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Abstract: In this study, we investigate some renormings of co and fixed point theory
related questions constructing some equivalent norms to the canonical norm of the
Banach space of sequences converging to 0, co. Then, we show that respect to these
equivalent norms, co does not include any asymtoticaly isometric copy of itself with its
usual norm. Dowling, Lennard and Turett proved that if a Banach space has an
asymptotically isometric (ai) copy of co or I* inside, then it fails to have the fixed point
property for nonexpansive mappings (FPP(ne)). It is well-known that neither these spaces
has FPP(ne) but as an intriguing work, P. K. Lin showed that I* can be renormed to have
FPP(ne). Researchers still wonder if co can be renormed to have FPP(ne). In order to work
on co-analogue of P. K. Lin’s theory, it is important to study renormings that do not have
any ai copy of cpinside. That is why, our renormings might be candidates to answer P. K.
Lin’s co-analogue and they can be considered as the first stage to research this big open

question.

Co’mn Alisilmis Normuna Yeni Bir Bakis ve co’in Sabit Nokta Teorisine Sahip

Yeniden Normlamalari i¢in Adaylar

Anahtar Kelimeler:

Sabit Nokta Teorisi,
Yeniden Normlama,
Asimtotik Izometrik Kopya,
Banach Uzaylari,

o Dizi Uzayz,

Genislemeyen Fonksiyonlar

Ozet: Bu galismamizda 0 a yakinsak dizilerin uzayi olan co Banach uzayz iizerinde kendi
kanonik normuna esdeger bazi normlar tammmlayarak Co uzaymm yeniden
normlanmiglarin1 sabit nokta teorisi agisindan sorulari inceliyoruz. Caligmamizda
gosteririz ki gelistirmis oldugumuz esdeger normlara gore bu yeniden normlamalar co’in
alisilmig normunun asimtotik izometrik kopyasini igermez. Dowling, Lennard ve Turett
ispatlamustir ki eger bir Banach uzay1 co veya I"in asimtotik izometrik kopyalarmdan
birini icerirse genislemeyen fonksiyonlar igin sabit nokta teorisine (SNT(gf)) sahip

olamazlar. Cok iyi bilinen bir ger¢ek olarak bu iki uzayin hi¢biri SNT(gf)’ye sahip
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degildir. Cigir agici olarak nitelendirilen bir ¢alisma ile P. K. Lin gdstermistir ki 1* uzay:

SNT(gf)’ye sahip olacak sekilde yeniden normlanabilir. ¢o uzayinin SNT(gf)’ye sahip

olacak sekilde yeniden normlanabilip normlanamayacagi acik bir sorudur. P. K. Lin’in

teorisinin cg-analogu iizerinde galisabilmek i¢in co’in asimtotik izometrik kopyalarini

icermeyen yeniden normlamalar iizerinde ¢alismak dnemlidir. Bu sebeple bizim yeniden

normlamalarimiz P. K. Lin’in co-analogunu ¢6zebilmek i¢in aday olabilir ve bu biiyiik

acik soruyu arastirmak i¢in ilk asama olarak kabul edilebilir.

1. INTRODUCTION

Banach space of sequences converging
to 0, (co, || - llo) and Banach space of absolutely
summable sequences (I%,]|.]l;) have weak
fixed point property; that is, every invariant
nonexpansive mapping defined on any non-
empty weakly compact, convex subset of the
space has a fixed fixed point but both spaces fail
the fixed point property; in other words, there
exist a closed, bounded and convex (chc)
nonempty subset and a fixed point free invariant
nonexpansive mapping defined on that set.
These two spaces can be considered as the
examples of nonreflexive Banach spaces failing
FPP(ne) (Kirk and Sims, 2013).

The first illustrate of a non-reflexive

Banach space (X,[||) with FPP(ne) was

recently given. This fact is proved for (1%, ]| .]l;)

with the equivalent norm |||- ||| given by
k o
|||X |||: Sup Kk |Xn |1 for a”X:(Xn)neN egl
keN +8 n=k
(Lin, 2008).

(co» |l - llo) analogue of P.K. Lin’s work
is still unknown. Long before Lin’s work, it had
been showed that while I' fails the FPP(n.e.)
with its usual norm, there exists a large class of
cbc and non-weak*-compact subsets D of
(14, I . l1) such that every || . ||; —nonexpansive
mappings U:D—>D has a fixed point
(Goebel and Kuczumow, 1979) . Thus, one can

consider an analogue work of theirs for ¢, but it
has to be done after renorming c,. That is, a

researcher can work on a question "do there

exist any renorming of ¢, and a nonempty chc

subset C so that every nonexpansive mapping
has fixed point property?".

Recently, it has been given positive
answer for this question when the mapping is
also affine (Nezir, 2017a; Nezir and Sade,
2017). These works are interesting because the
authors invented large classes of equivalent
norms and showed that the closed convex hull

(cch) of some asymptotically isometric (ai) c, -

summing basis for its canonical norm has
FPP(ne) when the functions are also affine

whereas it was proved that if a Banach space has



anai c,-summing basic sequence (x),_, inside,

then the cch of (x,),.., E :=co({x, :neN}),

fails the fixed point property for affine
nonexpansive mappings (FPP(nea)) (Lennard
and Nezir, 2011; Nezir, 2012). In their works,

the authors study on some specific ai ¢, -
summing basic sequences in ¢, .

For example, they fix be(0,1) and
define the sequence (f,),.y in ¢, by setting
f,:=be , f,:=be,, and f :=e, , for every
n>3 where (g,),., is defined to be 1 inits nth

coordinate, and 0 in all other coordinates such

that for both (Co,|HLo) and (ﬁl,H'Hl), the
sequence (e,),, IS an unconditional basis.

Next, they define the cbc subset ¢ = ¢, of ¢, by

C::{Ztn fil=t>t,>...>t 0}.
n=1

Then, they define the sequence (77,),.y in E in

the  following way: n=f  and

f,+...+f , for every n>2 . Note that

1

M =

C= {ian n, -each ¢, >0and ian =

n=1 n=1

Next, they give the following theorem:

Theorem 1.1 Assume b < (0,1). Then the cch of

the sequence (.)..., C=co({n,:neN}) is

such that there exists a fixed point free affine

|||, -nonexpansive mapping U :C —C.
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Easily, it can be seen that the sequence
(17,),. 1S @Nai ¢, -summing basic sequence.
In the recent works (Nezir, 2017a; Nezir and
Sade, 2017); respectively, the authors define the
following equivalent norms on c, depending on
a scalar o satisfying some conditions such that

they show that c, can be renormed so that when
there exists be(0,1) , the set C given in
affine

Theorem 1.1 above and for all

nonexpansive mappings T:C—C, T has a
fixed pointin C.

Let deR. For x= (&), €c,, define

x| = x], +sup Qclé, — ag;| where 3" Q, =1,
jeN k=1 k=1

Q ¥, 0and Q >Q,,, VkeN.

1

P\p
L1 = (&;

X" = = limsupy, Z@
Y1 P—® keN i=k J

+715UpZQk‘§|: _0‘5;

jeN k=1
+71\/Sjg§;Qk2\cfk ~ag)|
where 7, T 1700 > 7, VK €N,
Y2 =7 X =(&]) oy is the  decreasing
rearrangement of X,

iQk =1,Q 4, 0and Q, >Q,,,, vk e N such that
k=1

from the definition of decreasing rearrangement,

3 a 1-1 mapping 7:N—>N and 3(g;) ;. St



A New Look to The Usual Norm of ¢y and Candidates to Renormings of co with Fixed Point Property

each and then

&, €{-11}

5; = é;r(k) = €1k ng(k):Vk eN.

We need to note that the denominator

29

has to be replaced by “j

Y&

part 7j
the second work.

throughout

As it has been mentioned above, when
working on renormings of ¢, (or I') to get large
classes of non-weakly compact, cbc sets with
FPP(ne), first of all, the renorming should not
have an ai copy of c, (or I'; respectively)
inside. Indeed, it is known that if a Banach space
has one of these copies inside, then it fails to
have FPP(ne) (Dowling et al, 2001).

In our work, we invent some renormings

of ¢, and show that with our new type of
equivalent norms c, does not contain any ai
copy of c,. We also see interesting properties of

these renormings in terms of fixed point
property.

We believe that our results have great
importance in terms of bringing new candidates

to solve ¢, analogue of P.K. Lin’s theorem. In

fact, using our equivalent norms, one can obtain
more equivalent norms satisfying our results and
even better results.

Now, we can give preliminiaries for our

work that leads us to obtain our main result.
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2. PRELIMINARIES

Definition 2.1 Let K be a non-empty cbc subset
N.LetU:K—->K

of a Banach space (X,
be a mapping.

1. Wesay T is affine if
1e[01]
U((@Q-A)x+Ay)=(1- DU X))+ AU (y).

for all for all x,yeK |,
2. We say U is nonexpansive if

W) -Uy)|<|x-y|., forallx,yeK.

Also, we say that K has the fixed point property

for nonexpansive mappings [FPP(ne)] if for all

nonexpansive mappings U :K — K | there

exists Z € K with U(2) = z.
Let (X,||-|) be a Banach space and
E < X . We will denote the cch of E by co(E).

As usual, (c,Jl-]l.L) is given by
each x, e R
CO EAX = (Xn)neN : and limx. = o
n—oo "
Further, ||, =sup,lx,| . for al

X=(X,)n €C, 5 and (¢4-]) is defined by

o= {x = (X )pen s€ACHh X, € Raand ||, := il X, < 00}-
n=1

We recall now the definition of an ai

C, —summing basic sequence in a Banach space

(X,]]-]), from (Lennard and Nezir, 2011).

Definition 2.2 Let (X,||-||) be a Banach space

and (x,),.y be a sequence in X satisfying the



following condition; then, we say (X, ),y IS @n
ai ¢, -summing basic sequence in (X,||]) :
There exists a null sequence (&,),.y in [0,0)

such for

Su !
1

+&

that every  (t,)oey €Coo

j letjxj SSUE)(1+8n)‘th
i= n> j=n

Note that here we can replace c,, by .

0

24

j=n

<

n

Furthermore, if L>0 and the sequence
(z,/L), s an ai c,-summing basic sequence,
an L -scaled ai

in O, [I-[1)

we will call the sequence (z,), .

¢, -summing basic sequence

(Lennard and Nezir, 2011).

2.1. Ai copies of c,, ai copies of I' and ai

copies of (&0

Banach Spaces containing either of

asymtotically of I

isometric  copies or

asymtotically isometric copies of c, has rich

applications on fixed point theory. In this
section, we will recall the definition of Banach
isometric

spaces containing asymtotically

copies of I' and theorems given by (Dowling
and Lennard, 1997; Dowling et al, 2001) and the
definition of Banach

spaces containing

asymtotically isometric copies of ¢, and

theorems given by (Dowling et al, 1996;

Dowling et al, 2001). Furthermore, using their
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ideas, we will gave an interesting definition and
its application (Nezir, 2017b).

Definition 2.1.1 Let (X,||-|) be a Banach

space. Then, we say that X has an ai copy of I'

inside if there exists a null sequence (s, ), in

(0,1) and a sequence (x,). in X such that

DX <D
n=1 n=1

forall (t,),_, €!' (Dowling et al, 1997).

Z(l—gn)|tn| <
n=1

Theorem 2.1.2 If a Banach Space (X,||-|[) has

an ai copy of I' inside then it fails FPP(ne)
(Dowling et al, 1997).

Definition 2.1.3 Let (X,||:|) be a Banach
space. Then, we say that X has an ai copy of

¢, inside if there exists a null sequence (&, ), in

(0,1) and a sequence (x, ), in X such that

Ztn Xp
n=1

forall (t,),.y €C, (Dowling et al, 1996).

sup(1-e&,)It,| < <suplt,|
neN neN

Theorem 2.1.4 If a Banach Space (X,]|-|)
contains an ai copy of ¢, then it fails FPP(ne)

(Dowling et al, 1996).

Definition 2.1.5 Let (X,|-[) be a Banach

space. Then, let’s say X has an ai copy of (1&°
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inside if there exists a null sequence (g,). in  Proof. Let x=(&)_, €c,. We will consider

ieN

(0,1) and a sequence (x,), in X such that x#(0,0,---) otherwise proof of the claim is
1 1& o clear.

—sup(l-¢&)t,|+= D (I-¢&)t,[<| D . X,

2 nd?( ol 2;( I Z;‘ Then,

< Zsunl |+ 5 21| INeN > |, =supjs,|
ne n=1

1 . = max‘gk‘ :‘gN ‘
forall (t,),. €!” (Nezir, 2017b). keN

Due to power mean inequalities formula

Theorem 2.1.6 If a Banach Space (X, ||-||) has (Hardy etall, 1952),

an ai copy of ¢*#° inside then it fails FPP(ne) ”an - TS%XKk'
(Nezir, 2017b). = max{&,|,|& |- & )

Proof. Proof is done by combining two proofs: .

{|§1|p +|§2|p +"'+|§N|pJp

one is the proof of the Theorem 1.2 in (Dowling

=1lim
et al, 1997) and the other one is the proof of the o N
Proposition 7 in (Dowling et al, 1996). In fact, N\
N p
in order for the readers to see how basic the = |im[Z%J ,
Pl k=g

proof is, they can see more detailed proofs of

both theorems in (Dowling et al, 2001). Also, due to weighted power mean
inequalities formula (Hardy et all, 1952),

3. ANEW LOOK TO THE ABSOLUTE X, = max|]

SUP NORM OF ¢, = max{&|,|& ] &)

1
Theorem 3.1 For any x=(&)._, ec, and for _ “m(|§1|p +1&|" +“'+|§N|pjp
N
any nmeN, P 2
1 1
1 N
I~ |§k|p P - |§k|
= - | m .
i, =] 35 im| 3215
1 (3.1)
» P\p
= lim Z'ékk'
P k=1 2
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Claim 3.2

oS |~

X, = 1im
p—>0

(3.3)

o

= lim

p—>0

Indeed,

o

£/
2k

i
k=1

X[, < 1im
p—>o

o |

<lim

p—>©

On the other hand, 3seN such that

1
|§k|<F’VkZS'

Thus,
1 1
0 p p s—1 p 0 P p
|im(2—|§k2| ] =Iim[z|ikl +Z|§kl ]
p—ool k=1 P2l k=1 k=s
1
< |§k|p |§s|p °°|§k|p P
i dk
<L@o(kzz; k? N s? L 2
1
s P p P
p—=ol k=1
1
. > |§k|p o 1 P
SL'L‘;[E L K

NEZIR

91

. P 1 1
= Lm[|§N| 2 (2p+1)82p+1

k=1

) f

IéNlp{kaiz dk}

Shmo T
(2p+1)s?°*

=&

=x..

3.1. An equivalent norm ||| for c, such that

(Co.|) does not contain an ai copy of I' or

an ai copy of (&0

Now, using the facts above, we will construct

an equivalent norm ||| on ¢, and we will give
an unusual way to see that (c,,[[) does not

have an ai copy of I' or an ai copy of ¢*&8°
inside. The basic method to see our result is

that with any equivalent norm, ¢, cannot

contain even an isomorphic copy of I' or a
renorming of I' since otherwise it would have
Schur property. Now, let’s see our alternative

proof with our equivalent norm.
Definition 4.1 For x = (&,), €¢,, define
p
4l
j2

P
J where y, T, 1,

|| = timsup 7{2
pP—® keN j=k

7, isstrictlyincreasing.
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Then, it is easy see that || is an

equivalentnormon c; .

Now, let’s see some interesting

properties of this equivalent norm.

Theorem 3.1.2 (c,,||[) does not have an ai

copy of I'inside.

Proof. We will be using the similiar ideas in
Example 10 of (Dowling et al, 2001). By

contradiction, assume (c,,[||) does have an ai
copy of I' inside. That is, there exists a null
sequence (g,), in (0,1) and asequence (x,), in

C, such that

forevery (t,),. €', it followsthat

M S et sHitn X,
n=1

0

<Dt

n=1 n=1

Then, for the Cesaro average of the

sequence X, , we get
forevery (t,),., €1, itfollowsthat

[oe] 1 n 0 1 n
M-S <DL =Y x,
n=1 ni= =1 N3

Thus, replacing ¢, by Eng , we have
Ni=
forewery (t,), ., €, itfollows that

L) 0 s} 1 n
A S l-g ) < Zthkan.
n =1

n=1 =1

Define y, ::EZXj for each n.
n j=1

Without loss of generality we can

92

suppose that the sequence (y,), is disjointly
supported; i.e., that the support of y,, is disjoint
from the support of y, if nm . This is
possible since ¢, has weak Banach Saks

property (Nufiez, 1989), again without loss of
generality, if necessary by passing to a
subsequence, we can suppose its Cesarro

average converges in norm to y . By replacing

Y, by the ||| -normalization of the sequence

( Yon — yanj
2 n

suppose that y=0 . By the proof of the

that satisfies &%

'y EHl

we may

Bessaga-Pelczynski Theorem (Bessaga and
Petczynski, 1958; Diestel, 2012), we can pass to
an essentially disjointly supported subsequence
of this

Truncating subsequence

Y,
appropriately, we get a disjointly supported
sequence that satisfies #,. , when it is
normalized.

If necessary, by passing to

subsequences, we can also suppose that

£, <i forall neN.
2n

Let (m(k))keNO with  m(0)=0 and

(& )ven @ sequence of scalars such that for each

keN,

m (k)

D Siey

j=m(k-1)+1

Ye =

Using the triangular inequality of the

norm, for each N eN, we get



N +1-g —Negy <y, + Ny,

1 1
1 n N P
ws P W ar ]
i K2 k2 '
. k= k=m(N-1)+1
<lim  sup .
-0 1<j<m(l
T e Wi ]e
i<m(N) Ny, K2
k=i
1 1
V&P WolEl P
v k
J’j[__ 2 ] +N m<1)[_z |
<lim sup = 1 k=m(N-1)+1
pow 1<j<m(l) N N
m(N-1)+1< N}{m( )|§k |p1p
i<m(N) I k?
k=i
1
R
7j|:z kkz }
k=j
1
- m(N) P (p
Slim  sup 4N Tty 7m(N1)+l{ Z |§k2|} '
'Hw r1n<(lj\1<fn1])(i)l Vm(N-1)+1 eniiwa K
<i<m(N)
W C
Ny, Zﬁ
k=i
7
<maxql+N 00 N L
Y m(N-1)+1
That is,
Vma
N +1-g —Ney <maxil+N—"0 N
Y m(N-1)+1

forallN e N.
. 1 1
But since 51<E and Ne, <§’ we

have N +1-¢ —Ng, >N and so

N+l-g —Ngy <1+ N_2m0
Y m(N-1)+1
forall N e N.
Thus,
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1+i_ﬂ_ <i+&
NS
N N N Y m(N-1)+1
forallN € N.

Therefore, we get contradiction by

letting N — oo since we would have 1<y, (1).

Theorem 4.3 (c,,||[) does not have an ai copy

of ¢4 inside.

Proof. We will be using the similiar ideas to the
proof of the previous theorem. By contradiction,

assume (c,, ||||) does contain an ai copy of 1'®°.
That is, there exists a null sequence (g,), in

(0,1) and a sequence (x,). in ¢, such that

n

forevery (t,), €1, it follows that

1 o0
sup(1—e&,)it, |+ 52(1— &)t
neN n=1

1
2

0

< Ztn X,

n=1

o0

1
2t

< lsup|t |+=
2 neN " 2 n=1

Then, for the sequence of Cesaro

averages,

0

forevery (t,),., €l’, it follows that
] 1&, 1
sup(l-¢ —+-) (1--
neRFI)( n)nZ:‘I n 2;( n
0 1 n
=X,
Ni=

2t
Then, without loss of generality, by

n

Zek)ltnl

k=1

1
vy —
2

<

n=1

passing to a subsequence if necessary, we can

suppose that a null sequence (g, ), in (0,1) can

be found such that
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forevery(t )neN el'it follovvs that

<

v, —sup(l——zgk)‘t ‘ Z 1__ng)‘t ‘
< 2t Z
n=1 k:
Indeed we can do this. For example, in
vev , instead of ¢, , we could consider

for any k eN that still satisfies »
(l+5 )

1- . .
ﬁltnl is in ¢, (so it
+&

n

(also note that [« ]

reaches to its maximum)), then for k large
enough, without loss of generality, by passing to

a subsequence if necessary and taking the fact

[#] into consideration, we could suppose that

there exists NeN such that

— &
L

+(9n)k

and there exists seN with _1=% -
1+ gs)k

Then, passing to a subsequence if

1-¢,
(1+¢,)"

necessary, we could reorder so that

l1-¢,

s=1land 11—
(1+ gn)k

is decreasing. Thus, after

all these assumptions that we could have, in in

vv , replacing &, by the last sequence
suggested; i.e., 1__1"%  that satisfies
(1+&,)"

1- 1

glk — and
(1+¢) N
sup(l-¢ )iM= max(1l—e& )iM y  We
neN " n=1 n 1=n=N " n=1 n

94

would have 1_:” >(1-¢,)(1-¢,) and so for

every (t,),., €' it follows that

(1—51)(1—en)+(1—iisk)

—_ k=1
20k 2 o

RPCETACEVARNCEE N
+EZ 2 ‘tn‘

n=1

1 1& 1
ﬁ—sup(l—gl)(l—gn)\tn\+EZ(1—HZSk)\tn\
n=1 k=1
1-
p( & )‘t ‘

ia—iiek)\tn\
PN NS

—S

0

< —sup(l— gn)z
2 neN n=1
0 1 n
2.t HZ Xy
k=1

n=1

Thus, finally replacing (1—%ng) by
k=1

1-&)(1-¢,)+(1- —zgk

N we could have

2

Now that we have w;, we can also say

the following inequality & by replacing ¢, by

1- Eng and we will have similar proof steps
k=1

to the proof of previous theorem.

[there exists a null sequence (g,). €(0,1)

suchthat for every (t,),_, €', it follows that

1 1¢
ESUp(l_ &t + > Z(l—gn)‘tn‘ <
neN n=1

0 1 n
O, HZ X,.
n=1 k=1

Thus, firstly, define y, :=

1ij for
n43

each n . Without loss of generality we can



assume that the sequence (y,), is disjointly
supported; i.e., that the support of y_ is disjoint
from the support of y, if n=m (using the
Weak Banach Saks property of c, again). By

replacing y, by the || -normalization of the

-

that satisfies & ,

n

we

sequence (—yz” _zyz”lj

may suppose that y = 0. Using the similar ideas

in the previous theorem, we can pass to a

normalized  essentially disjointly supported

subsequence of vy, that satisfies &} . By

passing to subsequences if necessary, we can

also assume that ¢, < BL forall neN.
n

Let (m(k))oy, With m(0)=0 and (5 ).y @

sequence of scalars such that for each ke N,

— m(k)
Y = Zj:m(k—l)ﬂ{’gl'ei'

inequality of the norm, for each K e N, we get

Using the triangular

K —-Keg +K+1—‘91—K<9K <y
— J1

+ Ky
2 2 «
1 1
m(l) P lp m(K) Pp
6T, [ w 1aP
7j k2 k2 !
. k=j k=m(K-1)+1
<lim  sup
poo 1<j<m(l) 1
m(K-)+1< m(K)|§k P |p
imk) | Ky >
k=i k
1 1
1 i K N
Wl ., [ W sl
7j Ly Vi@ k |
< ||m SUp =j . m(K-1)+1
poo 1<j<m(l) K -
m(K-1)+1< Ky g )lgk |p P
i<m(K) Vi - K2
|
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-

==
1
=~ 3
" =
AN
>
E]
1
o |

<lim  sup
p-o 1<j<m(1)
m(K-1)+1<

i<m(K)

1
W oEr )
Vin(K-1)+1 K2 )
k=m(K-1)+1

Thus,

K-Kegg
2

. K+l-g —Ksgy
2
,K}

Ym

Vm

Smw%+K

Y m(k-1)+1
That is,

K+1_‘gl

-Kgy < max{lJr K

«]

But since ¢ <% and Ke, <%, we have

Y m(k-1)+1

forall K e N.

1-—

&
K+ L

-Keg, > K and so

1-¢ 7 ma)

K+

—Ke, <1+K

Y m(K-1)+1

forall K e N.

Y@
K Y m(k-1)+1
forall K e N.

Therefore, we get contradiction by

letting K — o0 since we would have 1<y, (1).
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4. MORE ON NEZIR’S EQUIVALENT
NORM ON Co AND SOME

GENERALIZATIONS FOR HIS IDEAS

In this section, we will be working on
Nezir’s equivalent norm in (Nezir, 2017a) that
we introduced in our first section. We will see
some more properties for his norm and we will
obtain some other equivalent norms on c,
giving similar results to his such that these new
types of equivalent norms are generilazations of
his.

First, we would like to recall his norm

and its results.

Definition 4.1. Let a e R. For x=(&,), €¢,,

define
X=X, +sup > Qufé -
JeN k=1
where iQk =1,Q, 4, 0and Q,>Q,,,,VkeN
k=1

(Nezir, 2017a).

2|a|

Theorem 4.2 if =0 or if Q >
1+2| |

when |« |>1, then (co, ||||) does not contain an ai

copy of ¢, where the norm || is defined as in

Definition 4.1 (Nezir, 2017a).

Example 4.3 Fix be(0,1) . We define the

sequence (f,),.y In Cc, by setting f,:=be ,
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f,:=be,, and f :=e, , for all integers n>3.

Next, define the cbc subset E = E, of ¢, by

E:={Ztn fil=t>t,>..>t |, 0}.
n=1

Let us define the sequence (77,),.y In E

in the following way. Let 7 :=f and

n,:=f+...+f , for all integers n>2. It is

1

Then, in (Lennard and Nezir, 2011), they

straightforward to check that

E= {Zannn reacha, >0and D a, =
n=1 n=1

show that E = E, is the cch of (7,),.y Which is

an ai ¢, -summing basis respect to ||-||, and that

there exists an affine |-, -nonexpansive

mapping U : E — E that is fixed point free.

Theorem 4.4 There exist constants « z% and

b e(0,1) the set E defined as in the example
above has FPP(nea) where the used norm |} on

C, Is given as in Definition 4.1 such that

2c
1+ 2

Q,> (Nezir, 2017a).

Now, we will provide an interesting
property of this equivalent norm which shows
how nice it is in terms of fixed point property.
We know that researchers working on sequence
spaces first check what is the behaviour of the
right shift mapping since they see usually that
the right shift mapping or a power of that is



mostly  nonexpansive or asymptotically
nonexpansive on their choosen cbc subsets, e.g.
the convex hull of the summing basis, and they
are fixed point free. Thus, one can say that the
right shift mapping or any power of that is the
usual test mapping to see if the space or the set
fails the fixed point property for nonexpansive
mappings. Therefore, the following result will
be about an investigation for the behaviour of
the right shift mapping on some well-known cbc

subsets of ¢, .

Proposition 4.5 For the equivalent norm ||-||, if

a =0, the right shift mapping defined on the

cch of the usual summing basis is nonexpansive

and fixed point free. But if aZ% and

Z_a' then right shift mapping or any
1+ 2

Q >
power of that is not nonexpansive for our norm.
Also, for specific choices of the sequence

(Q, ),y the previous statement is still true for

2a

any « >0 where Q, >
y 2 1+2

o

Proof. When o =0, for x=(&,), €¢,, define

[XI= [, + 2 Q|| where 3 Q, =1,Q, ¥, 0
k=1 k=1

and Q, >Q,,;, VkeN.
Then, define

>t 0}.
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= el + Ztnen+l

n=1

and T(itnen

n=1

)

forallx=>te, eC.

n=1
Now, write
x=>te andy=>)se.
n=1 n=1
Then,

[ =Ty]|= [Tx =Ty, + 2 Qclte =5
k=3
=[x=y[, + 2 Qultc = 5]
k=3

<Ix=y, + 2 Qulti —si
k=1

=[xyl

2]a]

But, for ¢ #0, when Q, > :
1+ 2| a|

define; for x = (&), €¢,,

I =], +su§2Qk\§k — ;| where }"Q, =1,
JelN k=1 k=1
Q Y, 0and Q >Q,,,,VkeN

Consider the cch of the usual summing
basis and define the right shift mapping on this

set; 1.e

E::{Ztnen 1=t >t > >t 0}.
n=1

T(Ztnenj =e,+yte,, forallx=>te eC
n=1 n=1 n=1

First of all, define foreach je N,

Iy = I + 2 Qs ~ |
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Then,
I =suplp,,
Now,

for x = itnen andy = isnen inC
n=1 n=1

Tx—Ty =0e, + Y (t, —s,)e

n=1

= i(tn -5, )en+l

n=1

n+l

Hence, (because the first and the second

terms of the sequence Tx—Ty are 0)
[Tx =Tyl =M =Ty[, + 2 Qualtc =5
k=2

Note that since

[x=Ty|, =[x-l.
t,=s,=landsoft, —s,|=0.

Thus,
T =Ty[l,y =x=yl, + ;letk =8|

Moreover, (because the first term of the

sequence x—y is 0)

=Yy =X =y + 2.~

Case 1: Let1>a>%,then Ql>%.

Since > Q, =1, there exists M eN s.t.
k=1

M
21->Q)>0 and Q,-Q,,>0. then

k=1
M M - 1
1->Q,>>Q,-1. Also, since Q >2
P
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M M M
1-5°Q, >>Q, —2Q, s0 1-2>Q, >0.
k=1 k=1 k=2
Hence, for x=(1.1,..., 1 ,00,...0,.),
Mth place
y=(1,0,0,0,0...0,...)
Tx=(111,..., 1 ,00,...0,..) and
(M +1)th place
Ty =(1,1,0,00...,0,...)
X_y:(oal ----- 1— ,0,0,...,0,...) and
mth place
Tx-Ty=(00,1,.., 1 ,00,...0,..).

(M +1)th place

Then,

M+1

Mx-Ty| =1+ (1— 22+Qk ]a +> Q, and
Ix-y]= 1+(1— 22 Q. ja +2 Q.

Hence,

=Tyl =

+Qk _ZQk J(l_ 20‘)

k=3 2

= (Za_lez _QM+1) >0.

Case 2: Let a>1. Then, we could again write
M

Q >% , then still 1-2>'Q, >0 and get the
k=2

same results as in the above case but here simply

we could just consider x:(l,l,O,...,O,...) and

y=(1,0....,0,...), and then,
Ix=y|=1+a-Q,.

Hence, [Tx—Ty|—[x-y|=Q,-Q, >0.



Case 3: Let a:%, then Q1>% and

kz:;,Qk <3

Pick x:[l,l,i 0,...0 j and

8 16
y=(10.,...,0,...) S0
X—y :(oliooj and
8 16
TxX-Ty = (ooliooj
8 16

Then,

x=yl=lx=yl,

1 1 1
= §+(1—Q2 —Q3)§a+|1—a|Q2§

1
+[1-24|Q, 6

and

[Tx =Ty =[x =],
1
8

+(1—Q3—Q4)%a+|1—a|Q3;

1
+|1— 2a|Q4 E

1
Thus, [Tx=Ty|-[x - y| = 7-(Q: =Qi)> 0.

Also, for specific choices of the

sequence (Q, ), , the previous statement is still

true for any >0 where Q, > 2| | .
1+2| x|
Indeed, extending the following

example, it is possible to show this. Let’s see a

simple example for smaller « .
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Let a:% , then Q>= and
Q<%

Z 3

Pick x= 1,1,i,i,0, 0,...| and

416 64
y=(10.,...,0,...) S0
X—y= oliioo and
4 16 64
Tx-Ty = ooiiioo :
4 16 64
Then,

x-y]= 5 +3-0, - - Q)5

1 1
+ |1— a|Q2 Z + |1— 4a|Q3 E

1
1-16 —
+| a|Q, 54
and

-1.1-0 -0, -0t
m-Tyl= 2 00,0, Q) e
1

1
+ |1— 05|Q3 Z + |1— 405|Q4 16

1
1-16 —.
+[1-16a|Q; 54
Then,
1
[Tx=Ty] =[x y] = o5 (12Q, ~8Q, - Qs —3Q, )

Hence, specific choice of (Q, )., would

tell us the right shift would not be nonexpansive.
We can leave the rest to the reader who can see
any power of the right shift would not be
nonexpansive on the cch of the usual summing

basis or even any subsequence of that.
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Now, we can define some more
equivalent norms satisfying the properties of the
one given in Definition 4.1 and present the
following corollary which can be considered as

a generalization.

Corollary 3.5 Let >0 and «, ¥, @ and let

20,

Q > . Then, define

1+ 2e,
X, =[x, +3Uszk‘§k ‘“151‘
jeN k=1

where ZQk =1,Q, ‘Lk Oand Q, > Q,;, VkeN

k=1

and define
X, =X, + sup 3 Qufé -5
J.seN k=1 _
where iQk =1,Q 4, 0and Q, >Q,,, VkeN
k=1

Then, (c0||||;) or (co||||;) do not have
any ai copy of c, inside.
Furthermore, let >0 and B, T. p

2p
1+28°
Then, define

and let Q, >

I, =, +sp3 Qe -4

where ZQk =1,Q 4, 0and Q, >Q,.,, VkeN

k=1

and define
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Il =1, +SUDZQk\¢1 piéi|

SeN k=1

where ZQk =1,Q, ¥, 0and Q >Q,,;, Yk e N

k=1
Then, (co, ||||;) or (co, ||||;) do not have

any ai copy of c, inside.

Proof. We would like to skip the details of the
proof but we can give a quick idea about it since
the proof uses the method given in (Nezir,
2017a).

Firstly, to show (co, ||||;) does not have

any ai copy of c, inside, we repeat arguments in

the previous theorem by considering the

sequence «, Is decreasing and so each term

does not exceed ¢; and so we would imitate the
proof of the theorem taking «, instead of « .
Next, showing (c0||||;) does not have any ai
copy of c, inside is trivial since if we assume by
contradiction that it contains an ai copy of c,
then we would say there exists a null sequence

(¢,), in (0,1) and a sequence (x, ), in ¢, such

n

that foreveryn e N and every choice of scalars

t.t,,.. it follows that

1n1

~

Zt X,

then there exists m, € N such that

Zt X,

but

< max|t

max 1 Ek)‘tk|< m:

1<k<n

~

max 1 ek)t |<

< max |t | where
1<k<n

1<k<n

[24
Mo



Xl =1, +3Uszk‘§k _“mofj‘
Mo jeN k=1
forx=(& )y €6,

and this would be a contradiction due to our

previous theorem.

For the norm || ., again we can use the

method above getting ,Bmo for some m, e N
and for the other norm; i.e., for the norm ||  use

the method for || but just consider S, < 8 for

each ne N andsouse g instead of o, whereit

is needed.
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