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THEORY OF FRACTIONAL IMPLICIT DIFFERENTIAL EQUATIONS
WITH COMPLEX ORDER

D. VIVEK, E. M. ELSAYED, AND K. KANAGARAJAN

Abstract. In this paper, we consider boundary value problems for the following
nonlinear implicit differential equations with complex order{

Dθ
0+ x(t) = f

(
t, x(t), Dθ

0+ x(t)
)

, θ = m + iα, t ∈ J := [0, T],
ax(0) + bx(T) = c,

(0.1)

where Dθ
0+ is the Caputo fractional derivative of order θ ∈ C. Let α ∈ R+,

0 < α < 1, m ∈ (0, 1], and f : J ×R2 → R is given continuous function. Here
a, b, c are real constants with a + b 6= 0.

We derive the existence and stability of solution for a class of boundary value
problem(BVP) for nonlinear fractional implicit differential equations(FIDEs) with
complex order. The results are based upon the Banach contraction principle and
Schaefer’s fixed point theorem.

1. Introduction

Fractional calculus(FC) is a generalization of ordinary differentiation and in-
tegration to arbitrary non-integer order. The subject is as old as the differential
calculus, and goes back to the time when Leibnitz and Newton invented differ-
ential calculus. The idea of FC has been a subject of interest not only among
mathematicians, but also among physicists and engineers. FC appears in rheol-
ogy, viscoelasticity, electrochemistry, electromagnetism, etc. (see, for example, the
books [15, 23, 24, 27] and references therein). However, most of the work done in
this field so far has been based on the use of real order fractional derivatives and
integrals. It is worth to mention that there are several authors who also applied
complex order fractional derivative. Fractional operators of complex order are in-
vestigated as follows (see [21, 30]). In 1977, Ross Bertram [5] considered a use for
a derivative of complex order in the fractional calculus. In [13], Carla M.A.Pinto
studied a complex order van der Pol oscillator. Later, R. Andriambololona et
al. [2] proposed some definitions of complex order integrals and complex or-
der derivatives using operator approach. For instance, some basic theory for
fractional differential equations(FDEs) with complex order was investigated by
Neamaty et al.[26]. They derived sufficient conditions for existence of solutions
of fractional boundary value problems with complex order. Recently, Teodor M.
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Atanackovi et al. established complex order fractional derivatives in models that
describe viscoelastic materials in [31]. The authors investigated existence and
uniqueness by using a classical fixed point theorem.

BVPs for FDEs have been considered by some authors (see [4, 6, 7, 8, 9, 25, 36]
and references therein).

In the theory of functional equations there are some special kind of data de-
pendence: see, for example, Jung[19], Rus[29], S. M. Ulam[32] and we refer to
[1, 16, 17]. In recent years, many people have paid more and more attention
to Hyers-Ulam stability of differential equations, and gained a series of results.
However, the theory of Hyers-Ulam stability of FDEs is still in the initial stages.
There are some papers [3, 18, 22, 28, 34, 35] treating with Ulam-Hyers stability
for FDEs. The investigation of Hyers-Ulam stability of FDEs with complex order
started recently and we should mention here the results obtained on this direction
by [33].

The existence of solutions of this kind of BVP has been studied by Benchohra
et al., for example, in [10, 11, 12].

The rest of this paper is organized as follows. In Section 2, we give some
notations; recall some concepts and preparation results. In Section 3, we give
existence and uniqueness results of solutions for the problem (0.1) by Schaefer’s
fixed point theorem. In Section 4, We present the Ulam stability results for the
problem (0.1).

2. Preliminaries on complex order

We first wish to collect some basic lemmas that will be important to us in what
follows. For further reading and details on complex order in FC, we refer to the
papers, for example, in [21, 30, 31].

By C(J, R) we denote the Banach space of all continuous functions J into R

with the norm
‖x‖∞ := sup {|x(t)| : t ∈ J} .

By L1(J) we denote the space of Lebesgue-integrable function x : J → R with
the norm ‖x‖L1 =

∫ T
0 |x(t)| dt.

Definition 2.1. ([27]) The Riemann-Liouville fractional integral of order ν ∈ C,
(Re(ν) > 0) of a function f : (0, ∞)→ R is

Iν
0+ f (t) =

1
Γ(ν)

∫ t

0
(t− s)ν−1 f (s)ds.

Definition 2.2. ([27]) For a function f given by on the interval J, the Caputo
fractional-order ν ∈ C, (Re(ν) > 0) of f , is defined by

(Dν
0+ f )(t) =

1
Γ(n− ν)

∫ t

0
(t− s)n−ν−1 f (n)(s)ds,

where n = [Re(ν)] + 1 and [Re(ν)] denotes the integral part of the real number ν.

Definition 2.3. ([20]) The Stirling asymptotic formula of the Gamma function for
z ∈ C is following

Γ(z) = (2π)
1
2 z

z−1
2 e−z

[
1 + O

(
1
z

)]
, (|arg(z)| < π; |z| → ∞),(2.1)



156 D. VIVEK, E. M. ELSAYED, AND K. KANAGARAJAN

and its results for |Γ(u + iv)|, (u, v ∈ R) is

|Γ(u + iv)| = (2π)
1
2 |v|u−

1
2 e−u−π|v|/2

[
1 + O

(
1
v

)]
, (v→ ∞).(2.2)

Theorem 2.4. ([14])(Banach’s fixed point theorem). Let C be a non-empty closed subset
of a Banach space X, then any contraction mapping T of C into itself has a unique fixed
point.

Theorem 2.5. ([14])(Schaefer’s fixed point theorem). Let P : C(J, R) → C(J, R) com-
pletely continuous operator. If the set

ζ = {x ∈ C(J, R) : x = δ(Px) for some δ ∈ [0, T]}
is bounded, then P has at least a fixed point.

3. Existence and uniqueness results

Let us start by defining what we mean by a solution of the problem (0.1). We
adopt some ideas from [12].

Definition 3.1. A function x ∈ C(J, R) is said to be a solution of (0.1) if x sat-
isfies the equation Dθ

0+x(t) = f (t, x(t), Dθ
0+x(t)) on J, and the condition ax(0) +

bx(T) = c.

For the existence of solutions for the problem (0.1), we need the following
auxiliary lemma.

Lemma 3.2. Let θ = m + iα, 0 < m ≤ 1, α ∈ R+ and f : J ×R2 → R be continuous.
A function x is a solution of the fractional integral equation

x(t) = x0 +
1

Γ(θ)

∫ t

0
(t− s)θ−1 f (s, x(s), Dθ

0+x(s))ds(3.1)

if and only if x is a solution of the initial value problem for the following FIDE with
complex order

Dθ
0+x(t) = f (t, x(t), Dθ

0+x(t)), t ∈ J := [0, T],(3.2)

x(0) = x0.(3.3)

As a consequence of Lemma 3.2 we have the following result which is useful
in what follows.

Lemma 3.3. Let θ = m + iα, 0 < m ≤ 1, α ∈ R+ and f : J ×R2 → R be continuous.
A function x is a solution of the fractional integral equation

x(t) =
1

Γ(θ)

∫ t

0
(t− s)θ−1 f (s, x(s), Dθ

0+x(s))ds

− 1
a + b

[
b

Γ(θ)

∫ T

0
(T − s)θ−1 f (s, x(s), Dθ

0+x(s))ds− c
]

(3.4)

if and only if x is a solution of the BVP for FIDEs with complex order

Dθ
0+x(t) = f (t, x(t), Dθ

0+x(t)), t ∈ [0, T],(3.5)

ax(0) + bx(T) = c.(3.6)

Our first result is based on the Banach contraction principle.
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Theorem 3.4. Assume that the following hypotheses are fulfilled.
(H1) f : J ×R2 → R is continuous function.
(H2) There exist constants K > 0 and L > 0 such that

| f (t, u, v)− f (t, u, v)| ≤ K |u− u|+ L |v− v| ,
for any u, v, u, v ∈ R and t ∈ J.

If ΩK,L,m,T,a,b,θ < 1, then the problem (0.1) has a unique solution on J.

Proof. Transform the problem (0.1) into a fixed point problem.
Consider the operator P : C(J, R)→ C(J, R) defined by

(Px)(t) =
1

Γ(θ)

∫ t

0
(t− s)θ−1Kx(s)ds− 1

a + b

[
b

Γ(θ)

∫ T

0
(T − s)θ−1Kx(s)ds− c

]
.

(3.7)

For sake of brevity, let us take

Kx(t) = Dθ
0+x(t)

= f (t, x(t), Dθ
0+x(t))

= f (t, x(t), Kx(t)).

Clearly, the fixed points of the operator P are solutions of the problem (0.1). We
shall use the Banach contraction principle to prove that P defined by (3.7) has a
fixed point. We shall show that P is a contraction.
Let x, y ∈ C(J, R). Then, for each t ∈ J we have

|(Px)(t)− (Py)(t)| ≤ 1
|Γ(θ)|

∫ t

0

∣∣∣(t− s)θ−1
∣∣∣ ∣∣Kx(s)− Ky(s)

∣∣ ds

+
|b|

|Γ(θ)| |a + b|

∫ T

0

∣∣∣(T − s)θ−1
∣∣∣ ∣∣Kx(s)− Ky(s)

∣∣ ds.(3.8)

Here ∣∣Kx(t)− Ky(t)
∣∣ ≤ ∣∣ f (t, x(t), Kx(t))− f (t, y(t), Ky(t))

∣∣
≤ K |x(t)− y(t)|+ L

∣∣Kx(t)− Ky(t)
∣∣

≤
(

K
1− L

)
|x(t)− y(t)| .(3.9)

By replacing eqn.(3.9) in the inequality eqn.(3.8), we obtain

|(Px)(t)− (Py)(t)|

≤
(

K
1− L

)
1
|Γ(θ)|

∫ t

0

∣∣∣(t− s)θ−1
∣∣∣ |x(s)− y(s)| ds

+

(
K

1− L

)
|b|
|a + b|

1
|a + b|

1
|Γ(θ)|

∫ T

0

∣∣∣(T − s)θ−1
∣∣∣ |x(s)− y(s| ds

≤
(

K
1− L

)
1
|Γ(θ)| ‖x− y‖∞

∫ t

0
(t− s)m−1ds +

(
K

1− L

)
|b|
|a + b|

‖x− y‖∞
|Γ(θ)|

∫ T

0
(T − s)m−1ds

≤
(

K
1− L

Tm

m |Γ(θ)|

[
1 +

|b|
|a + b|

])
‖x− y‖∞ .

Thus
‖Px− Py‖∞ ≤ ΩK,L,m,T,a,b,θ ‖x− y‖∞ ,
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where

ΩK,L,m,T,a,b,θ :=
(

K
1− L

Tm

m |Γ(θ)|

[
1 +

|b|
|a + b|

])
,

depends only on the parameters of the problem. And since ΩK,L,m,T,a,b,θ < 1, the
results follows in view of the contraction mapping principle. �

We now can prove the following existence result.

Theorem 3.5. Under the hypotheses of Theorem 3.4 and

(H3) There exist l, p, q ∈ C(J, R) with l∗ = supt∈J l(t) < t such that

| f (t, u, v)| ≤ l(t) + p(t) |u|+ q(t) |v| ,

for t ∈ J, u, v ∈ R,

hold. Then the problem (0.1) has at least one solution on J.

Proof. We shall use Schaefer’s fixed point theorem to prove that P defined by (3.7)
has a fixed point. The proof will be given in several steps.
Claim 1: P is continuous.

Let {xn} be a sequence such that xn → x in C(J, R). Then for each t ∈ J

|(Pxn)− (Px)(t)|

≤ 1
|Γ(θ)|

∫ t

0

∣∣∣(t− s)θ−1
∣∣∣ |Kxn(s)− Kx(s)| ds

+
|b|

|Γ(θ)| |a + b|

∫ T

0

∣∣∣(T − s)θ−1
∣∣∣ |Kxn(s)− Kx(s)| ds

≤ 1
|Γ(θ)|

∫ t

0

∣∣∣(t− s)θ−1
∣∣∣ sup

s∈J
|Kxn(s)− Kx(s)| ds +

|b|
|Γ(θ)| |a + b|

∫ T

0

∣∣∣(T − s)θ−1
∣∣∣ sup

s∈J
|Kxn(s)− Kx(s)| ds

≤ ‖Kxn(·)− Kx(·)‖∞
|Γ(θ)|

[∫ t

0
(t− s)m−1ds +

|b|
|a + b|

∫ T

0
(T − s)m−1ds

]
≤ Tm ‖Kxn(·)− Kx(·)‖∞

m |Γ(θ)|

(
1 +

|b|
|a + b|

)
.

Since f is a continuous function, we have

‖Pxn − Px‖∞ → 0 as n→ ∞.

Claim 2: P maps bounded sets into bounded sets in C(J, R).
Indeed, it is enough to show that for any η∗ > 0, there exists a positive constant
χ such that for each x ∈ Bη∗ = {x ∈ C(J, R) : ‖x‖∞ ≤ η∗}, we have ‖Px‖∞ ≤ χ.

|(Px)(t)| ≤ 1
|Γ(θ)|

∫ t

0

∣∣∣(t− s)θ−1
∣∣∣ |Kx(s)| ds

|b|
|a + b|

∫ T

0

∣∣∣(T − s)θ−1
∣∣∣ |Kx(s)| ds +

|c|
|a + b| ,(3.10)
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and by (H3), we have

|Kx(t)| ≤ | f (t, x(t)Kx(t))|
≤ l(t) + p(t) |x(t)|+ q(t) |Kx(t)|
≤ l∗ + p∗ |x(t)|+ q∗ |Kx(t)|

≤ l∗ + p∗ |x(t)|
1− q∗

.(3.11)

By replacing eqn. (3.11) in the inequality (3.10), we get

|(Px)(t)| ≤ 1
|Γ(θ)|

∫ t

0

∣∣∣(t− s)θ−1
∣∣∣ ( l∗ + p∗ |x(s)|

1− q∗

)
ds

+
|b|

|a + b| |Γ(θ)|

∫ T

0

∣∣∣(T − s)θ−1
∣∣∣ ( l∗ + p∗ |x(s)|

1− q∗

)
ds +

|c|
|a + b| .

:= A1 + A2.(3.12)

A1 =
1
|Γ(θ)|

∫ t

0

∣∣∣(t− s)θ−1
∣∣∣ ( l∗ + p∗ |x(s)|

1− q∗

)
ds

=
Tm

(1− q∗) |Γ(θ)|

(
l∗

m
+

p∗ ‖x‖∞
m

)
.

A2 =
|a + b| |b|
|Γ(θ)|

∫ T

0

∣∣∣(T − s)θ−1
∣∣∣ ( l∗ + p∗ |x(s)|

1− q∗

)
ds

=
|b| Tm

(1− q∗)m |Γ(θ)| |a + b| (l
∗ + p∗ ‖x‖∞) .

To substitute A1, A2 values into eqn. (3.12),we have

|(Px)(t)| ≤ Tml∗

(1− q∗)
1

m |Γ(θ)|

(
1 +

|b|
|a + b|

)
+

Tm p∗

(1− q∗)
1

m |Γ(θ)|

(
1 +

|b|
|a + b|

)
‖x‖∞ +

|c|
|a + b|

:= χ.

Claim 3: P maps bounded sets into equicontinuous sets of C(J, R).
Let t1, t2 ∈ [0, T], t1 < t2, Bη∗ be a bounded set of C(J, R) as in above steps,

and let x ∈ Bη∗ . Using the fact f is bounded on the compact set J × Bη∗ (thus
sup(t,x)∈J×Bη∗

‖Kx(t)‖ := C0 < ∞). We will get

|(Px)(t2)− (Px)(t2)|

≤
∣∣∣∣ 1
Γ(θ)

∫ t1

0

[
(t2 − s)θ−1 − (t1 − s)θ−1

]
Kx(s)ds +

1
Γ(θ)

∫ t2

t1

(t2 − s)θ−1Kx(s)ds
∣∣∣∣

≤ C0

|Γ(θ)|

∫ t1

0

∣∣∣[(t1 − s)θ−1 − (t2 − s)θ−1
]∣∣∣ ds +

C0

|Γ(θ)|

∫ t2

t1

∣∣∣(t2 − s)θ−1
∣∣∣ ds

≤ C0

|Γ(θ)|

∣∣∣2(t1 − t2)
θ + tθ

2 − tθ
1

∣∣∣
As t1 → t2, the right-hand side of the above inequality tends to zero. As

a consequence of previous discussion with the Arzela-Ascoli theorem, we can
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conclude that P : C(J, R)→ C(J, R) is continuous and completely continuous.
Claim 4: A priori bounds.

Now it remains to show that the set

ζ = {x ∈ C(J, R); x = δ(Px) for some 0 < δ < 1}

is bounded. Let x ∈ ζ, then x = δ(Px) for some 0 < δ < 1. Thus, for each t ∈ J,
we have

x(t) =
δ

Γ(θ)

∫ t

0
(t− s)θ−1Kx(s)ds− δ

a + b

[
b

Γ(θ)

∫ T

0
(T − s)θ−1Kx(s)ds− c

]
.

This implies by (H3) that for t ∈ J, we have

|(Px)(t)| ≤ Tml∗

(1− q∗)
1

m |Γ(θ)|

(
1 +

|b|
|a + b|

)
+

Tm p∗

(1− q∗)
1

m |Γ(θ)|

(
1 +

|b|
|a + b|

)
‖x‖∞ +

|c|
|a + b| .

Thus for every t ∈ J, we have

‖Px‖∞ ≤
Tml∗

(1− q∗)
1

m |Γ(θ)|

(
1 +

|b|
|a + b|

)
+

Tm p∗

(1− q∗)
1

m |Γ(θ)|

(
1 +

|b|
|a + b|

)
‖x‖∞ +

|c|
|a + b|

:= R.

This show that the set ζ is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that P has a fixed point which is a solution of the problem
(0.1). �

4. Stability results

In this section, we consider the Ulam stability of nonlinear FIDEs (0.1). Now
we consider the Ulam stability for the problem

Dθ
0+x(t) = f

(
t, x(t), Dθ

0+x(t)
)

, θ = m + iα, t ∈ [0, T],(4.1)

and the following inequations:∣∣∣Dθ
0+z(t)− f

(
t, z(t), Dθ

0+z(t)
)∣∣∣ ≤ ε, t ∈ [0, T],(4.2) ∣∣∣Dθ

0+z(t)− f
(

t, z(t), Dθ
0+z(t)

)∣∣∣ ≤ εϕ(t), t ∈ [0, T],(4.3) ∣∣∣Dθ
0+z(t)− f

(
t, z(t), Dθ

0+z(t)
)∣∣∣ ≤ ϕ(t), t ∈ [0, T].(4.4)

Definition 4.1. The equation (4.1) is Ulam-Hyers stable if there exists a real num-
ber C f > 0 such that for each ε > 0 and for each solution z ∈ C(J, R) of the
inequality (4.2) there exists a solution x ∈ C(J, R) of equation (4.1) with

|z(t)− x(t)| ≤ C f ε, t ∈ J.
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Definition 4.2. The equation (4.1) is generalized Ulam-Hyers stable if there exists
ψ f ∈ C ([0, ∞), [0, ∞)) , ψ f (0) = 0 such that for each solution z ∈ C(J, R) of the
inequality (4.2) there exists a solution x ∈ C(J, R) of equation (4.1) with

|z(t)− x(t)| ≤ ψ f ε, t ∈ J.

Definition 4.3. The equation (4.1) is Ulam-Hyers-Rassias stable with respect to
ϕ ∈ C(J, R) if there exists a real number C f > 0 such that for each ε > 0 and for
each solution z ∈ C(J, R) of the inequality (4.3) there exists a solution x ∈ C(J, R)
of equation (4.1) with

|z(t)− x(t)| ≤ C f εϕ(t), t ∈ J.

Definition 4.4. The equation (4.1) is generalized Ulam-Hyers-Rassias stable with
respect to ϕ ∈ C(J, R) if there exists a real number C f ,ϕ > 0 such that for each
solution z ∈ C(J, R) of the inequality (4.4) there exists a solution x ∈ C(J, R) of
equation (4.1) with

|z(t)− x(t)| ≤ C f ,ϕ ϕ(t), t ∈ J.

Remark 4.5. A function z ∈ C(J, R) is a solution of (4.2) if and only if there exists
a function g ∈ C(J, R) (which depend on z) such that

(1) |g(t)| ≤ ε, t ∈ J;
(2) Dθ

0+z(t) = f
(
t, z(t), Dθ

0+z(t)
)
+ g(t), t ∈ J.

Remark 4.6. Let θ = m + iα, m ∈ (0, 1] and α ∈ R+, if z ∈ C(J, R) is a solution of
the inequality ∣∣∣Dθ

0+z(t)− f (t, z(t), Dθ
0+z(t))

∣∣∣ ≤ ε, t ∈ J,

then z is a solution of the following integral inequality∣∣∣∣z(t)− Az −
1

Γ(θ)

∫ t

0
(t− s)θ−1 f (s, z(s), Dθ

0+z(s))ds
∣∣∣∣ ≤ ε

|Γ(θ)|
Tm

m

(
1 +

|b|
|a + b|

)
.

Indeed, by Remark 4.5, we have that

Dθ
0+z(t) = f (t, z(t), Dθ

0+z(t)) + g(t), t ∈ J.

Then

z(t) = Az +
1

Γ(θ)

∫ t

0
(t− s)θ−1 f (s, z(s), Dθ

0+z(s))ds +
1

Γ(θ)

∫ t

0
(t− s)θ−1g(s)ds

−
(

b
a + b

)
1

Γ(θ)

∫ T

0
(T − s)θ−1g(s)ds, t ∈ J.

with

Az =
1

a + b

[
c− b

Γ(θ)

∫ T

0
(T − s)θ−1 f (s, z(s), Dθ

0+z(s))ds
]

.
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From this it follows that∣∣∣∣z(t)− Az −
1

Γ(θ)

∫ t

0
(t− s)θ−1 f (s, z(s), Dθ

0+z(s))ds
∣∣∣∣

=

∣∣∣∣ 1
Γ(θ)

∫ t

0
(t− s)θ−1g(s)ds−

(
b

a + b

)
1

Γ(θ)

∫ T

0
(T − s)θ−1g(s)ds

∣∣∣∣
≤ 1
|Γ(θ)|

∫ t

0
(t− s)m−1 |g(s)| ds +

(
|b|
|a + b|

)
1
|Γ(θ)|

∫ T

0
(T − s)m−1 |g(s)| ds

≤ ε

|Γ(θ)|
Tm

m

(
1 +

|b|
|a + b|

)
.

Remark 4.7. Clearly,
(1) Definition 4.1⇒ Definition 4.2.
(2) Definition 4.3⇒ Definition 4.4.

Remark 4.8. A solution of the FIDEs with complex order inequality∣∣∣Dθ
0+z(t)− f

(
t, z(t), Dθ

0+z(t)
)∣∣∣ ≤ ε, t ∈ J,

is called an fractional ε-solution of the problem (4.1).

Lemma 4.9. (see Lemma 7.1.1,([16])) Let z, w : [0, T)→ [0, ∞) be continuous functions
where T ≤ ∞. If w is nondecreasing and there are constants k ≥ 0 and 0 < ν < 1 such
that

z(t) ≤ w(t) + k
∫ t

0
(t− s)ν−1z(s)ds, t ∈ [0, T),

then

z(t) ≤ w(t) +
∫ t

0

(
∞

∑
n=1

(kΓ(ν))n

Γ(nν)
(t− s)nν−1w(s)

)
ds, t ∈ [0, T).

Remark 4.10. Under the hypothesis of Lemma 4.9, let w(t) be a nondecreasing
function on [0, T). Then we have z(t) ≤ w(t)Eν,1(kΓ(ν)tν).

Theorem 4.11. Assume that (H1),(H2) and ΩK,L,m,T,a,b,θ < 1 are fulfilled. Then, the
problem (0.1) is Ulam-Hyers stable.

Proof. Let ε > 0 and let z ∈ C(J, R) be a function which satisfies the inequality∣∣∣Dθ
0+z(t)− f (t, z(t), Dθ

0+z(t))
∣∣∣ ≤ ε, for some, t ∈ J,(4.5)

and let x ∈ C(J, R) be the unique solution of the following problem

Dθ
0+x(t) = f (t, x(t), Dθ

0+x(t)), t ∈ J, θ = m + iα,

x(0) = z(0), x(T) = z(T),

where m ∈ (0, 1] and α ∈ R+.
Using Lemma 3.3, we obtain

x(t) = Ax +
1

Γ(θ)

∫ t

0
(t− s)θ−1Kx(s)ds

with

Ax =
1

a + b

[
c− b

Γ(θ)

∫ T

0
(t− s)θ−1Kx(s)ds

]
.
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On the other hand, if x(T) = z(T) and x(0) = z(0), then Ax = Az.
Indeed,

|Ax − Az| ≤
|b|

|a + b| |Γ(θ)|

∫ T

0

∣∣∣(T − s)θ−1
∣∣∣ |Kx(s)− Kz(s)| ds

≤
(

K
1− L

)
|b|
|a + b| I

θ
0+ |x(T)− z(T)|

= 0.

Thus, Ax = Az. We have

x(t) = Az +
1

Γ(θ)

∫ t

0
(t− s)θ−1Kx(s)ds.

By integration of the inequality (4.5) and using Remark 4.6, we obtain∣∣∣∣z(t)− Az −
1

Γ(θ)

∫ t

0
(t− s)θ−1Kz(s)ds

∣∣∣∣ ≤ εTm

m |Γ(θ)|

(
1 +

|b|
|a + b|

)
.

We have for any t ∈ J

|z(t)− x(t)| ≤
∣∣∣∣z(t)− Az −

1
Γ(θ)

∫ t

0
(t− s)θ−1Kz(s)ds

∣∣∣∣
+

1
|Γ(θ)|

∫ t

0

∣∣∣(t− s)θ−1
∣∣∣ |Kz(s)− Kx(s)| ds

≤ εTm

m |Γ(θ)|

(
1 +

|b|
|a + b|

)
+

(
K

1− L

)
1
|Γ(θ)|

∫ t

0
(t− s)m−1 |z(s)− x(s)| ds.

Using Gronwall inequality, Lemma 4.9 and Remark 4.10, we obtain

|z(t)− x(t)| ≤
(

1 +
|b|
|a + b|

)
εTm

m |Γ(θ)|Em,1

(
K

1− L
1
|Γ(θ)|Γ(m)Tm

)
.

Thus, the problem (0.1) is Ulam-Hyers stable. �

In the sequel we use of the following hypothesis.
(H4) There exists an increasing function ϕ ∈ C(J, R) and there exists λϕ > 0

such that for any t ∈ J

Iθ
0+ ϕ(t) ≤ λϕ ϕ(t).

Theorem 4.12. Assume that (H1),(H2),(H4) and ΩK,L,m,T,a,b,θ < 1 are fulfilled. Then,
the problem (0.1) is generalized Ulam-Hyers-Rassias stable.

Proof. Let z ∈ C(J, R) be solution of the following inequality∣∣∣Dθ
0+z(t)− f (t, z(t), Dθ

0+z(t))
∣∣∣ ≤ εϕ(t), t ∈ J, ε > 0,(4.6)

and let x ∈ C(J, R) be the unique solution of the following problem

Dθ
0+x(t) = f (t, x(t), Dθ

0+x(t)), t ∈ [0, T], θ = m + iα,

x(0) = z(0), x(T) = z(T),

where m ∈ (0, 1] and α ∈ R+.
By Lemma 3.3, we get

x(t) = Az +
1

Γ(θ)

∫ t

0
(t− s)θ−1Kx(s)ds
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with

Az =
1

a + b

[
c− b

Γ(θ)

∫ T

0
(T − s)θ−1Kz(s)ds

]
.

By integration of the inequality (4.6) and using (H4), we obtain∣∣∣∣z(t)− Az −
1

Γ(θ)

∫ t

0
(t− s)θ−1Kz(s)ds

∣∣∣∣ ≤ ελϕ ϕ(t)
(

1 +
|b|
|a + b|

)
.

We have for any t ∈ J

|z(t)− x(t)|

≤
∣∣∣∣z(t)− Az −

1
Γ(θ)

∫ t

0
(t− s)θ−1Kzds

∣∣∣∣+ 1
|Γ(θ)|

∫ t

0

∣∣∣(t− s)θ−1
∣∣∣ |Kz(s)− Kx(s)| ds

≤
(

1 +
|b|
|a + b|

)
ελϕ ϕ(t) +

(
K

1− L

)
1
|Γ(θ)|

∫ t

0
(t− s)m−1 |z(s)− x(s)| ds.

Using Gronwall inequality,

|z(t)− x(t)| ≤
(

1 +
|b|
|a + b|

)
ελϕ ϕ(t)Em,1

(
K

1− L
1
|Γ(θ)|Γ(m)Tm

)
, t ∈ J.

Thus, the problem (0.1) is generalized Ulam-Hyers-Rassias stable. �
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