Research article Eurasian J Bio Chem Sci, 2(Suppl 1): 97-101, 2019

Eurasian Journal of Biological and Chemical Sciences

Journal homepage: www.dergipark.org.tr/ejbcs

The usage of discarded battery coals as electrodes and improving their hydrogen gas production performances by impregnation with Zr and Ce metal oxides

Sema Aslan^{1*}

^{*1}Muğla Sıtkı Koçman University, Science and Arts Faculty, Department of Chemistry, Muğla, Turkey

Corresponding author : semaaslan@mu.edu.tr	Received : 26/07/2019
Orcid No: https://orcid.org/ 0000-0001-9796-7311	Accepted : 18/11/2019

Abstract: Hydrogen gas ($H_{2(g)}$) production is one of the major topic of the industry and energy production fields, for the last decades. Especially it is popular with showing high energy density. Among the other industrial methods electrolysis is the cleanest one without any by product emissions. It has been very popular to recovery of the discarded materials (such as batteries) as an environmentally friendly equipments. Here the coal of a used up battery is utilized as an electrode in the electrolysis system in order to produce ($H_{2(g)}$). Then these electrodes were modified with impregnation of Zr and Ce metal oxides. At first, $HNO_{3(aq)}$ and $H_2SO_{4(aq)}$ solutions were compared as electrolytes with plain electrodes and $H_2SO_{4(aq)}$ is defined as the optimum electrolyte medium (maximum $H_{2(g)}$ production densities as 24.10xE⁻⁵ mL sec⁻¹ and 87.22xE⁻⁵ mL sec⁻¹, charge densities as 1137.40xE⁻⁴ C mm⁻² and 2976.19xE⁻⁴ C mm⁻² and current densities as 45.68xE⁻⁷ A mm⁻² and 165.34xE⁻⁷ A mm⁻² for 0.10 M HNO_{3(aq)} (pH 1.10) and H₂SO_{4(aq)} (pH 1.70) solutions respectively). Then all of these modified electrodes were utilized to the electrolysis system and compared in the case of $H_{2(g)}$ production density as 125.00xE⁻⁵ mL sec⁻¹, charge density as 4265.24xE⁻⁴ C mm⁻² and current density as 236.96xE⁻⁷ A mm⁻² in 0.10 M of $H_2SO_{4(aq)}$ electrolyte). All of the experiments were duplicated. Hydrogen is one of the most promising, clean and sustainable energy carrier, that can be produced effectively by the usage of CeO₂ modified battery coal.

Keywords: Energy, Battery coal, Hydrogen gas production, Electrolysis, Cerium.

Atık pil kömürlerinin elektrot olarak kullanılması ve daha sonra Zr ve Ce metal oksitleriyle emprenye edilerek hidrojen gazı üretim performanslarının iyileştirilmesi

Özet: Son yıllarda sektörün ve enerji üretim alanlarının ana konularından biri hidrojen gazı üretimidir. Özellikle yüksek miktarda enerji üretilebilmesi açısından hidrojen, yakıt olarak popülerleşmiştir. Elektroliz, zararlı gaz emisyonu oluşturmadığı için diğer endüstriyel yöntemler arasında en temiz olanıdır. Atılan malzemelerin (pil gibi) çevre dostu bir ekipman olarak geri kazanılması da oldukça rağbet gören başka bir alandır. Burada, kullanılmış bir pilin kömürü çıkartılarak, hidrojen gazı (H2 (g)) üretmek için elektroliz sisteminde bir elektrot olarak kullanılmıştır. Daha sonra bu elektroliz, Zr ve Ce metal oksitleri ile modifiye edilerek elektroliz performansları karşılaştırılmıştır. İlk başta yalın karbon elektrotlar kullanılarak, 0.10 M HNO_{3(aq)} (pH 1.10) ve 0.10 M H2SO4(aq) (pH 1.70) cözeltilerinin elektrolit olarak performansları karşılaştırılmıştır. Sonucta 0.10 M HNO3(aq) ve 0.10 M H2SO4(aq) çözeltilerinin sırasıyla elde edilen maksimum H_{2 (g)} üretim yoğunlukları 24.10xE⁻⁵ mL s⁻¹ ve 87.22xE⁻⁵ mL s⁻¹, yük yoğunlukları 1137.40xE⁴ C mm⁻² ve 2976.19xE⁻⁴ C mm⁻² ve akım yoğunlukları 45.68xE⁻⁷ A mm⁻² ve 165.34 xE⁻⁷ A mm⁻² olarak ölçülmüştür. Bu nedenle optimum elektrolit, olarak 0.10 M H₂SO_{4(aq} belirlenmiştir. Karbon elektrotlar Zr ve Ce metal oksitleriyle modifiye edilerek elektroliz sisteminde katot olarak kullanılmıştır. Tüm sonuçlar karşılaştırılarak en iyi performansların CeO₂ modifiye edilmiş elektrottan elde edildiği görülmüştür (maksimum H_{2 (g) üretim} yoğunluğu 125.00xE⁻⁵ mL s⁻¹, yük yoğunluğu 4265.24xE⁻⁴ C mm⁻² ve akım yoğunluğu 236.96xE⁻⁷ A mm⁻² 0.10 M H₂SO_{4(aq)} elektrolit ortamında). Tüm ölçümler tekrarlanmıştır. Sonuçlar göstermiştir ki CeO2 modifiye pil kömürünün elektrot olarak kullanıldığı elektroliz sisteminden hidrojen gazı üretimi verimli bir şekilde gerçekleştirilebilmektedir. Elde edilen veriler sürdürülebilir ve temiz enerji eldesi üzerine yapılabilecek çalışmalar için ileri modifikasyonlar yapılarak geliştirilmeye açıktır.

Anahtar Kelimeler: Enerji, Atık pil kömürü, Hidrojen gazı üretimi, Elektroliz, Seryum

© EJBCS. All rights reserved.

1. Introduction

Sustainable energy development requires innovative affords bearing clean energy solutions in it. An energy production method fails from the protocols that needs to explain itself in terms of biocompatibility and low cost demands. So the priority to achieve an acceptable clean energy production procedure has to include at least no hazardous gas emission. There has been many aspects to produce hydrogen gas (H₂ (g) such as coal gasification, oil/naphta reforming, electrolysis (Uğurlu et al. 2006, Sen et al. 2016) methane reforming, biomass, biological steam sources (Sivagurunathan et al. 2016; Mujeebu et al. 2016; Seyitoglu et al 2017). $H_{2(g)}$ consumption performance of the industries are scened as fertilizers (Eren et al. 2010), petroleum refining processes (Erkarslan et al. 2018), petrochemical (Karaoğlu et al. 2010), fuel cells (Karaoglu and Uğurlu 2011), and chemical industries (Züttel et al. 2004; Lim et al. 2015; Lee et al. 2017, Aslan et al. 2018). In electrolysis process, water molecule is the reactant and it is dissociated into hydrogen (H_2) and oxygen (O_2) by the help of external electricity (Kumar and Humabindu, 2019).

Billions of electrodes and fuel cell types were designed to produce energy from electrolysis and the main point of these studies point to the efficient yield achievement. The presented study stands on the efficient electrode development from discarded alkaline battery coals. Zr and Ce were used as the triggering catalyst metals. Previously they have been used on the electrode modifications as highly active hydrogen evoluating catalysts by Demir et al. (2018), and in recent years, efforts to develop heterogeneous catalysts (Karaoğlu et al., 2012; Dinçer at al., 2016) have been accelerated and there are different types of catalyst utilizations (Karahan et al., 2016; Donmez et al., 2018; Gungor et al., 2018; Kara et al., 2018), photocatalysts (Uğurlu et al., 2006; Karaoğlu et al., 2010; Karaoğlu and Uğurlu, 2010). Finally, Zr and Ce used together to improve the catalytic performance reported by Polliotto et al. (2018).

The electrolyte type is also discussed. A suitable electrolyte is expected to be a tramendous charge carrier and nonpoisonous for the electrodes. Up to now several water electrolysis methods are developed and they can be classified in four types based on their electrolyte, operating conditions, and ionic agents (OH^- , H^+ , O^{2-}). Queved as (i) alkaline water electrolysis (Zeng and Zhang, 2010), (ii) solid oxide electrolysis (Ni et al. 2009), (iii) microbial electrolysis cells (Kadier et al. 2016) and (iv) proton exchange membrane using water electrolysis (Foteini et al. 2017). Alkaline electrolysis operates with aqueous solution (KOH/NaOH) as the electrolyte but asbestos diaphragm and nickel electrodes should be used (Kumar et al. 2017). Other types of electrolysis cells based on the transfer of electrons through the external circuit to cathode while the protons are passed through to cathode from the pores of proton conducting membrane (as electrolyte) (Rathinam et al. 2018) Acidic electrolytes have been used as being very conventional electrolytes. The most convinient one is the H₂SO_{4(aq)} (pH 1.70) but also HNO_{3(aq)} (pH 1.10) is used as an alternative solution (Lei et al. 2019).

 $H_{2 (g)}$ generation experiments were performed in a lab scale basic electrolysis equipment and $H_{2 (g)}$ charge and current generation densities of each system yields were evaluated. The results indicated that $H_2SO_{4(aq)}$ (pH 1.70) is a better electrolyte than $HNO_{3(aq)}$ (pH 1.10) and CeO₂ modified discarded battery coal electrode (CeO₂/C) showed the best fuel cell performances among plain coal electrode (C) and ZrO₂ modified coal electrode (ZrO₂/C). This study, offers a new sight into "environment for environmet" motto. Every single researcher can produce his own hydrogen gas with low voltage inputs and any harmful chemical release.

2. Materials and Method

2.1. Materials and chemicals

 $H_2SO_{4(aq)}$ (99.80 % pure) (pH 1.70), HNO_{3 (aq)} (99.80 % pure) (pH 1.10), ammonium cerium (IV) nitrate (99.00 % pure), zirconium IV butoxide (99.00 % pure), ethanol (99.00 % pure), from Sigma-Aldrich. Dicarded batteries were obtained from a recovery bin in the building.

2.2. Preperation of the solutions and impregnation processes of the electrodes

In order to prepare $0.10\,M\,H_2SO_{4(aq)}\,(pH\,1.70)$ and $HNO_{3(aq)}$ (pH 1.10) solutions commercially available stock solutions were used. Required amounts of acids were diluted with deionized water and filled into the electrolysis cell. This solution is sucked into the burette that contains cathode electrode and the volume of hydrogen collected at the top of the burette was measured during the electrolysis was in progress. Scheme is shown below. The coal (C)inside of a discarded AA battery was used as anode or cathode electrode. Modification of the electrodes were achieved by the method as reported by Ghodsi et al. (2011). As it is reported (Ghodsi et al. 2011) the final products are the oxides of these metals. Since the same anions of the metals were achieved on the electrodes synergistic anion effect was prevented for the comparison of the electrode performances. CeO₂/C electrode was prepared as follows: precursor solution was prepared by dissolving $Ce(NO_3)_6(NH_4)_2$ in 10 mL of ethanol and 5 mL of distilled water mixture. Bare C was sucked into this solution completely then stirred for 30 min. Subsequently calcinated for 5 hours at 500 C. Similarly ZrO₂/C was prepared by using zirconium IV butoxide precursor. Obtained electrodes utilized as cathode and C was used as anode for all experiments.

Scheme 1. Electrolysis set up. Anode is C electrode, cathode is adjusted according to the experiment as C, CeO_2/C or ZrO_2/C .

2.3. Electrolysis experiments

Electrolysis experiments were conducted with a beaker and burette at room conditions. Cathode electrode was stucked into the mouth of a 25 mL burette and electrolyte solution was sucked with a bulb into the burette. Anode was maintained as C for all experiments. Firstly dissociation potential measurements were recorded for all electrolysis experiments. After the minimum current was observed H₂ (g) volume was recorded by running chronometer. Firstly H₂SO_{4(aq)} (pH 1.70) and HNO_{3(aq)} (pH 1.10) electrolytes were compared to each others with C electrodes, then modified electrodes were conducted as cathodes to the 0.10 M H₂SO_{4(aq)} (pH 1.70) filled cell. All of the results are given in the following section.

3. Results

3.1. Calculation of the total $H_{2(g)}$ produced by the systems, charge and current density values

In a typical electrolysis system the volume of the gases have to be determined in order to calculate the amount of charge, current and flow density values. Here the amount of the H₂ (g) was measured as mL for each experiment set up individually. Then these values were used to calculate H₂(g) volume density by dividing into the cathode surface area (439.60 mm²). Then readed volume of the H₂(g) was divided into the theoretical charge of the H₂(g) mL 0.12 then charge of the system was obtained. This data was used to calculate current of the system by dividing charge value into the time (second). Current and charge densities were calculated by division of these charge and current values into electrode surface area.

3.2. Comparison of the cell performances of $HNO_{3(aq)}$ and $H_2SO_{4(aq)}$ as electrolytes

At the beginning of the experiments two types of electrolytes were determined as model. Cell performances of the chosen electrolytes were examined with C cathode and anode electrodes. HNO3(aq) (pH 1.10) and H2SO4(aq) (pH 1.70) were compared to each other in terms of dissociation potential, H_{2(g)} production (Fig.1a), current density (Fig.1b) and charge density (Fig. 1c) performances. An ideal electrolyte is expected to be an excellent charge carrier and has to lead the charge transfer duty well. H₂SO_{4(aq)} is very commonly used electrolyte but $HNO_{3(aq)}$ is also a promising candidate with the high acidic constant near to the $H_2SO_{4(aq)}$. Results of the experiments showed that the dissociation potential value of the $HNO_{3(aq)}$ was measured as 3.60 V whereas $H_2SO_{4(aq)}$ has 3.20 V. This shows that cell potential of the H₂SO_{4(aq)} used electrolysis system is able to run easier than HNO_{3(aq)} in the presence of C electrodes. Additionally H_{2(g)} production, current and charge density values of $H_2SO_{4(aq)}$ are higher than $HNO_{3(aq)}$. As result $H_2SO_{4(aq)}$ was choosen as the electrolyte for subsequent experiments. Table 1 shows the comparison of the cell performance values including modified electrodes at the upcoming sections. This graphs also show that the measured cell performances of the H₂SO_{4(aq)} electrolyte is better than HNO_{3(aq).}

Table 1. Comparison of the dissociation potential, H_2 (g) production, current and charge density values of the different electrolysis cells.

Cell type	DP*	H _{2(g)}	CD§	CD^{\pounds}
		PD**		
C cathode/C anode in	3.2	87.22	2976.19	165.34
0.10 M of H ₂ SO _{4(aq)}		xE ⁻⁵	xE ⁻⁴	xE ⁻⁷
C cathode/C anode in	3.6	24.10	1137.40	45.68x
0.10 M of HNO _{3(aq)}		xE ⁻⁵	xE ⁻⁴	E-7
ZrO ₂ /C cathode/C anode	2.8	94.44	3222.63	179.03
in 0.10 M ofH2SO4(aq)		xE ⁻⁵	xE ⁻⁴	xE ⁻⁷
CeO ₂ /C cathode/C anode	2.3	125.0	4265.24	236.96
in 0.10M of H ₂ SO _{4(aq)}		xE ⁻⁵	xE ⁻⁴	xE ⁻⁷

* Dissociation potential (V); ** H_{2 (g)} production density (mL sec -1); § Charge density

Figure 1. Comparison of the cell performances of two different electrolytes. **a**) $H_{2 (g)}$ production performances, **b**) current density curves, **c**) charge density graphics of the 0.10 M $H_2SO_{4(aq)}$ (pH 1.70) and HNO_{3(aq)} (pH 1.10) electrolytes recpectively. All of the measurements were recorded with plain carbon electrolyte as anode and cathode, at 21 °C, atmospheric pressure and electrolyte solutions were prepared with distilled water.

3.3. Comparison of the cell performances of C, ZrO₂/C and CeO₂/C cathodes

All of the electrolysis experiments were carried out in 0.10 M of $H_2SO_{4(aq)}$ (pH 1.70) electrolyte at room conditions. After the modification of electrodes they were utilized as cathodes where C electrode was anode. First of all dissociation voltages of the electrodes were compared. As the datas revealed that CeO₂ modified electrode showed the lowest dissociation voltage that means the electrolysis process initiates the easiest by using CeO₂/C electrode among all. That explains the charge transfer efficiency is trigerred by the Ce ions on C electrode. Also the other parameters are supporting this idea as being at maximum levels for CeO₂/C electrode. All of the maximum density values presented after 300 sec. measurement for all of the cathode types. Figure 2 shows the comparison of the $H_{2(g)}$ production, current and charge density value plots of the C, ZrO₂/C and CeO₂/C cathodes vs. C anodes 0.10 M of H₂SO_{4(aq)} (pH 1.70) electrolyte containing electrolysis cells.

Figure 2. $H_{2(g)}$ production, current and charge density value plots of the C, ZrO₂/C and CeO₂/C cathodes vs. C anodes 0.10 M of $H_2SO_{4(aq)}$ (pH 1.70) electrolyte containing electrolysis cells.

3.4. Evaluation of the electrolysis performance of electrodes

This results exhibits the higher $H_{2 (g)}$ production volumes and cell performances can be achieved by the electrode modification such as CeO₂ and the group elements. Priority of the fuel cells generation of the high energy outputs but if the point is generation and the storage of the $H_{2 (g)}$ production performance of the cathode comes forward. It pushes the researcher to find new ways to modify electrode so with these current and charge density values system exhibits promising power outputs. Untill now different types of the cells were reported in their specialized measurement parameters but it is clear that solid oxide cells are gaining huge attention (Ni et al. 2009). Proton exchange membrane (PEM) of an electrolysis cell is our next step and these electrodes will be adapted to the PEM body and measurements will be conducted as well.

4. Conclusions

Waste management of the batteries "in terms of coals" recovery and development of these wastes are discussed here successfully. This is a good attempt to obtain energy from wastes in a lab scale set up. Production yields of the electrodes can be improved by the choice of the suitable electrolyte, may the alkaline medium can be preferred also more useful cell type can be selected as solid or PEM electrodes can be used in the future experiments. Hydrogen storage experiments are also upcoming subject of this research.

Acknowledgements

Prof.Dr. M. Hamdi KARAOGLU is greatly acknowledged for their very valuable scientific mentorship.

"This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors"

Conflict of interest disclosure:

There is no conflict of interest.

References

- Demir E, Akbayrak S, Önal AM, Özkar S 2018. Titania, zirconia and hafnia supported ruthenium(0) nanoparticles: Highly active hydrogen evolution catalysts. J Colloid Interf Sci 531: 570-577.
- Ghodsi FE, Tepehan FZ, Tepehan GG 2011. Derivation of the optical constants of spin coated CeO2–TiO2–ZrO2 thin films prepared by sol–gel route. J Phys Chem Solids 72: 761–767.
- Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil S 2016. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng J 55: 427–443.
- Kaseem M, Ko YG 2018. A novel composite system composed of zirconia and LDHs film grown on plasma electrolysis coating: Toward a stable smart coating. Ultrason Sonochem 49: 316-324.
- Kumar SS, Ramakrishna SUB, Reddy DS, Bhagawan D, Himabindu V 2017. Synthesis of Polysulfone and zirconium

oxide coated asbestos composite separators for alkaline water electrolysis. Int J Chemical Eng & Process Tech 3: 1035/1-6.

- Lee B, Chae H, Choi NH, Moon C, Moon S, Lim H 2017. Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea. Int J Hydrogen Energy 42: 6462–6471.
- Lei Q, Wang B, Wang P, Liu S 2019. Hydrogen generation with acid/alkaline amphoteric water electrolysis. J Energy Chem 38: 162-169.
- Lim H 2015. Hydrogen selectivity and permeance effect on the water gas shift reaction (WGSR) in a membrane reactor. Korean J Chem Eng 32: 1522–1527.
- Mujeebu MA 2016. Hydrogen and syngas production by superadiabatic combustion-A review. Appl Energy 173: 210-224.
- Ni M, Leung MKH, Leung DYC 2008. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int J Hydrogen Energy 33: 2337– 2354.
- Polliotto V, Albanese E, Livraghi S, Agnoli S, Pacchioni G, Giamello E 2018. Structural, electronic and photochemical properties of cerium-doped zirconium titanate. Catal Today (In press, corrected proof, Available online 14 October 2018)
- Rathinam NK, Sani RK, Salem D , Rewiring Extremophilic Electrocatalytic Processes for Production of Biofuels and Value-Added Compounds from Lignocellulosic Biomass. In:
 R. Sani, N. Krishnaraj Rathinam (eds), Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Cham. 2018, pp. 229-245.
- Sapountzi MF, Gracia MJ, Weststrate CJKJ, Hans OA, Niemantsverdriet, JWH 2017. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58: 1–35.
- Seyitoglu SS, Dincer I, Kilicarslan A 2017. Energy and exergy analyses of hydrogen production by coal gasification. Int J Hydrogen Energy 42: 2592–600.
- Sivagurunathan P, Kumar G, Kim SH, Kobayashi T, Xu KQ, Guo W 2016. Enhancement strategies for hydrogen production from wastewater: a review. Curr Org Chem 20: 2744-2752.
- Wang J, Wang T, Yu L, Wei T, Hu X, Ye Z, Wang Z, Buckley CE, Yao J, Marnellos GE, Dong D 2019. Catalytic CeO2 washcoat over microchanneled supporting cathodes of solid oxide electrolysis cells for efficient and stable CO2 reduction. J Power Sources 412: 344-349.
- Zeng K, Zhang D 2010. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36: 307–26.
- Züttel A 2004. Hydrogen storage methods. Naturwissenschaften 91: 157–172.
- Aslan S, Aka N, Karaoğlu MH 2019. NaOH impregnated sepiolite based heterogeneous catalyst and its utilization for the production of biodiesel from canola oil. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects 41:290– 297.
- Dinçer F, Karaoğlu MH, Uğurlu M, Vaizoğullar A 2016. Ozonation of Reactive Orange 122 Using La3+-Doped WO3/TiO2/Sep Photocatalyst. Ozone: Science and Engineering 38 (4):291-301.
- Donmez A, Coban MB, Kara H 2018. Cyan-Blue Luminescence and Antiferromagnetic Coupling of CN-Bridged Tetranuclear

Complex Based on Manganese(III) Schiff Base and Hexacyanoferrate(III). Journal of Cluster Science 29 (6):951-958.

- Eren E, Cubuk O, Ciftci H, Eren B, Caglar B 2010. Adsorption of basic dye from aqueous solutions by modified sepiolite: Equilibrium, kinetics and thermodynamics study. Desalination 252:88–96.
- Erkarslan U, Donmez A, Kara H, Aygun M, Coban MB 2018. Synthesis, Structure and Photoluminescence Performance of a New Er3+-Cluster-Based 2D Coordination Polymer. Journal of Cluster Science 29 (6): 1177-1183.
- Gungor E, Coban MB, Kara H 2018. Photoluminescence and Magnetism Study of Blue Light Emitting the Oxygen-Bridged Open-Cubane Cobalt(II) Cluster. Journal of Cluster Science 29 (6): 967-974.
- Kara DA, Donmez A, Kara H, Burak Coban M 2018. Structural and spectroscopic characterization of a new luminescent NiII complex: Bis{2,4-dichloro-6-[(2hydroxypropyl)iminomethyl]phenolato-κ3O,N,O'}nickel(II). Acta Crystallographica Section C: Structural Chemistry 74 (8): 901-906.
- Karahan A, Kurtaran R, Yahsi Y, Gungor E, Kara H 2016. A dinuclear oxygen-bridged Schiff base iron(III) complex derived from N,N'-bis(4-methoxy-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine. Journal of Structural Chemistry 57 (4): 731-736.
- Karaoğlu MH, Doğan M, Alkan M 2010. Removal of reactive blue 221 by kaolinite from aqueous solutions. Industrial and Engineering Chemistry Research 49 (4): 1534-1540.
- Karaoğlu MH, Doğan M, Alkan M, Uğurlu M 2012. Photooxidative degradation of cationic dyes using UV/H2O2 and UV/H2O2/TiO2 process. Fresenius Environmental Bulletin 21 (7): 1758-1763.
- Karaoğlu MH, Uğurlu M 2010. Kinetic and equilibrium studies of methylene blue biosorption by vineyard pruning waste. Fresenius Environmental Bulletin 19 (12): 3199-3208.
- Karaoglu MH, Ugurlu M, 2011. Adsorption and recovery of methylene blue from aqueous solution by NaOH-treated of prina. Asian Journal of Chemistry 23 (6): 2577-2583.
- Sen I, Kara H, Azizoglu A 2016. Substituent effects on hydrogen bonding of aromatic amide-carboxylate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 167 (5): 50-58.
- Uğurlu M, Karaoğlu MH, Kula I 2006. Experimental investigation of chemical oxygen demand, lignin and phenol removal from paper mill effluents using three-phase three-dimensional electrode reactor. Polish Journal of Environmental Studies 15 (4): 647-654.