we can state that the proposed method was 
what we expected, we have achieved good results. 
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