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QUANTUM CODES FROM CODES OVER THE RING

F2m + αF2m + βF2m + γF2m

MURAT GÜZELTEPE AND MUSTAFA ERÖZ

Abstract. Let i, j, k be elements of real quaternions H. Let α, β, γ be the

elements corresponding to 1+i, 1+j, 1+k, respectively. In this study, quantum
codes from classical codes over F2m + αF2m + βF2m + γF2m are obtained.

1. Introduction

The relationship between quantum codes and classical codes has been discussed
by the authors since the first quantum error correcting codes obtained. It was
shown in [1] that quantum codes can be obtained from classical self-orthogonal
codes. Thms. 1-3 in [1] have been used by many researchers to establish a bridge
between quantum codes and classical codes. Many researchers have utilized differ-
ent finite fields and finite rings to construct quantum codes. For example, regarding
Gray image of linear or cyclic codes over F4 + uF4, some quantum codes were pre-
sented in [2]. A different method to obtain quantum error-correcting codes from
cyclic codes over F2 + vF2 was given in [3].

On the other hand, linear and cyclic codes over some special rings were defined
by some researchers. In [4], codes over the ring Z2m + αZ2m + βZ2m + γZ2m, in
[5], Cyclic codes over F2 + uF2 + vF2 + uvF2 were defined.

In this paper, we construct quantum codes via codes over the ring F2m +αF2m +
βF2m + γF2m . Some of these quantum codes are better than previous ones. We
prefer the ring F2m +αF2m +βF2m +γF2m to the ring F2m +uF2m +vF2m +uvF2m ,
where u2 = v2 = 0, uv = vu since, using a norm function, one can easily determine
the minimum distance of a code.

In what follows, we consider the following:
Shortly, we take the finite field F2m as a field extension of F2 such that

F2m = Z2[x]/(p(x))

where p(x) is an irreducible monic polynomial in Z2[x] of degreem. The Gray map φ
from F2m to Fm2 is defined as φ

(
a0 + a1x+ · · ·+ am−1x

m−1) =
(
a0, a1, . . . , am−1

)
.
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For example, let p(x) = x3 + x+ 1 then

F23 =
{
a0 + a1x+ a2x

2 : a0, a1, a2 ∈ F2

}
and hence we get φ (0) =

(
0, 0, 0

)
, φ (1) =

(
1, 0, 0

)
, φ (1 + x) =

(
1, 1, 0

)
,

etc. This Gray map can naturally be extended to Fn2m by applying it coordinatewise.
The Hamming weight of a vector u ∈ Fm2 is defined as the number of nonzero

components and the Hamming weight of a vector u ∈ F2m is naturally defined as
the number of nonzero components of φ(u) and denoted by wt(φ(u)).

Definition 1.1. [6] The Hamilton Quaternion Algebra over the set of the real num-
bers (R), denoted by H(R), is the associative unital algebra given by the following
representation:

i)H(R) is the free R module over the symbols 1, i, j, k, that is, H(R) = {a0+a1i+
a2j + a3k : a0, a1, a2, a3 ∈ R};

ii)1 is the multiplicative unit;
iii) i2 = j2 = k2 = −1;
iv) ij = −ji = k, ki = −ik = j, jk = −kj = i .

From here onwards, R2m denotes the ring
Z2m + αZ2m + βZ2m + γZ2m.

2. The ring R2m

R2m = F2m +αF2m +βF2m +γF2m is a commutative ring. The size of this ring is
24m, that is, |Rm2 | = 24m. The ring R2m is a local ring. But it is not a principal ideal
ring or finite chain. The ring R2 has only one maximal ideal which is not principal.
The maximal ideal is 〈α〉⊕〈β〉 = {0, 1 + i, 1 + j, 1 + k, i+ j, i+ k, j + k, 1 + i+ j + k}.
The ideals of the ring R2 can be introduced by

〈0〉 = {0} ⊂ 〈1 + i+ j + k〉 = {0, 1 + i+ j + k} ⊂ 〈α〉
= {0, 1 + i, j + k, 1 + i+ j + k} , 〈β〉 , 〈γ〉 ⊂ 〈α〉 ⊕ 〈β〉

= 〈α〉 ⊕ 〈γ〉 = 〈β〉 ⊕ 〈γ〉 ⊂ 〈1〉 = R2.

Note that R2/〈α〉 ⊕ 〈β〉 is isomorphic to F2 and 〈α+ β〉 = 〈γ〉.

The followings were defined in [4]:

• The conjugate of an element q = a+ bα+ cβ + dγ in R2m is q = a+ bα+
cβ + dγ.
• αα = ββ = γγ = 2.
• The norm of q = a+ bα+ cβ + dγ is

N(q) = qq = a2 + 2b2 + 2c2 + 2d2 + 2ab+ 2ac+ 2ad+ 2bc+ 2bd+ 2cd.
The norm of a vector u = ut ∈ Rn2m was given by

∑
N(ut).

It should be noted that if u ∈ R2m − (〈α〉 ⊕ 〈β〉), v ∈ 〈α〉 ⊕ 〈β〉 then N(u) ∈
F2m − {0}, N(v) = 0.

3. A Gray map

Let ψ2m : F2m + αF2m + βF2m + γF2m → F4
2m by

ψ2m (a+ bα+ cβ + dγ) =
(
b, c, d, a+ b+ c+ d.

)
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The map ψ2m can naturally be extended to Rn2m by applying it coordinatewise.

The Euclidean weight of a vector u = (ut) ∈ Fn2m is given by w(u) =
∑

(ut)
2
. For

example, for m = 2, p(x) = x2 + x+ 1, then
F4 + αF4 + βF4 + γF4 = {a+ bα+ cβ + dγ : a, b, c, d ∈ F4},

ψ4

(
1 + xα+ x2γ

)
=
(
x, 0, x2, 0

)
= u,

3∑
t=0

(ut)
2

= x2 + 02 +
(
x2
)2

+ 02 = x2 + x4 = x2 + x = 1

,

ψ(1) = (1, 0), wt((1, 0)) = 1.

On the other hand the norm of 1 + xα+ x2γ = 1 + x(1 + i) + x2(1 + k) = 1 + x+
x2 + xi+ x2k = xi+ x2k is calculated as

N(xi+ x2k) = x2 + x4 = 1.

Note 1 + x+ x2 = 0 and x3 = 1 in F4.

Theorem 3.1. If u is a vector in Rn2m then N(u) = w(ψ2m(u)) implies that
wt(N(u)) = wt(w(ψ2m(u))).

Proof. Let u = q = a0 + a1α+ a2β + a3γ ∈ R2m , where a0, a1, a2, a3 ∈ F2m . Then
the norm of N(u = q) = qq = a20+2a21+2a22+2a23+2ab+2ac+2ad+2bc+2bd+2bc.
On the other hand, ψ2m(a0 + a1α + a2β + a3γ) = (a1, a2, a3, a0 + a1 + a2 + a3) =
(u0, u1, u2, u3) = u. Hence we get

3∑
t=0

(ut)
2

= a21 + a22 + a23 + (a0 + a1 + a2 + a3)2 = N(u).

If u is taken (q1, q2, . . . , qn) ∈ Rn2m , it is obtained that N(u) = w(ψ2m(u)) by
applying the same method to each component.

�

The proof of the next theorem is clear from the Gray map and Thm. 1.

Theorem 3.2. The function ψ2m is linear and bijective.

4. Linear codes over R2m

We start to determine the ideals of the ring R2m . As for the ideal structure we
can find the ideals of R2m to be listed as

〈0〉 = {0}
〈α+ β + γ〉 = (α+ β + γ)R2m , |〈α+ β + γ〉| = 2m

〈α〉 = (α)R2m , |〈α〉| = 22m

〈β〉 = (β)R2m , |〈β〉| = 22m

〈α〉+ 〈β〉 = (α)R2m + (β)R2m , |〈α〉+ 〈β〉| = 23m.

Note that
R2m/(〈α〉+ 〈β〉)

is isomorphic to the field F2m with the characteristic 2 and

〈α〉 6= 〈β〉 , 〈α+ β〉 = 〈γ〉 .
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The ideal 〈α〉+ 〈β〉 is a maximal ideal of R2m and R2m has only one maximal ideal.
So, R2m is a local ring. It is well known from algebra that if a ring R is a local ring
with maximal ideal M then an element in R −M is a unit in R. Hence, we can
determine the units of R2m as

R∗2m = R2m − (〈α〉+ 〈β〉) , |R∗2m | =
(
23m

)
(2m − 1) .

Definition 4.1. A linear code C of length n over the ringR2m is anR2m−submodule
of Rn2m .

To classify the generators for linear codes over R2m we must determine linear
independence condition of them to establish possible type for linear codes over R2m .
There are six type generators for linear codes over R2m such that we determine them
as [a], [b], [c], [d], [e], [f ]. Here,

[a] ∈ Rn2m\(〈α〉+ 〈β〉)n
[b] ∈ (〈α〉+ 〈β〉)n, [b] /∈ (〈α〉)n, (〈β〉)n, (〈γ〉)n

[c] ∈ (〈α〉)n\(〈α+ β + γ〉)n
[d] ∈ (〈β〉)n\(〈α+ β + γ〉)n
[e] ∈ (〈γ〉)n\(〈α+ β + γ〉)n

[f ] ∈ (〈α+ β + γ〉)n.

Theorem 4.2. If C is a linear code over R2m then the size of the code C is
(2)4mk1(2)3mk2(2)2mk3(2)2mk4(2)2mk5(2)mk6 .

The proof is straightforward from above generators.

Theorem 4.3. If Cis a linear code over R2m of length n, size 2k and minimum
Euclidean distance d, then ψ(C) is a [4n, k, d]−linear code over F2m and φ(ψ(C))
is a binary [4mn, k, d]−linear code over F2.

Recall that the maps ψ2m and φ are linear and bijective. So, the proof is straight-
forward.

Before we give a relationship between self-dual codes over R2m and self-dual
codes over F2m and F2, we must give the inner product in Rn2m .

We define a similar inner product in [4] such 〈u, v〉 = φ

(
n∑
t=1

utvt

)
, where

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Rn2m . Recall that the ring R2m is com-
mutative. So, 〈u, v〉 = 〈v, u〉.

Theorem 4.4. If Cis a self-dual code of length n over R2m , then ψ2m(C) is a
self-dual code of length 4n over F2m and φ(ψ2m(C)) is a self-dual code of length
4mn over F2.

Proof. Let C be a self-dual code over R2m and let u, v be vectors in C. Let u =
(u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ C, shortly ut = at + btα + ctβ + dtγ, vt =

a
′

t + b
′

tα+ c
′

tβ +
′

t γ. It is obvious that

〈u, v〉 = 0 (mod p(x)) =
∑
t

(at + btα+ ctβ + dtγ)
(
a

′

t + b
′

tα+ c
′

tβ + d
′

tγ
)

=
∑
t

(at + bt + ct + dt + bti+ ctj + dtk)
(
a

′

t + b
′

t + c
′

t + d
′

t + b
′

ti+ c
′

tj + d
′

tk
)

∑
t

 (at + bt + ct + dt)
(
a

′

t + b
′

t + c
′

t + d
′

t

)
+ (at + bt + ct + dt)

(
b
′

ti+ c
′

tj + d
′

tk
)

+ (bti+ ctj + dtk)
(
a

′

t + b
′

t + c
′

t + d
′

t

)
+ (bti+ ctj + dtk)

(
b
′

ti+ c
′

tj + d
′

tk
) 
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On the other hand, we get

〈ψ2m (u) , ψ2m (v)〉 =
∑
t

(ψ2m (at + btα+ ctβ + dtγ))
(
ψ2m

(
a

′

t + b
′

tα+ c
′

tβ + d
′

tγ
))

=
∑
t

(
bt, ct, dt, at + bt + ct + dt

) (
b
′

t, c
′

t, d
′

t, a
′

t + b
′

t + c
′

t + d
′

t

)
=
∑
t
btb

′

t + ctc
′

t + ctc
′

t + (at + bt + ct + dt)
(
a

′

t + b
′

t + c
′

t + d
′

t

)
≡ 0 (mod p(x))

.

Thus we get that ψ2m(C) is a self-orthogonal code over F2m and |ψ2m(C)| =
|C| = 22mn since C is a self-dual code. So, ψ2m(C) is a self-dual code of length 4n
over F2m . Using the same way, it can be seen that φ(ψ2m(C)) is self-dual.

�

Theorem 4.5. Let C1, . . . , C6 are linear codes over F2m such that Ci ∩Cj = {0} ,
for i 6= j. Let C be a linear code over R2m and let M be the maximal ideal of R2m .
Then C is expressed as

C = (R2m\M)C1⊕(〈α〉+ 〈β〉)C2⊕(〈α〉)C3⊕(〈β〉)C4⊕(〈γ〉)C5⊕(〈α+ β + γ〉)C6

with the size |C| = 24mk1+3mk2+2mk3+2mk4+2mk5+mk6 if and only if C1, . . . , C6 are
linear codes over F2m , where k1, . . . , k6 denote the dimensions of C1, . . . , C6, re-
spectively. Moreover, if C is a self-orthogonal code then ψ2m(C) is a self-orthogonal
code.

The proof is straightforward from the definition of the ideals of R2m and Thm.
5.

The proof of next theorem is clear from Thms. 5,6.

Theorem 4.6. Let

C = (R2m\M)C1⊕(〈α〉+ 〈β〉)C2⊕(〈α〉)C3⊕(〈β〉)C4⊕(〈γ〉)C5⊕(〈α+ β + γ〉)C6

be a linear code over R2m under the conditions above theorem and let

Ci ⊆ C⊥i−j , i = 6, 5, 4, 3, 2, j = 1, 2, 3, 4, 5.

If C1, . . . , C6 are self-orthogonal codes then C and ψ2m(C) is a self-orthogonal code
over R2m .

Example 4.7. We give this example to obtain self-dual, self-orthogonal and quan-
tum code parameters using some classical codes over R2m .

Case 1. m = 1, n = 1. In this case, under the conditions of Thm.6 and Thm.7
we can take the classical code C =

〈(
0
)〉

.
Note we can change 0 with an element in the same ideal with the norm of that

element is 0. Let C be a linear code generated by the generator matrix G = (0).
Then we can change 0 with α, β or α+β+γ. So, we can take the generator matrix
as, for example, G = (α+ β + γ).

• Let G = (α + β + γ). If we take C6 = C, in Thm.7, then we get a self-
orthogonal code with parameters [4, 1, 4], and corresponding quantum code
[[4, 2, 2]].

• Let G = (γ). If we take C5 = C then we get a self-dual code with parame-
ters [4, 2, 2], and corresponding quantum code [[4, 0, 2]].
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Case 2. m = 1, n = 2. Note we will no more take G = (0, 0) since it gives us a
trivial self-orthogonal code.

In this case, under the conditions of Thm.6 and Thm.7 we can take the classical
code C =

〈(
1, 1

)〉
.

• If we take C6 = C then we get a self-orthogonal code with parameters
[8, 1, 8], and corresponding quantum code [[8, 6, 2]].
• If we take C5 = C then we get a self-orthogonal code with parameters

[8, 2, 4], and corresponding quantum code [[8, 4, 2]].
• If we take C2 = C then we get a self-orthogonal code with parameters

[8, 3, 4], and corresponding quantum code [[8, 2, 2]].
• If we take C1 = C and change one of the component 1 with 1 + α+ β + γ

then we get a self-dual code with parameters [8, 4, 4], and corresponding
quantum code [[8, 0, 4]].

Thereafter, we give only special codes for some cases to understand the construc-
tion.

Example 4.8. Let m = 2, n = 2. Let F4 =
{

0, 1, w, w2
}

, where w2 + w + 1 =

0, w3 = 1. In this case, under the conditions of Thm.6 and Thm.7 we can take the
classical a code C with a generator matrix

G =

(
1 w w2 0
0 w 1 w2

)
.

Using this generator matrix G we can easily write a generator matric for a self-
dual code C

′
over R4 such that

C
′

=

〈(
1 w(1 + α+ β + γ) w2(1 + α) w(α+ β)

α+ β w(1 + α+ β + γ) 1 + α w2

)〉
.

Here, we changed the component w with w(1 + α + β + γ), changed w2 with
w2(1 + α), changed 0 with w(α + β) since the norm of w is equal to the norm of
w(1 + α+ β + γ) and apply the same argument the other components.

Theorem 4.9. If C is a binary self-dual code with parameters [n, n2 , d] then there
exists a binary self-dual code with parameters [4mn, 2mn,≥ 2d]. Hence there exists
a quantum code with parameters [[4mn, 0,≥ 2d]].

Proof. Let us assume that C be a binary self-dual code with generator matrix G.
Using above method and taking C1 = C, we get a self-dual code over the ring R2m

with parameters [4mn, 2mn,≥ 2d]. Using the function ψ and φ, the intended is
obtained.

�

Example 4.10. Let C be the well known binary code [2, 1, 2] with the generator

matrix G = (1, 1). If we take the generator matrix G
′

= (1, 1 + α + β + γ) for a

code C
′
, then we get a quantum code with parameters [[8, 0, 4]].

Example 4.11. Let C be the binary self-dual code with parameters [6, 3, 2]. The
generator matrix G of C is

G =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 .
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It is clear that the minimum weight of this code is 2. Using the generator matrix
G, we now construct a self-dual code. Take k1 = k = 3 and C1 = C in Thm.6. The
first row of G is (1, 0, 0, 1, 0, 0). So, we can use two elements from the set R2 −M
and can use four elements from the set 〈α〉 ⊕ 〈β〉 since there are two reversible
elements in the first row of G. The same manner holds for the other rows. Hence
we get a generator matrix of a code C

′
over R2 such as

G
′

=

 1 0 0 1 + α+ β + γ β α+ β
0 1 0 β 1 + β + γ β + γ
0 0 1 α+ β β + γ 1 + α+ γ

 .

This code with parameters [6, 3, 8] is a self-dual code over R2. The image under the

function ψ, that is ψ(C
′
), is also a binary self-dual code with parameters [24, 12, 8].

This binary self-dual code [24, 12, 8] is an extremal self-dual code since 8 = 4
⌊
24
24

⌋
+

4.
Notice that we obtain a binary self-dual code whose minimum distance is 8 via

a binary self-dual code whose minimum distance is 2.

How can we determine the generator matrix G
′

of the code C
′

over F2m using
the generator matrix G of the code C over R2m? Note here that C

′
= ψ(C).

Let

G =


u1
u2
...
uk


k×n

,

u1 = (u11, u12, . . . , u1n)
u2 = (u21, u22, . . . , u2n)

...
uk = (uk1, uk2, . . . , ukn)

,

where uij ∈ R2m . To obtain the generator matrix G
′
, we first write the following

matrix A;

A =



u1
(1 + α)u1
(1 + β)u1
(1 + γ)u1

u2
(1 + α)u2

...
uk

(1 + α)uk
(1 + β)uk
(1 + γ)uk


4k×n

.

Then the generator matrix G
′

is

G
′

=


ψ (u1)

ψ ((1 + α)u1)
...

ψ ((1 + γ)uk)


4k×4n

,

where ψ(u1) = (ψ(u11), ψ(u12), . . . , ψ(u1k)) and so on.

Let us assume that the matrix G
′′

is the standard form matrix of G
′

such that
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G
′′

= ψ(A) =



(
u

′

1

)(
u

′

2

)
...(
u

′

4k

)


4k×4n

,

Let 1, w, ..., wm−1 be the elements of the finite field F2m . We can define a matrix
B as

B =



u
′

1

w
(
u

′

1

)
w2
(
u

′

1

)
...

wm−1
(
u

′

1

)(
u

′

2

)
w
(
u

′

2

)
...

wm−1
(
u

′

4k

)


4km×4n

.

Hence, φ(B) gives us the generator matrix of a linear binary code. The dimension
of the matrix φ(B) is 4km× 4nm.

Example 4.12. Let m = 2, n = 2. Let F4 =
{

0, 1, w, w2
}

, where w2 + w + 1 =

0, w3 = 1. Let the generator matrix G of a code C
′

over R4 be

G =

(
1 α+ λ 1 + α+ β w(α+ β)

α+ λ 1 + α+ β + γ w(α+ β) 1 + α+ β

)
=

(
1 i+ k 1 + i+ j w(i+ j)

i+ k i+ j + k w(i+ j) 1 + i+ j

)
.

Then the matrix A is

A =



1 i+ k 1 + i+ j w(i+ j)
i 1 + j 1 + i+ k w(1 + k)
j i+ k 1 + j + k w(1 + k)
k 1 + j i+ j + k w(i+ j)

i+ k i+ j + k w(i+ j) 1 + i+ j
1 + j 1 + j + k w(1 + k) 1 + i+ k
i+ k 1 + i+ k w(1 + k) 1 + j + k
1 + j 1 + i+ j w(i+ j) i+ j + k


.
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Hence the generator matrix G
′

is

G
′

= ψ (A) =



0 0 0 1 1 0 1 0 1 1 0 1 w w 0 0
1 0 0 0 0 1 0 1 1 0 1 1 0 0 w w
0 1 0 0 1 0 1 0 0 1 1 1 0 0 w w
0 0 1 0 0 1 0 1 1 1 1 0 w w 0 0
1 0 1 0 1 1 1 0 w w 0 0 1 1 0 1
0 1 0 1 0 1 1 1 0 0 w w 1 0 1 1
1 0 1 0 1 0 1 1 0 0 w w 0 1 1 1
0 1 0 1 1 1 0 1 w w 0 0 1 1 1 0


.

The standard form matrix G
′′

of G
′

is

G
′′

=



1 0 0 0 0 0 0 0 w2 w w2 w2 1 0 w2 w
0 1 0 0 0 0 0 0 w w2 w2 w2 0 1 w w2

0 0 1 0 0 0 0 0 w2 w2 w2 w w2 w 1 0
0 0 0 1 0 0 0 0 w2 w2 w w2 w w2 0 1
0 0 0 0 1 0 0 0 1 0 w2 w w w2 w w
0 0 0 0 0 1 0 0 0 1 w w2 w2 w w w
0 0 0 0 0 0 1 0 w2 w 1 0 w w w w2

0 0 0 0 0 0 0 1 w w2 0 1 w w w2 w


.

The code C
′′

with the generator matrix G
′′

is a [16,8,6] self dual code over GF (4).
Consequently, we obtain the matrix φ(B) as

φ (B) =



1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1


Using this classical code with generator matrix φ(B), we obtain [[32, 0, 6]] quan-

tum code over F2.

5. Conclusion

In this paper, we obtain new classes of quantum codes from classical codes over
the ring R2m . To obtain these quantum codes, we define a Gray map from R2m to
F4
2m . Also, we study on the algebraic structure of the ring R2m . We characterize

cyclic, self-dual and self-orthogonal codes over this ring.
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