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ON THE CAUCHY PROBLEM FOR MATRIX FACTORIZATIONS

OF THE HELMHOLTZ EQUATION

D.A. JURAEV

Abstract. In the paper it is considered the regularization of the Cauchy
problem for systems of elliptic type equations of the first order with constant

coefficients factorisable Helmholtz operator in two-dimensional unbounded do-

main. Using the results of the works [20], [21], [22], [23], [24], [25] and [26],
we construct in explicit form Carleman matrix and based on the regularized

solution of the Cauchy problem.

1. Introduction

This problem concerns ill-posed problems, i.e. it is unstable. It is known that
the Cauchy problem for elliptic equations is unstable relatively small change in
the data, i.e. incorrect (example Hadamard, see, for instance [10], p. 39). There
is a sizable literature on the subject (see, e.g. [4]-[9], [13]). Tarkhanov [2] has
published a criterion for the solvability of a larger class of boundary value problems
for elliptic systems. In unstable problems, the image of the operator is not is closed,
therefore, the solvability condition can not be is written in terms of continuous linear
functionals. So, in the Cauchy problem for elliptic equations with data on part of
the boundary of the domain the solution is usually unique, the problem is solvable
for everywhere dense a set of data, but this set is not closed. Consequently, the
theory of solvability of such problems is much more difficult and deeper than theory
of solvability of Fredholm equations. The first results in this direction appeared only
in the mid-1980s in the works of L.A. Aizenberg, A.M. Kytmanov, N.N. Tarkhanov
(see, for instance [3]).

The uniqueness of the solution follows from Holmgren’s general theorem (see
[14]). The conditional stability of the problem follows from the work of A.N.
Tikhonov (see [13]), if we restrict the class of possible solutions to a compactum.

In this paper we construct a family of vector-functions Uσ(δ)(x) = U(x, fδ)
depending on a parameter σ, and prove that under certain conditions and a special
choice of the parameter σ = σ(δ), at δ → 0, the family Uσ(δ)(x) converges in the
usual sense to a solution U(x) at a point x ∈ G.
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Following A.N. Tikhonov (see [13]), a family of vector-valued functions Uσ(δ)(x)
is called a regularized solution of the problem. A regularized solution determines
a stable method of approximate solution of the problem. For special domains, the
problem of extending bounded analytic functions in the case when the data are given
only on a part of the boundary was considered by Carleman (see [4]). The researches
of T. Carleman were continued by G.M. Goluzin and V.I. Krylov (see [12]). A
multidimensional analogue of Carleman’s formula for analytic functions of several
variables was constructed in (see [11]). The use of the classical Green’s formula for
constructing a regularized solution of the Cauchy problem for the Laplace equation
was proposed by Academician M.M. Lavrent’ev (see, for instance [5], [6]). Using
the ideas of M.M. Lavrent’ev and Sh. Yarmukhamedov, a regularized solution of
the Cauchy problem for the Laplace and Helmholtz equations was constructed in
explicit form (see, for instance [7], [8], [9]). In [1] an integral formula is proved for
systems of equations of elliptic type of the first order, with constant coefficients
in a bounded domain. In [16], the Cauchy problem for the Helmholtz equation in
an arbitrary bounded plane domain with Cauchy data, known only on the region
boundary, is considered. The solvability criterion for the Cauchy problem for the
Laplace equation in the space Rm it was considered by Shlapunov in work [17].

For systems of equations of elliptic type of the first order with constant coef-
ficients, the factorizing operator of Helmholtz, in [22] the validity of the integral
formula in a three-dimensional unbounded domain was proved.

The construction of the Carleman matrix for elliptic systems was carried out
by: Sh. Yarmukhamedov, N.N. Tarkhanov, A.A. Shlapunov, I.E. Niyozov, D.A.
Juraev and others. The system considered in this paper was introduced by N.N.
Tarkhanov. For this system, he studied correct boundary value problems and found
an analogue of the Cauchy integral formula in a bounded domain.

The system considered in this paper was introduced by N.N. Tarkhanov. For
this system, he studied correct boundary value problems and found an analogue of
the Cauchy integral formula in a bounded domain (see, for instance [3]).

In many well-posed problems for systems of equations of elliptic type of the
first order with constant coefficients that factorize the Helmholtz operator, it is
not possible to calculate the values of the vector function on the entire boundary.
Therefore, the problem of reconstructing the solution of systems of equations of first
order elliptic type with constant coefficients, factorizing the Helmholtz operator
(see, for instance [20], [21], [22], [23], [24], [25] and [26]), is one of the topical
problems in the theory of differential equations.

For the last decades, interest in classical ill-posed problems of mathematical
physics has remained. This direction in the study of the properties of solutions
of the Cauchy problem for the Laplace equation was started in [5]-[8], [10] and
subsequently developed in [1]-[3], [17]-[26].

In this paper, we present an explicit formula for the approximate solution of
the Cauchy problem for the matrix factorizations of the Helmholtz equation in a
bounded region on the plane. The two-dimensional case requires special consid-
eration, in contrast to three or more dimensions in many mathematical problems.
Our formula for an approximate solution also includes the construction of a family
of fundamental solutions for the Helmholtz operator on the plane. This family is
parametrized by some entire function K(w), the choice of which depends on the
dimension of the space. This motivates a separate study of regularization formulas
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in flat domains and leads to improved estimates compared to the three-dimensional
case.

2. The integral formula in an unbounded domain

Let R2 be the two-dimensional real Euclidean space,

x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2.

G ⊂ R2 be an unbounded simply-connected domain with piecewise smooth
boundary consisting of the plane T : y2 = 0 and some smooth curve S lying in
the half-space y2 > 0, i.e., ∂G = S

⋃
T .

We introduce the following notation:

r = |y − x| , α = |y1 − x1|, w = i
√
u2 + α2 + y2, u ≥ 0,

∂

∂x
=

(
∂

∂x1
,
∂

∂x2

)T
,
∂

∂x
→ ξT , ξT =

(
ξ1

ξ2

)
be a transposed vector ξ,

U(x) = (U1(x), ... , Un(x))T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m = 2,

E(z) =

∥∥∥∥∥∥
z1 ... 0
.......
0 ...zn

∥∥∥∥∥∥ be a diagonal matrix, z = (z1, ... , zn) ∈ Rn.

LetD(ξT ), (n×n)− dimensional matrix with elements consisting of a set of linear
functions with constant coefficients of the complex plane for which the following
condition is satisfied:

D∗(ξT )D(ξT ) = E((|ξ|2 + λ2)u0),

where D∗(ξT ) is the Hermitian conjugate matrix D(xT ), λ is a real number.
We consider in the region G a system of differential equations

D

(
∂

∂x

)
U(x) = 0, (2.1)

where D

(
∂

∂x

)
is the matrix of first-order differential operators.

We denote by A(G) the class of vector functions in a domain G continuous on
G = G

⋃
∂G and satisfying system (2.1).

If G is a bounded and U(y) ∈ A(G), then the following integral formula of
Cauchy type is valid (see [22])

U(x) =

∫
∂G

M(y, x)U(y)dsy, x ∈ G, (2.2)

where

M(y, x) =

(
E

(
− i

4
H

(1)
0 (λr)u0

)
D∗
(
∂

∂y

))
D(tT ).

Here t = (t1, t2) is the unit external normal, drawn at a point y, the curve ∂G,

− i
4H

(1)
0 (λr) is the fundamental solution of the Helmholtz equation in R2. [15].

We denote by K(w) is an entire function taking real values for real w, (w =
u+ iv, u, v−real numbers) and satisfying the following conditions:

K(u) 6= 0, sup
v≥1

∣∣∣vpK(p)(w)
∣∣∣ = M(u, p) <∞, −∞ < u <∞, p = 0, 1, 2. (2.3)



116 D.A. JURAEV

We define a function Φ(y, x) at y 6= x for the following equation:

Φ(y, x) = − 1

2πK(x2)

∞∫
0

Im
K(w)

w − x2
uI0(λu)√
u2 + α2

du. (2.4)

Here I0(λu) = J0(iλu) is the Bessel function of the first kind is of zero order [14].

Formula (2.2) is true if instead − i
4H

(1)
0 (λr) of substituting the function

Φ(y, x) = − i
4
H

(1)
0 (λr) + g(y, x), (2.5)

where g(y, x) is the regular solution of the Helmholtz equation with respect to the
variable y, including the point y = x.

Then formula (2.2) has the following form

U(x) =

∫
∂G

M(y, x)U(y)dsy, x ∈ G, (2.6)

where

M(y, x) =

(
E
(
Φ(y, x)u0

)
D∗
(
∂

∂y

))
D(tT ).

Formula (2.6) is generalized for the case when G is the unbounded domain.
Let G ⊂ R2 be an unbounded domain, with a piecewise smooth boundary ∂G

(∂G−extends to infinity).
We denote by GR the part G lying inside the circle of radius R with center at

zero:

GR = {y : y ∈ G, |y| < R} , G∞R = G\GR, R > 0.

Theorem 2.1. Let U(y) ∈ A(G), G be a finitely connected unbounded domain
in R2, with piecewise-smooth boundary ∂G. If for each fixed x ∈ G we have the
equality

lim
R→∞

∫
G∞

R

M(y, x)U(y)dsy = 0, (2.7)

then the formula (2.6) is true.

Proof. Indeed, for a fixed x ∈ G (|x| < R) and taking (2.6) into account, we have∫
∂G

M(y, x)U(y)dsy =

∫
∂GR

M(y, x)U(y)dsy+

+

∫
∂G∞

R

M(y, x)U(y)dsy = U(x) +

∫
∂G∞

R

M(y, x)U(y)dsy, x ∈ GR.

Taking into account condition (2.7), for R→∞, we obtain (2.6).
Suppose G that an unbounded domain lies inside a strip of the smallest width

defined by inequality

0 < y2 < h, h =
π

ρ
, ρ > 0,

and ∂G extends to infinity.
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Suppose that for some b0 > 0 the length ∂G satisfies the growth condition∫
∂G

exp [−b0ρ0 |y1|] dsy <∞, 0 < ρ0 < ρ. (2.8)

Suppose U(y) ∈ A(G) that it satisfies the boundary growth condition

|U(y)| ≤ exp [exp ρ2 |y1|] , ρ2 < ρ, y ∈ G. (2.9)

In (2.4) we put

K(w) = exp

[
−biρ1

(
w − h

2

)
− b1 iρ0

(
w − h

2

)]
,

K(x2) = exp

[
b cos ρ1

(
x2 −

h

2

)
+ b1 cos iρ0

(
x2 −

h

2

)]
,

0 < ρ1 < ρ, 0 < x2 < h,

(2.10)

where

b = 2a exp (ρ1 |x1|) , b1 >
b0

cos
(
ρ0

h
2

) , a ≥ 0, b > 0.

Then the integral representation (2.6) is true.
For a fixed x ∈ G and y →∞, we estimate the function Φ(y, x) and its derivatives

∂Φ(y, x)

∂yj
, j = 1, 2. For the estimation

∂Φ(y, x)

∂yj
we use equalities

− 2πK(x2)
∂Φ(y, x)

∂y1
=

(y1 − x1)ReK(w0)− sign(y1 − x1)(y2 − x2)ImK(w0)

r2
−

−(y1 − x1)λ

∞∫
0

√
u2 + α2ReK(w)− (y2 − x2)ImK(w)

u2 + r2
· I1(λu)du√

u2 + α2
,

y 6= x, w0 = i |y1 − x1|+ y2, I1(λu) = I
′

0(λu)
(2.11)

and

− 2πK(x2)
∂Φ(y, x)

∂y2
=

(y2 − x2)ReK(w0)− (y1 − x1)ImK(w0)

r2
−

−λ
∞∫
0

(y2 − x2)ReK(w)−
√
u2 + α2ImK(w)

u2 + r2
I1(λu)du, y1 6= x1,

(2.12)

which are obtained from (2.4).
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Really, ∣∣∣∣exp

[
−biρ1

(
w − h

2

)
− b1iρ0

(
w − h

2

)]∣∣∣∣ =

= exp Re

[
−biρ1

(
w − h

2

)
− b1iρ0

(
w − h

2

)]
=

= exp

[
−bρ1

√
u2 + α2 cos ρ1

(
y2 −

h

2

)
− b1ρ0

√
u2 + α2 cos ρ0

(
y2 −

h

2

)]
.

As

−π
2
≤ −ρ1

ρ
· π

2
≤ ρ1

ρ
· π

2
<
π

2
,

−π
2
≤ −ρ1

ρ
· π

2
≤ ρ0

(
y2 −

h

2

)
≤ ρ1

ρ
· π

2
<
π

2
.

Consequently,

cos ρ

(
y2 −

h

2

)
> 0, cos ρ0

(
y2 −

h

2

)
≥ cos

hρ0
2

> δ0 > 0,

It does not vanish in the region G and

|Φ(y, x)| = O [exp (−ερ1 |y1|)] , ε > 0, y →∞, y ∈ G
⋃
∂G,∣∣∣∣∂Φ(y, x)

∂y1

∣∣∣∣ = O [exp (−ερ1 |y1|)] , ε > 0, y →∞, y ∈ G
⋃
∂G,

∣∣∣∣∂Φ(y, x)

∂y2

∣∣∣∣ = O [exp (−ερ1 |y1|)] , ε > 0, y →∞, y ∈ G
⋃
∂G.

We now choose ρ1 with the condition ρ2 < ρ1 < ρ. Then condition (2.8) is
fulfilled and the integral formula (2.6) is true. Theorem 2.1 is proved. �

Condition (2.10) can be weakened.
We denote by Aρ(G) is the class of vector-valued functions from A(G), satisfying

the following growth condition:

Aρ(G) = {U(y) : U(y) ∈ A(G), |U(y)| ≤ exp [o (exp ρ |y1|)] , y →∞, y ∈ G} .
(2.13)

The following is valid

Theorem 2.2. Suppose U(y) ∈ Aρ(G) that it satisfies the growth condition

|U(y)| ≤ C exp

[
a cos ρ1

(
y2 −

h

2

)
exp (ρ1 |y1|)

]
,

a ≥ 0, 0 < ρ1 < ρ, y ∈ ∂G,

(2.14)

where C−is some constant. Then formula (2.6) is valid.

Proof. Divide the area G by a line y2 =
h

2
into two areas

G1 =

{
y : 0 < y2 <

h

2

}
and G2 =

{
y :

h

2
< y2 < h

}
.
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Consider the domain G1. In the formula (2.4) together K(w) we put K1(w)

K1(w) = K(w) exp

[
−δ iτ

(
w − h

2

)
− δ1iρ

(
w − h

2

)]
,

ρ < τ < 2ρ, δ > 0, δ1 > o,

(2.15)

Here K(w) it is determined from (2.10). With this notation, (2.8) is true.
Really, ∣∣∣∣exp

[
−iτ

(
w − h

4

)
− δ1iρ

(
w − h

4

)]∣∣∣∣ =

= exp

[
−δ τ

√
u2 + α2 cos τ

(
y2 −

h

4

)]
=

= exp
[
−δ τ

√
u2 + α2

]
≤ exp [−δ exp τ |y1|] ,

as

−π
2
≤ −τ π

4
≤ τ

(
y2 −

h

4

)
≤ τ π

2
<
h

2
and cos τ

(
y2 −

h

4

)
≥ cos τ

h

4
≥ δ0 > 0.

We denote the corresponding Φ(y, x) by Φ+(y, x).
As

cos τ

(
y2 −

h

4

)
≥ δ0, y ∈ G1

⋃
∂G1,

then for fixed x ∈ G1, y ∈ G1

⋃
∂G1, for Φ+(y, x) and its derivatives are true

asymptotic estimates

|Φ+(y, x)| = O [exp(−δ0 exp (τ |y1|)] , y →∞, ρ < τ < 2ρ,∣∣∣∣∂Φ+(y, x)

∂y1

∣∣∣∣ = O [exp(−δ0 exp (τ |y1|)] , y →∞, ρ < τ < 2ρ,

∣∣∣∣∂Φ+(y, x)

∂y2

∣∣∣∣ = O [exp(−δ0 exp (τ |y1|)] , y →∞, ρ < τ < 2ρ.

Suppose U(y) ∈ A(G1) that in a domain G1 satisfies the growth condition

|U(y)| ≤ C exp [exp (2ρ− ε) |y1|] , ε > 0. (2.16)

We choose τ the inequality 2ρ− ε < τ < 2ρ in (2.15).
Then the condition (2.15) is satisfied for the region G1, therefore, the following

integral formula holds

U(x) =

∫
∂G1

M(y, x)U(y)dsy, x ∈ G1. (2.17)

where

M(y, x) =

(
E
(
Φ+(y, x)u0

)
D∗
(
∂

∂x

))
D(tT ).

If U(y) ∈ A(G2) satisfies the growth condition (2.14) in G2, then for 2ρ − ε <
τ < 2ρ, similarly we obtain the following integral formula

U(x) =

∫
∂G2

M(y, x)U(y)dsy, x ∈ G2. (2.18)
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where

M(y, x) =

(
E
(
Φ−(y, x)u0

)
D∗
(
∂

∂x

))
D(tT ).

Here Φ−(y, x) it is defined by the formula (2.4), in which K(w) it is replaced by
the function K2(w) :

K2(w) = K(w) exp

[
−δ iτ (w − h1)− δ1iρ

(
w − h

2

)]
, (2.19)

where

h1 =
h

2
+
h

4
,
h

2
< y2 < h,

h

2
< x2 < h1, δ > 0, δ1 > 0.

In the formulas obtained with this formula, the integrals (according to (2.9))
converge uniformly for δ ≥ 0, when U(y) ∈ Aρ(G). In these formulas we put δ = 0
and, combining the formulas obtained, we find

U(x) =

∫
∂G

M(y, x)U(y)dsy, x ∈ G, x2 6=
h

2
, (2.20)

where

M(y, x) =

(
E
(

Φ̃(y, x)u0
)
D∗
(
∂

∂y

))
D(tT ).

(integrals over the cross section y2 =
h

2
are mutually destroyed)

Φ̃(y, x) = (Φ+(y, x))δ=0 = (Φ−(y, x))δ=0.

Here, Φ̃(y, x) is determined by the formula (2.4), in which K(w) is determined
from (2.15), where δ = 0 is laid. According to the continuation principle, formula
(2.20) is true for ∀x ∈ G. Under condition (2.16), formula (2.20) is true for ∀δ1 ≥ 0.
Assuming δ1 = 0, we obtain the proof of the theorem. Theorem 2.2 is proved. �

In the formula (2.4), choosing

K(w) =
1

w − x2 + 3h
exp(σw),

K(x2) =
1

3h
exp(σx2), 0 < x2 < h, h =

π

ρ
,

(2.21)

we get

Φσ(y, x) = − e−σx2

2π(3h)−1

∞∫
0

Im
exp(σw)

(w − x2 + 3h)(w − x2)

uI0(λu)√
u2 + α2

du. (2.22)

Then the integral formula (2.6) has the following form:

U(x) =

∫
∂G

Nσ(y, x)U(y)dsy, x ∈ G, (2.23)

where

Nσ(y, x) =

(
E
(
Φσ(y, x)u0

)
D∗
(
∂

∂y

))
D(tT ).
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Suppose that the boundary of the domain G consists of a hyper plane y2 = 0
and a smooth curve S extending to infinity and lying in the strip

0 < y2 < h, h =
π

ρ
, ρ > 0.

We assume that S is given by the equation

y2 = ψ(y1), −∞ < y1 <∞,

where ψ(y1) satisfies the condition

|ψ′(y1)| ≤M <∞,M = const.

3. Regularization of the Cauchy problem

Formulation of the problem. Suppose that U(y) ∈ Aρ(G) and

U(y)|S = f(y), y ∈ S. (3.1)

Here, f(y)− a given continuous vector-valued function on S.
It is required to restore the vector function U(y) in the region G, based on its

values f(y) on S.
The following is valid

Theorem 3.1. Let U(y) ∈ Aρ(G) it satisfy the inequality

|U(y)| ≤ 1, y ∈ T. (3.2)

If

Uσ(x) =

∫
S

Nσ(y, x)U(y)dsy, x ∈ G, (3.3)

then the following estimate holds

|U(x)− Uσ(x)| ≤ Cρ(λ, x)σe−σx2 , σ > 1, x ∈ G. (3.4)

Here and below functions bounded on compact subsets of the domain G, we
denote by Cρ(λ, x).

Proof. Using the integral formula (2.23) and the equality (3.3), we obtain

U(x) = Uσ(x) +

∫
T

Nσ(y, x)U(y)dsy, x ∈ G.

Taking inequality (3.2) into account, we estimate the following

|U(x)− Uσ(x)| ≤
∫
T

|U(y)| |Nσ(y, x)| dsy ≤
∫
T

|Nσ(y, x)| dsy, x ∈ G.

To do this, we estimate the integrals

∫
y2=0

|Φσ(y, x)| dsy,
∫

y2=0

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy
and

∫
y2=0

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy on the part T of the plane y2 = 0.
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Let σ > 0. Separating the imaginary part of (2.22), we obtain

Φσ(y, x) =
eσ(y2−x2)

2π(3h)−1

 ∞∫
0

(
(β + β1) cosσα1

(α2
1 + β2

1) (α2
1 + β2)

+

+

(
−α2

1 + β1β
)

(α2
1 + β2

1) (α2
1 + β2)

sinσα1

α1

)
uI0(λu)du

]
,

(3.5)

where

α2
1 = u2 + α2, β = y2 − x2, β1 = y2 − x2 + 3h.

We estimate first

∫
y2=0

|Φσ(y, x)| dsy. Taking into account equality (3.5) and

inequality

I0(λu) ≤ exp(λu), (3.6)

we have ∫
y2=0

|Φσ(y, x)| dsy ≤ Cρ(λ, x)σe−σx2 , σ > 1, x ∈ G. (3.7)

To estimate the integrals

∫
y2=0

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy and

∫
y2=0

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy, we use

equalities (2.11) and (2.12). For this, using equalities (2.21) and choosing

K(w0) = exp(σw0), σ > 0, (3.8)

we obtain the following formulas

− 2πeσx2

(3h)−1
∂Φσ
∂y1

=
(y1 − x1)Re exp(σw0) + sign(y1 − x1)(y2 − x2)Im exp(σw0)

r2
−

−(y1 − x1)λ

∞∫
0

√
u2 + α2Re exp(σw)− (y2 − x2)Im exp(σw)

u2 + r2
· I1(λu)du√

u2 + α2
, y 6= x,

(3.9)
and

− 2πeσx2

(3h)−1
∂Φσ
∂y2

=
(y2 − x2)Re exp(σw0) + (y1 − x1)Im exp(σw0)

r2
−

−λ
∞∫
0

(y2 − x2)Re exp(σw)−
√
u2 + α2Im exp(σw)

u2 + r2
I1(λu)du, y1 6= x1.

(3.10)

Taking into account equality (3.9) and inequality

I1(λu) ≤ λu exp(λu), (3.10)

we get ∫
y2=0

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy ≤ Cρ(λ, x)σe−σx2 , σ > 1, x ∈ G. (3.12)
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Analogously, taking into account equality (3.10) and inequality (3,12), we esti-
mate the following integral∫

y2=0

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy ≤ Cρ(λ, x)σe−σx2 , σ > 1, x ∈ G. (3.13)

From the inequalities (3.7), (3.12), and (3.13), we obtain (3.4). Theorem 3.1 is
proved. �

Corollary 3.1. The limiting equality

lim
σ→∞

Uσ(x) = U(x),

holds uniformly on each compact set in the domain G.

Theorem 3.2. Let U(y) ∈ Aρ(G) satisfy condition (3.2) on a part of the plane
y2 = 0, and on a smooth curve S the inequality

|U(y)| ≤ δ, 0 < δ < 1. (3.14)

Then the following estimate holds

|U(x)| ≤ Cρ(λ, x)σδ
x2
h , σ > 1, x ∈ G. (3.15)

Proof. Using the integral formula (2.23), we have

U(x) =

∫
∂G

Nσ(y, x)U(y)dsy =

=

∫
S

Nσ(y, x)U(y)dsy +

∫
T

Nσ(y, x)U(y)dsy, x ∈ G.

Taking into account the boundary condition (3.2) and inequality (3.14), we ob-
tain the estimate

|U(x)| ≤
∫
S

|U(y)| |Nσ(y, x)| dsy +

∫
T

|U(y)| |Nσ(y, x)| dsy ≤

≤ δ
∫
S

|Nσ(y, x)| dsy +

∫
T

|Nσ(y, x)| dsy, x ∈ G.

(3.16)

First we estimate the first integral of inequality (3.16). To do this, we esti-

mate the integrals

∫
S

|Φσ(y, x)| dsy,
∫
S

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy and

∫
S

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy on

a smooth curve S.
Taking into account equality (3.5) and inequality (3.6), we have∫

S

|Φσ(y, x)| dsy ≤ Cρ(λ, x)σeσ(h−x2), σ > 1, x ∈ G. (3.17)

Using (3.9) and inequality (3.11), we have∫
S

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy ≤ Cρ(λ, x)σeσ(h−x2), σ > 1, x ∈ G. (3.18)
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Similarly using (3.10) and inequality (3.11), we obtain∫
S

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy ≤ Cρ(λ, x)σeσ(h−x2), σ > 1, x ∈ G. (3.19)

From (3.17) - (3.19), we obtain∣∣∣∣∣∣
∫
S

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣ ≤ Cρ(λ, x)σδeσ(h−x2), σ > 1, x ∈ G. (3.20)

The following is known∣∣∣∣∣∣
∫
T

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣ ≤ Cρ(λ, x)σe−σx2 , σ > 1, x ∈ G. (3.21)

Now taking into account (3.16), (3.20) - (3.21), we have

|U(x)| ≤ Cρ(λ, x)σ

2
(δ eσh + 1)e−σx2 , σ > 1, x ∈ G.

Choosing σ from equality

σ =
1

h
ln

1

δ
, (3.22)

we obtain the inequality (3.15). Theorem 3.2 is proved. �

Let U(y) ∈ Aρ(G) and together with U(y) on S it is given its approximation
fδ(y), respectively, with an error 0 < δ < 1, max

S
|U(y)− fδ(y)| ≤ δ.

We set

Uσ(δ)(x) =

∫
S

Nσ(y, x)fδ(y)dsy, x ∈ G. (3.23)

The following is valid

Theorem 3.3. Let U(y) ∈ Aρ(G) it satisfy condition (3.2) on a part of the plane
y2 = 0.

Then the following estimate holds∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ Cρ(λ, x)σδ

x2
h , σ > 1, x ∈ G. (3.24)

Proof. From the integral formulas (2.23) and (3.23), we have

U(x)− Uσ(δ)(x) =

∫
S

Nσ(y, x) {U(y)− fδ(y)} dsy +

∫
T

Nσ(y, x)U(y)dsy.

Now, repeating the proof of Theorems 3.1 and 3.2, we obtain∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ C(x)σ

2
(δ eσh + 1)e−σx2 .

Hence, choosing σ from (3.22), we obtain (3.24). �

Corollary 3.2. The limiting equality

lim
δ→0

Uσ(δ)(x) = U(x),

holds uniformly on each compact set in the domain G.
Thus, the functional Uσ(δ)(x) determines the regularization of the solution of

problem (2.23), (3.23).
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