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Abstract
A concept of quasi-metrizability with respect to a bornology of a generalized topological
space in the sense of Delfs and Knebusch is introduced. Quasi-metrization theorems for
generalized bornological universes are deduced. A uniform quasi-metrizability with respect
to a bornology is studied. The class of locally small spaces is considered and a possibly
larger class of weakly locally small spaces is defined. The proofs and numerous examples
are given in ZF. An example of a weakly locally small space which is not locally small
is constructed under ZF+CC. Several categories, relevant to generalized bornological
universes, are defined and shown to be topological constructs.
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1. Introduction
The present work is the first study of problems relevant to quasi-metrizability in the

class of Delfs and Knebusch generalized topological spaces (gtses), under the basic set-
theoretic assumption of ZF and its consistency.

Contrary to very simple generalizations of topological spaces given, for example, in [2]
and [4], the notion of a Delfs-Knebusch generalized topological space, introduced in [5], is
more powerful, since it originates from a categorial concept of Grothendieck topology (cf.
[5, 6, 17, 19]). Let us admit that many mathematicians have already studied generalized
topological spaces in the sense of Császár’s article [4]. Although our article does not
concern Császár’s style generalization of topologies, we thank T. Kubiak for turning our
attention to the following fact: generalizations of topologies such that it is not assumed
that finite intersections of open sets are open had appeared in [2], earlier than in [4].

Unfortunately, only several articles about Delfs-Knebusch gtses have been published so
far (cf. [17–20]). However, other articles on topics relevant to [5] have also appeared. For
instance, Edmundo and Prelli, while applying some results of [5] in [6], have recently used
a difficult language of T-topologies, locally weakly quasi-compact spaces and sheaves on
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them. Since quasi-metrizability is the main topological problem of our work, we prefer
to use the language of Delfs-Knebusch from [5]: gtses may be seen as topological spaces
with some additional structure. The original definition of a generalized topological space
given in [5] was simplified in [17]. It was observed in [14, 18, 19] that in the context of
locally definable spaces it is sufficient to use function sheaves instead of general sheaves.
Our direct approach to the investigation of Delfs-Knebusch gtses seems simpler and more
natural for problems of general topology than that of [6].

To avoid misunderstandings, let us make it more precise what ZF is in this article.
Since part of our results concern proper classes in category theory, while it is disturbingly
assumed in [15] that proper classes do not exist (cf. pages 14 and 34 of [15]), so far as ZF
is concerned, in much the same way, as in [20], we follow [16] and assume the existence of
a universe U (cf. pages 22 and 23 of [16]). Sets in the sense of [16] are called totalities or
collections. A class is a collection u ⊆ U. Elements u ∈ U are called U-small sets in [16].
We denote by ZF the system of axioms which consists of the existence of a universe U
and axioms 0-8 from pages 9-10 of [15] for sets in the sense of [16]. This system does not
contain the axiom of choice. From now on, a totality u will be called a set if and only if
u is a U-small set. A proper class is a class u such that u /∈ U. Our notation concerning
other set-theoretic axioms independent of ZF that are used in this article is the same as
in [9]. We clearly denote the results that are obtained not in ZF but under ZF + CC
where CC is the axiom of countable choice (cf. Definition 2.5 of [9]). Of course, not all
axioms of ZF are needed to deduce some results. For instance, our results in ZF that do
not involve proper classes, can be deduced from the standard system of axioms 0-8 given
on pages 9-10 of [15].

The following definition is a reformulation of Definition 2.2.2 from [17]:
Definition 1.1. A generalized topological space in the sense of Delfs and Knebusch (ab-
breviation: gts) is a triple (X, OpX , CovX) where X is a set for which OpX ⊆ P(X), while
CovX ⊆ P(OpX) and the following conditions are satisfied:

(i) if U ⊆ OpX and U is finite, then
⋃
U ∈ OpX ,

⋂
U ∈ OpX and U ∈ CovX (where⋂

∅ = X);
(ii) if U ∈ CovX and V ∈ OpX , then {U ∩ V : U ∈ U} ∈ CovX ;
(iii) if U ∈ CovX and, for each U ∈ U, we have V(U) ∈ CovX such that

⋃
V(U) = U ,

then
⋃

U∈U V(U) ∈ CovX ;
(iv) if U ⊆ OpX and V ∈ CovX are such that

⋃
V =

⋃
U and, for each V ∈ V there

exists U ∈ U such that V ⊆ U , then U ∈ CovX ;
(v) if U ∈ CovX , V ⊆

⋃
U∈U U and, for each U ∈ U, we have V ∩ U ∈ OpX , then

V ∈ OpX .
Remark 1.2. If (X, OpX , CovX) is a gts, then OpX =

⋃
CovX and, therefore, we can

identify the gts with the ordered pair (X, CovX) (cf. [17], [20]). If this is not misleading,
we shall denote a gts (X, CovX) by X.

In our approach to the problem of how to define a quasi-metrizable gts, we apply
bornologies. According to [12], a bornology in a set X is a non-empty ideal B of subsets of
X such that each singleton of X is a member of B. A base of a bornology B is a collection
B0 ⊆ B such that each member of B is a subset of a member of B0. A bornology is
second-countable if it has a countable base. A bornological universe is an ordered pair
((X, τ),B) where (X, τ) is a topological space and B is a bornology in X (cf. Definition
1.2 of [12]).
Definition 1.3. A generalized bornological universe is an ordered pair (X,B) where X =
(X, CovX) is a gts and B is a bornology in the set X.

A quasi-pseudometric on a set X is a function d : X × X → [0; +∞) such that, for all
x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y) and d(x, x) = 0. A quasi-pseudometric d on X is
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called a quasi-metric if, for all x, y ∈ X, the condition d(x, y) = 0 implies x = y (cf. [13],
[7]). Let d be a quasi-pseudometric on X. The conjugate of d is the quasi-pseudometric
d−1 defined by d−1(x, y) = d(y, x) for x, y ∈ X. The d-ball with centre x ∈ X and radius
r ∈ (0; +∞) is the set Bd(x, r) = {y ∈ X : d(x, y) < r}. For a set A ⊆ X and a number
δ ∈ (0; +∞), the δ-neighbourhood of A with respect to d is the set [A]δd =

⋃
a∈A Bd(a, δ).

The collection τ(d) = {V ⊆ X : ∀x∈V ∃n∈ωBd(x, 1
2n ) ⊆ V } is the topology in X induced by

d. The triple (X, τ(d), τ(d−1)) is the bitopological space associated with d.

Definition 1.4 (cf. Definition 1.5 of [21]). Let d be a quasi-(pseudo)metric on a non-
empty set X and let A be a subset of X. Then:

(i) A is called d-bounded if there exist x ∈ X and r ∈ (0; +∞) such that A ⊆ Bd(x, r);
(ii) if A is not d-bounded, we say that A is d-unbounded;
(iii) B(d, X) is the collection of all d-bounded subsets of X.

In addition, if X = ∅, one can treat d = ∅ as the unique quasi-pseudometric on X and, of
course, the empty set should be also called d-bounded in the case of the empty space.

It was shown in Example 1.6 of [21] that, for a quasi-metric d on X, a set A ⊆ X can
be both d-bounded and d−1-unbounded.

Definition 1.5 (cf. Definition 1.7 of [21]). A bornological universe ((X, τ),B) is called
quasi-(pseudo)metrizable if there exists a quasi-(pseudo)metric d on X such that τ = τ(d)
and, moreover, B is the collection of all d-bounded sets.

For a collection A of subsets of a set X, we denote by τ(A) the weakest among all
topologies in X that contain A. For a gts (X, OpX , CovX), we call the topological space
Xtop = (X, τ(OpX)) the topologization of the gts X (cf. [20]).

Definition 1.6. Suppose that (X,B) is a generalized bornological universe. Then we say
that the gts X is B-(quasi)-(pseudo)metrizable or (quasi)-(pseudo)metrizable with respect
to B if the bornological universe (Xtop,B) is (quasi)-(pseudo)metrizable.

Definition 1.7 (cf. Definition 1.4 of [21]). A bornological biuniverse is an ordered pair
((X, τ1, τ2),B) where (X, τ1, τ2) is a bitopological space and B is a bornology in X.

To a great extent, the present work is a continuation of [21]. Therefore, let us use the
terminology of [21].

Definition 1.8 (cf. Definition 1.3 of [21]). Let (X, τ1, τ2) be a bitopological space. A
bornology B in X is called (τ1, τ2)-proper if, for each A ∈ B, there exists B ∈ B such that
clτ2A ⊆ intτ1(B). If τ = τ1 = τ2 and the bornology B is (τ, τ)-proper, we say that B is
τ -proper.

Let us formulate our first (quasi)-(pseudo)metrization theorem in the class of gtses
which follows from the results of [21]. The notion of a (τ1, τ2)-characteristic function of a
bornology is introduced in Definition 4.4 of [21].

Theorem 1.9 (cf. Theorems 4.7 and 4.15, Corollaries 4.10 and 4.16 of [21]). For every
gts (X, OpX , CovX) and a bornology B in X, the following conditions are equivalent:

(i) ((X, CovX),B) is a (quasi)-(pseudo)metrizable generalized bornological universe;
(ii) there exists a topology τ2 on X such that (X, τ(OpX), τ2) is (quasi)-(pseudo)metriz-

able and B is a (τ(OpX), τ2)-proper bornology with a countable base;
(iii) there exists a topology τ2 on X such that (X, τ(OpX), τ2) is (quasi)-(pseudo)metriz-

able and B admits a (τ(OpX), τ2)-characteristic function;
(iv) there exists a (quasi)-(pseudo)metric d on X such that τ(OpX) = τ(d) and, simul-

taneously, B has a base {Bn : n ∈ ω} with the following property:
∀n∈ω∃δ∈(0;+∞)[Bn]δd ⊆ Bn+1.
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In Section 2, we discuss natural bornologies in every gts: the small sets, the rela-
tively compact sets and the relatively admissibly compact sets. Other (quasi)-(pseudo)-
metrization theorems for gtses are given in Section 3. The main theorem of Section 3
(Theorem 3.5) gives a necessary and sufficient condition for a gts with its locally small
partial topologization to be (quasi)-(pseudo)metrizable with respect to the bornology of
small sets. Moreover, a notion of a weakly locally small gts is introduced and a non-trivial
example of a weakly locally small but not locally small gts is constructed in every model
for ZF + CC in Section 3. Applications of the (quasi)-(pseudo)metrization theorems to
numerous examples are shown in Section 4. Finally, in Section 5, we define several new
categories relevant to this work and we prove that the newly defined categories are all
topological constructs.

So far as gtses are concerned, we use the terminology of [5, 17,18,20].

Definition 1.10 (cf. [17]). If X = (X, CovX) and Y = (Y, CovY ) are gtses, then:
(i) a set U ⊆ X is called open in the gts X if U ∈ OpX ;
(ii) the collection CovX is the generalized topology in X;
(iii) an admissible open family in the gts X is a member of CovX ;
(iv) a mapping f : Y → X is (CovY , CovX)-strictly continuous (in abbreviation:

strictly continuous) if, for each U ∈ CovX , we have {f−1(U) : U ∈ U} ∈ CovY .

We denote by GTS the category of gtses as objects and strictly continuous mappings
as morphisms. The category GTS is a subcategory of the category of Grothendieck sites
and their morphisms (cf. [17], p. 223). Several other categories, relevant to GTS and
bornologies, are defined in Section 5.

While we know that GTS is a topological construct (cf. Theorem 2.2.60 of [17] and
Theorem 4.4 of [20]), the following problem is open:

Problem 1.11. Is GTS isomorphic to a category of type (T,V)-Cat for some quantale
V and monad T (cf. Definitions III.1.6.1 and III.1.6.3 in [10])?

2. Fundamental bornologies in gtses
In this section, we consider natural bornologies in gtses.

Definition 2.1 (cf. Definitions 2.2.13 and 2.2.25 of [17]). If K is a subset of a set X,
then we say that a family U ⊆ P(X) is essentially finite on K if there exists a finite V ⊆ U

such that K ∩
⋃
U ⊆

⋃
V.

Definition 2.2 (cf. Definition 2.2.25 of [17]). If X = (X, CovX) is a gts, then a set
K ⊆ X is called small in the gts X if each family U ∈ CovX is essentially finite on K.

The collection of all small sets of a gts X is a bornology in X (cf. Fact 2.2.30 of [17]).

Definition 2.3. For a gts X, the small bornology of X is the collection Sm(X) of all
small sets in X.

Sm(X) was denoted by SmX in [17] but, since we use the notation of [21], we have
replaced SmX by Sm(X). The bornology of all finite subsets of X (the smallest bornology
of X) is denoted by FB(X).

Definition 2.4 (cf. Definition 3.2 of [20]). If X is a gts, we call a set A ⊆ X admissibly
compact in X if, for each U ∈ CovX such that A ⊆

⋃
U, there exists a finite V ⊆ U such

that A ⊆
⋃
V .

Definition 2.5. For a gts X, the admissibly compact bornology of X is the collection
ACB(X) of all subsets of admissibly compact sets of the gts X.
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Definition 2.6. Let X be a gts. We say that a set A is topologically compact in X if A is
compact in Xtop (cf. Definition 3.2 of [20]). The compact bornology CB(Xtop) (cf. [8] and
[21]) will be called the compact bornology of the gts X and it will be denoted by CB(X).

Fact 2.7. For every gts X, the inclusion (Sm(X) ∪ CB(X)) ⊆ ACB(X) holds.

The following example shows that it can happen that Sm(X) ∪ CB(X) ̸= ACB(X)
and neither Sm(X) ⊆ CB(X) nor CB(X) ⊆ Sm(X).

Example 2.8. For X = R× {0, 1}, let OpX be the natural topology in X inherited from
the usual topology of R and let CovX be the collection of all families U ⊆ OpX such that
U is essentially finite on R×{0}. Then, for A = [0; 1]×{1} and B = R×{0}, we have A ∈
CB(X)\Sm(X) and B ∈ Sm(X)\CB(X), while A∪B ∈ ACB(X)\(CB(X)∪Sm(X)).

For a set X and a collection Ψ ⊆ P2(X), we denote by ⟨Ψ⟩X the smallest among
generalized topologies in X that contain Ψ. If A ⊆ P(X), let EssCount(A) be the collection
of all essentially countable subfamilies of A. We recall that EssFin(A) is the collection of
all essentially finite subfamilies of A (cf. [17, 18,20]).

Fact 2.9 (cf. Examples 2.2.35 and 2.2.14(8) of [17]). Assume (X, τ) is a topological space.
That EssFin(τ) is a generalized topology in X is true in ZF. On the other hand, that
EssCount(τ) is a generalized topology in X is true in ZF + CC.

Remark 2.10. It is unprovable in ZF that, for every topological space (X, τ), the col-
lection EssCount(τ) is a generalized topology in X. Namely, let M be a model for
ZF + ¬CC(fin) where CC(fin) states that countable products on non-empty finite sets
are non-empty (cf. Definition 2.9(3) of [9]). In view of Proposition 3.5 of [9], there exists
in M an uncountable set X such that X is a countable union of finite sets. Let τ = P(X).
If EssCount(τ) were a generalized topology in X, the family of all singletons of X would
belong to EssCount(τ) which is impossible, since X is uncountable.

Let us observe that, for the gts X from Example 2.8, the admissibly compact bornology
of X is generated by CB(X) ∪ Sm(X). That not every gts may share this property is
shown by the following example:

Example 2.11 (ZF+CC). For X = ω1, let OpX be the topology induced by the usual
linear order in ω1 and let CovX = EssCount(OpX). Then Sm(X) = FB(X) ̸= CB(X) ̸=
ACB(X) = P(X).

In what follows, for sets X, Y with Y ⊆ X and for Ψ ⊆ P2(X), we use the notation
Ψ ∩2 Y from [17] for the collection of all families U∩1 Y = {U ∩ Y : U ∈ U} where U ∈ Ψ.
We want to describe ⟨Ψ ∩2 Y ⟩Y more precisely in the case when Ψ ∩2 Y ⊆ EssFin(P(Y )).
To do this, we need the concept of a full ring of sets in Y that was of frequent use in
[20]. Namely, a full ring in Y is a collection C ⊆ P(Y ) such that ∅, Y ∈ C, while C is
closed under finite unions and under finite intersections. For A ⊆ P(Y ), let LY [A] be the
intersection of all full rings in Y that contain A.

Proposition 2.12. For a set X, let Ψ ⊆ P2(X). Suppose that Y ⊆ X and that each
family from Ψ is essentially finite on Y . Then the following conditions are satisfied:

(i) ⟨Ψ ∩2 Y ⟩Y = EssFin(LY [
⋃

(Ψ ∩2 Y )]) =
EssFin(

⋃
⟨Ψ ∩2 Y ⟩Y ) = EssFin(

⋃
⟨Ψ⟩X) ∩2 Y ;

(ii) each family from ⟨Ψ⟩X is essentially finite on Y .

Proof. By applying Proposition 2.2.37 of [17] to the mapping idY : Y → X, we obtain
the inclusion ⟨Ψ⟩X ∩2 Y ⊆ ⟨Ψ ∩2 Y ⟩Y which, together with (i), implies (ii). To prove
(i), let us put G0 = ⟨Ψ ∩2 Y ⟩Y ,G1 = EssFin(LY [

⋃
(Ψ ∩2 Y )]),G2 = EssFin(

⋃
G0) and

G3 = EssFin(
⋃

⟨Ψ⟩X) ∩2 Y . Obviously, G0,G1 and G2 are generalized topologies in Y . By
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Proposition 2.2.53 of [17], the collection G3 is also a generalized topology in Y . Since
Ψ ∩2 Y ⊆ G1 and LY [

⋃
(Ψ ∩2 Y )] ⊆

⋃
G0, we have G0 ⊆ G1 ⊆ G2 ⊆ G0. It follows from the

inclusion ⟨Ψ⟩X ∩2 Y ⊆ G0 that G3 ⊆ G0. Since
⋃

(⟨Ψ⟩X ∩2 Y ) is a full ring of subsets of Y ,
we get G1 ⊆ G3. This completes our proof to (i). �
Definition 2.13. If X = (X, Op, Cov) is a gts, then:

(i) the partial topologization of X = (X, Op, Cov) is the gts
Xpt = (X, (Op)pt, (Cov)pt)

where (Op)pt = τ(Op) and (Cov)pt = ⟨Cov ∪ EssFin(τ(Op))⟩X (cf. Definition 4.1
of [20]);

(ii) the gts X is called partially topological if X = Xpt (cf. Definition 2.2.4 of [17]);
(iii) GTSpt is the category of all partially topological spaces and strictly continuous

mappings, while the mapping pt : GTS → GTSpt is the functor of partial topolo-
gization defined by: pt(X) = Xpt for every gts X and pt(f) = f for every morphism
in GTS (cf. [1, 16,17] and Definition 4.2 of [20]).

Proposition 2.14. Let X be a gts. Then Sm(X) = Sm(Xpt), CB(X) = CB(Xpt) and
ACB(Xpt) ⊆ ACB(X).

Proof. The equality CB(X) = CB(Xpt) and both the inclusions Sm(Xpt) ⊆ Sm(X)
and ACB(Xpt) ⊆ ACB(X) are trivial. Let X = (X, OpX , CovX) and let Ψ = CovX ∪
EssFin(τ(OpX)). Suppose that Y ∈ Sm(X). Since each family from Ψ is essentially finite
on Y , we infer from Proposition 2.12 that Y ∈ Sm(Xpt). �
Definition 2.15 (cf. Proposition 2.2.71 of [17]). Let L be a full ring of subsets of a set
X. Then:

(i) for a collection B ⊆ P(X), we define
EF(L,B) = {U ⊆ L : ∀A∈B{A ∩ U : U ∈ U} ∈ EssFin(P(A))};

(ii) for a topology τ in X and for a bornology B in X, the gts induced by the bornological
universe ((X, τ),B) is gts((X, τ),B) = (X, τ, EF(τ,B)).

In the light of the proof to Proposition 2.1.31 in [18], we have the following fact:

Fact 2.16. Suppose that ((X, τ),B) is a bornological universe such that τ ∩ B is a base
for B. Then Sm((X, τ, EF(τ,B))) = B.

Definition 2.17 (cf. Example 2.1.12 of [18]). For a (quasi)-(pseudo)metric d on a set
X, the triple (X, τ(d), EF(τ(d),B(d, X))) will be called the gts induced by the (quasi)-
(pseudo)metric d.

Fact 2.18 (cf. Example 2.1.12 of [18]). If d is a quasi-(pseudo)metric on a set X, then
EF(τ(d),B(d, X)) is a generalized topology in X and

Sm((X, EF(τ(d),B(d, X))) = B(d, X).

3. B-(quasi)-(pseudo)metrization of gtses
Definition 3.1. Let X be a gts and let S be either CB or ACB, or Sm. Then we say
that X is S-(quasi)-(pseudo)metrizable if X is (quasi)-(pseudo)metrizable with respect to
S(X).

With Proposition 2.14 in hand, we can immediately deduce that the following proposi-
tion holds:

Proposition 3.2. Let S be either CB or Sm. Then the following are equivalent for a gts
X:
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(i) X is S-(quasi)-(pseudo)metrizable,
(ii) Xpt is S-(quasi)-(pseudo)metrizable.

Remark 3.3. If X is a gts, then the ACB-(quasi)-(pseudo)metrizability of Xpt is the
(quasi)-(pseudo)metrizability of Xpt with respect to ACB(Xpt), while the ACB-(quasi)-
(pseudo)metrizability of X is equivalent to the (quasi)-(pseudo)metrizability of Xpt with
respect to ACB(X). We do not know whether the ACB-(quasi)-(pseudo)metrizability of
X is equivalent to the ACB-(quasi)-(pseudo)metrizability of Xpt.

Definition 3.4. A gts X = (X, OpX , CovX) is called:
(i) locally small if there exists U ∈ CovX such that U ⊆ Sm(X) and X =

⋃
U (cf.

Definition 2.1.1 of [18]);
(ii) weakly locally small if there exists a collection U ⊆ OpX ∩ Sm(X) such that

X =
⋃
U.

Our next theorem says about the form of the partial topologization of an Sm-(quasi)-
(pseudo)metrizable gts X when Xpt is locally small.

Theorem 3.5. Suppose that X = (X, Op, Cov) is a gts such that its partial topologization
Xpt = (X, Oppt, Covpt) is locally small. Then the following conditions are equivalent:

(i) X is Sm-(quasi)-(pseudo)metrizable;
(ii) Xpt is induced by some (quasi)-(pseudo)metric d.

Proof. In view of Proposition 2.14, we have Sm(X) = Sm(Xpt). In consequence, it it
is obvious that if Xpt is induced by a (quasi)-(pseudo)metric d, then X is Sm-(quasi)-
(pseudo)metrizable. Assume that X is Sm-(quasi)-(pseudo)metrizable and that d is a
(quasi)-(pseudo)metric on X such that τ(Op) = τ(d) and Sm(Xpt) is the collection of all
d-bounded sets. Since Xpt is locally small, it follows from Proposition 2.1.18 of [18] that
Xpt is induced by d. �
Fact 3.6. If a gts X is induced by a (quasi)-(pseudo)metric, then X is locally small and
partially topological.

Fact 3.7. (i) If X is a locally small gts, then Xpt is locally small.
(ii) If a gts X is such that Xpt is locally small, then X is weakly locally small.
(iii) A gts X is weakly locally small if and only if Xpt is weakly locally small.

In every model for ZF + CC, we are going to present a construction of an example of
a weakly locally small gts X such that Xpt is not locally small. For Ψ ⊆ P2(X), we put
Ψ0 = Ψ and, for n ∈ ω, assuming that the collection Ψn ⊆ P2(X) has been defined, we
put Ψn+1 = (Ψn)+ where + is the operator described in the proof of Proposition 2.2.37
in [17]. Then ⟨Ψ⟩X =

⋃
n∈ω Ψn. The symbols ∪1, ∩1, ∪2, ∩2 have the same meaning as in

[17]. We shall use the terminology from Definition 2.2.2 of [17].

Example 3.8. [ZF + CC]. Suppose that Y is an uncountable set. For n ∈ ω, we put Yn =
Y × {n}. Let X =

⋃
n∈ω Yn, OpX = {A ⊆ X : for each n ∈ ω A ∩ Yn ∈ FB(Yn)} ∪ {X}

and CovX = EF(OpX , {Yn : n ∈ ω}). The gts X = (X, OpX , CovX) is weakly locally
small and not small. If X were locally small, then Y0 would be a subset of a small open
set (Fact 2.1.21 in [18]), so Y0 would be finite. Hence, X is not locally small. We have
{Yn : n ∈ ω} ∈ EF(τ(OpX), {Yn : n ∈ ω}) and all the sets Yn are small and open in
(X, EF(τ(OpX), {Yn : n ∈ ω})), so the gts (X, EF(τ(OpX), {Yn : n ∈ ω})) is locally small.
We put Ψ = CovX ∪EssFin(τ(OpX)). Then pt(CovX) = ⟨Ψ⟩X is the generalized topology
of Xpt. By Proposition 2.12, ⟨Ψ⟩X ⊆ EF(τ(OpX), {Yn : n ∈ ω}). Surprisingly, if CC holds,
then Xpt is not locally small and, in consequence, ⟨Ψ⟩X ⊂ EF(τ(OpX), {Yn : n ∈ ω}). To
prove this, let us assume ZF + CC. It is easy to observe the following facts:
Fact 1. X /∈ [X]≤ω ∪1 Sm(X).
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Fact 2. Each Ψn(n ∈ ω) is closed with respect to restriction: Ψn ∩2 A ⊆ Ψn for A ⊆ X.
(Notice that τ(OpX) = P(X) and n = 0 is the hardest case.)
For W ⊆ P(X), let us consider the following property:

P(W): W has an uncountable member and W ⊆ [X]≤ω ∪1 Sm(X).
For n ∈ ω, let T (n) be the statement:

T (n): if W ∈ Ψn has P(W), then W is essentially finite on X \ A for some countable
A ⊆ X.
We are going to prove by induction that the following fact holds:
Fact 3. T (n) is true for each n ∈ ω.

Proof. Let W ∈ Ψ0 have property P(W). Then, by Fact 1, X /∈ W and W /∈ CovX .
Hence W ∈ EssFin(τ(OpX)) and T (0) holds. Suppose that T (n) is true. The finiteness,
stability and regularity induction steps from the proof of Proposition 2.2.37 in [17] are
obvious (cf. Definition 2.2.2 of [17]).

Transitivity step. Let W ∈ Ψn+1 have property P(W). Suppose that U ∈ Ψn and
{V(U) : U ∈ U} ⊆ Ψn are such that W =

⋃
U∈U V(U) and, for each U ∈ U, we have

U =
⋃
V(U). Consider any U ∈ U. If every member of V(U) is countable, then U ∈ [X]≤ω

because CC holds and V(U) is essentially countable. Suppose V(U) has an uncountable
member. Since V(U) has property P(V(U)), it follows from the inductive assumption that
there is a countable set A(U) ⊆ X such that V(U) is essentially finite on X \ A(U). Then
U ∈ [X]≤ω ∪1 Sm(X) and U is uncountable. The above implies that U has property P(U).
By the assumption, there is a countable A ⊆ X such that U is essentially finite on X \ A.
Let U∗ ⊆ U be a finite family such that

⋃
U∗ \ A =

⋃
U \ A. For each U ∈ U∗, the set U is

countable or V(U) is essentially finite on U \ A(U). This implies that there is a countable
A(W) such that W is essentially finite on X \ A(W).

Saturation step. Suppose that there exists V ∈ Ψn such that
⋃
V =

⋃
W and, for

each V ∈ V, there exists a non-empty W(V ) = {W ∈ W : V ⊆ W}. Since W ⊆
[X]≤ω ∪1 Sm(X), we have V ⊆ [X]≤ω ∪1 Sm(X). Since W has an uncountable member
and V is essentially countable, also V has an uncountable member and has property P(V).
By the inductive assumption, there exists a countable A(V) such that V is essentially finite
on X \ A(V). Then W is essentially finite on X \ A(V), too. �

Suppose that Xpt is locally small. There exists W ∈ pt(CovX) such that W ⊆ Sm(X)
and X =

⋃
W. Since X is uncountable and W is essentially countable, at least one member

of W is uncountable, so P(W) holds true. By Fact 3, there exists a countable A(W) such
that W is essentially finite on X \ A(W). Then X \ A(W) ∈ Sm(X). This is impossible
by Fact 1.

From Fact 3.7, taken together with Example 3.8, we deduce the following corollary:

Corollary 3.9. In every model for ZF + CC, there exists a gts X such that X ̸= Xpt,
while both X and Xpt are simultaneously weakly locally small and not locally small.

We do not have a satisfactory solution to the following open problem:

Problem 3.10. Is it true in ZF that if the partial topologization of a gts X is locally
small, then so is X?

Proposition 3.11. Suppose that X = (X, OpX , CovX) is a gts and B is a bornology in
X. Then the following conditions are equivalent:

(i) the gts X is (quasi)-(pseudo)metrizable with respect to B;
(ii) the gts (X, EF(τ(OpX),B)) is Sm-(quasi)-(pseudo)metrizable and the collection

τ(OpX) ∩ B is a base for B.

Proof. Assume that (i) holds. By Theorem 4.7 of [21], the collection τ(OpX)∩B is a base
for B. It follows from Fact 2.16 that B is equal to the family Sm((X, EF(τ(OpX),B))).
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In consequence, (i) implies (ii). On the other hand, we can use Fact 2.16 with both
Definitions 1.6 and 2.15 to infer that (i) follows from (ii). �
Definition 3.12. Suppose that (X,B) is a generalized bornological universe where X =
(X, OpX , CovX). Let us say that X is strongly B-(quasi)-(pseudo)metrizable if there exists
a (quasi)-(pseudo)metric d on X such that B is the collection of all d-bounded sets and
OpX = LX [{Bd(x, r) : x ∈ X ∧ r ∈ (0; +∞)}].

In connection with strong Sm-(quasi)-(pseudo)metrizability, let us pose the following
open problem:
Problem 3.13. Find useful simultaneously necessary and sufficient conditions for a gts
to be strongly Sm-(quasi)-(pseudo)metrizable.
Definition 3.14. A (quasi)-(pseudo)metric gts is an ordered pair (X, d) where X =
(X, OpX , CovX) is a gts and d is a (quasi)-(pseudo)metric on X such that τ(d) = τ(OpX).
Definition 3.15. For a (quasi)-(pseudo)metric gts (X, d) and a bornology B in X, we
say that (X, d) is uniformly (quasi)-(pseudo)metrizable with respect to B or, equivalently,
that B is uniformly (quasi)-(pseudo)metrizable with respect to d if there exists a (quasi)-
(pseudo)metric ρ on X such that d and ρ are uniformly equivalent, and B = B(ρ, X) (cf.
Definition 6.3 of [21] and Definition 2.3 of [8]).

The following proposition follows from Theorem 6.5 of [21]:
Proposition 3.16. Suppose that (X, d) is a (quasi)-(pseudo)metric gts. Then a bornology
B in X is uniformly (quasi)-(pseudo)metrizable with respect to d if and only if B has a
base {Bn : n ∈ ω} such that, for some δ ∈ (0; +∞) and for each n ∈ ω, the inclusion
[Bn]δd ⊆ Bn+1 holds.

Other conditions that are equivalent to uniform B-(quasi)-(pseudo)metrizability of (quasi)-
(pseudo)metric gtses can be deduced from the results of [8] and from Section 6 of [21].

4. Applications to examples
For x, y ∈ R, let dn(x, y) =| x − y |. We denote by τnat the natural topology of R

induced by the metric dn. Let CBnat(R) stand for the compact bornology of (R, τnat).
The topology u = {∅,R} ∪ {(−∞; a) : a ∈ R} is called the upper topology on R, while
l = {∅,R} ∪ {(a; +∞) : a ∈ R} is called the lower topology on R (cf. [7,22]). The following
collections:

UB(R) = {A ⊆ R : ∃r∈RA ⊆ (−∞; r)}, LB(R) = {A ⊆ R : ∃r∈RA ⊆ (r; +∞)}
are simple examples of bornologies in R. Obviously,

CBnat(R) = UB(R) ∩ LB(R).
Example 4.1. The topological space (R, u) is not quasi-metrizable (since it is not T1)
but it is quasi-pseudometrizable by ρu(x, y) = max(0, y − x).

(i) For the gts Ruu = (R, EF(u, UB(R))), one has ACB(Ruu) = Sm(Ruu) = UB(R).
This is why Ruu is both ACB- and Sm-quasi-pseudometrizable by ρu.

(ii) For the gts Rul = (R, EF(u, LB(R))), we have ACB(Rul) = Sm(Rul) = P(R).
Hence Rul is both ACB- and Sm-quasi-pseudometrizable by ρu,1 = min{1, ρu}.

(iii) The gts (R, EF(u, CBnat(R))) is equal to Ruu.
(iv) The gts (R, EF(u,P(R)) is equal to Rul.
(v) The gts Ruf = (R, EF(u, FB(R))) is not LB(R)-quasi-pseudometrizable because

intuA = ∅ for each A ∈ LB(R). Here Sm(Ruf ) is the collection of all sets A ∈
UB(R) such that every non-empty subset of A has its largest element. Similarly,
Ruf is not Sm-quasi-pseudometrizable. Since ACB(Ruf ) = CB(Ruf ) = UB(R),
the gts Ruf is ACB-quasi-pseudometrizable by ρu.
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(vi) Each of Ruu,Rul,Ruf is CB-quasi-pseudometrizable by ρu.

Let us use the real lines described in Definition 1.2 of [20] as part of our illuminating
examples for the notions of (uniform) B-(quasi)-metrizability in the category GTS.

Example 4.2. For x, y ∈ R, we put dn,1(x, y) = min{dn(x, y), 1} and

d+
n (x, y) = dn(Φ(x), Φ(y)) where Φ(x) =

{
ex, x < 0,
1 + x, x ≥ 0.

Moreover, we define d+
n,1(x, y) = min{d+

n (x, y), 1}. Let us observe that the metrics dn and
d+

n are equivalent but not uniformly equivalent.
(i) Let Cov be any generalized topology in R such that ((R.τnat, Cov), d+

n ) is a metric
gts.

We have B(dn,R) = CBnat(R) and B(d+
n ,R) = UB(R). Let us observe that,

for a fixed δ ∈ (0; +∞), there exists n(δ) ∈ ω such that if Cm = [−m; m] for m ∈ ω
with m > n(δ), then (−∞; m) ⊆ [Cm]δ

d+
n

. This, together with Proposition 3.16,
implies that B(dn,R) is not uniformly quasi-metrizable with respect to d+

n .
(ii) For the usual topological real line Rut (cf. Definition 1.2(i) of [20]), we have

FB = Sm ⊂ CB = ACB and intnatA = ∅ for each A ∈ Sm(Rut), so the gts
Rut is not Sm-quasi-metrizable and it is ACB-metrizable by dn. The metric gtses
(Rut, dn) and (Rut, dn,1) are ACB-uniformly metrizable. It follows from (i) that
the metric gtses (Rut, d+

n ) is (Rut, d+
n,1) are not uniformly ACB-quasi-metrizable.

(iii) For the real lines Rlst and Rlom (cf. Definition 1.2(iv)-(v) of [20]), we have
pt(Rlom) = Rlst and Sm = CB = ACB = B(dn,R). The metric gtses (Rlst, dn)
and (Rlom, dn) are both uniformly Sm-metrizable; however, none of the metric
gtses (Rlom, d+

n ) and (Rlst, d+
n ) is uniformly Sm-metrizable (see (i)).

(iv) For the real lines Rl+om and Rl+st (cf. Definition 1.2(vii)-(viii) of [20]), we have
pt(Rl+om) = Rl+st and CB = CBnat(R) ⊂ Sm = ACB = B(d+

n ,R). Now,
it is obvious that both the metric gtses (Rl+om, d+

n ) and (Rl+st, d+
n ) are uniformly

ACB-metrizable by the metric d+
n . The gtses Rl+om and Rl+st are Sm-metrizable.

The metric gtses (Rl+om, dn) and (Rl+st, dn) are uniformly Sm-metrizable and
uniformly ACB-metrizable by du(x, y) = dn,1(x, y) + | max(y, 0) − max(x, 0)|.

(v) Let us consider the gtses Rom,Rslom,Rrom and Rst (cf. Definition 1.2(ii), (iii), (vi)
and (x) of [20]). We have pt(Rom) = pt(Rslom) = pt(Rrom) = Rst and CB ⊂ Sm =
ACB = P(R). The real lines Rom,Rslom,Rrom and Rst are Sm-metrizable by the
metric dn,1 and they are CB-metrizable by the metric dn.

(vi) The gts Rom (cf. Definition 1.2(ii) of [20]) is strongly Sm-metrizable by dn,1.

A famous quasi-metrizable but non-metrizable Tychonoff space is the Sorgenfrey line,
denoted here by RS . The topology τS,r of RS is the the right half-open interval topology
in R. The space RS is quasi-metrizable by the quasi-metric ρS defined, for x, y ∈ R, as
follows:

ρS(x, y) =
{

y − x, x ≤ y
1, x > y.

By Example 4.12 of [21], it is worthwhile to notice that the topology τS,r is also induced
by the quasi-metric ρL defined, for x, y ∈ R, as follows:

ρL(x, y) =
{

min{y − x, 1}, x ≤ y
1 + x − y, x > y.

Now, we may consider the following gtses, obtained from the Sorgenfrey line, that are
modifications of the gtses defined in Definition 1.2 of [20]:
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Definition 4.3. We give names to the following Sorgenfrey real lines:
(i) the usual topological Sorgenfrey real line RS

ut where Cov = all families of members
of τS,r;

(ii) the o-minimal Sorgenfrey real line RS
om where Cov = essentially finite families of

finite unions of right half-open intervals;
(iii) the smallified topological (or small partially topological) Sorgenfrey real line RS

st

where Cov = essentially finite families of members of τS,r;
(iv) the localized o-minimal Sorgenfrey real line RS

lom where Cov = locally essentially
finite families of locally finite unions of right half-open intervals;

(v) the localized smallified topological Sorgenfrey real line RS
lst where Cov = locally

essentially finite families of members of τS,r;
(vi) the smallified localized o-minimal Sorgenfrey real line RS

slom with Cov = essentially
finite families of locally finite unions of right half-open intervals;

(vii) the localized at +∞ (−∞, resp.) o-minimal Sorgenfrey real line RS
l+om (RS

l−om,
resp.) where Cov = locally essentially finite families of locally finite unions of
right half-open intervals which, on the negative (positive, resp.) half-line, are
essentially finite and consist of only finite unions of right half-open intervals;

(viii) the localized at +∞ (−∞, resp.) smallified topological Sorgenfrey real line RS
l+st

(RS
l−st, resp.) where Cov = locally essentially finite families of members of τS,r

which are essentially finite on the negative (positive, resp.) half-line;
(ix) the smallified localized at +∞ (−∞, resp.) o-minimal Sorgenfrey real line RS

sl+om

(RS
sl−om, resp.) where Cov = essentially finite families of locally finite unions of

right half-open intervals which are only finite unions of right half-open intervals
on the negative (positive, resp.) half-line;

(x) the rationalized o-minimal Sorgenfrey real line RS
rom where Cov = essentially finite

families of finite unions of right half-open intervals with endpoints being rational
numbers or infinities. In this case, the topology τ(

⋃
Cov) differs from τS,r.

Example 4.4. (Gtses from the Sorgenfrey line.)
(i) The gtses RS

lst,RS
lom are both ACB- and Sm-quasi-metrizable by the quasi-metric

ρ0 defined as follows:

ρ0(x, y) =
{

y − x, x ≤ y
1 + x − y, x > y.

(ii) The gtses RS
l+st,R

S
l+om are both ACB- and Sm-quasi-metrizable by ρS , while the

gtses RS
l−om,RS

l−st are both ACB- and Sm-quasi-metrizable by ρL.
(iii) The gtses RS

om,RS
slom,RS

st,RS
sl+om are ACB- and Sm-quasi-metrizable by ρS,1.

(iv) It follows from Theorem 1.9 that the gts RS
ut is neither Sm-quasi-metrizable be-

cause τS,r∩FB(R) is not a base for FB(R), nor ACB-quasi-metrizable (see below).

Example 4.5. Since each relatively compact set in the Sorgenfrey topology is countable,
none of the Sorgenfrey lines defined above is CB-metrizable.

Example 4.6. (Quasi-metric gtses from the Sorgenfrey line.) We use the same
notation as in Example 4.4.

(i) The quasi-metric gtses (RS
lst, ρ0), (RS

lom, ρ0) are uniformly ACB = Sm-quasi-
metrizable by ρ0.

(ii) The quasi-metric gtses (RS
l+st, ρ0), (RS

l+om, ρ0) are uniformly ACB = Sm-quasi-
metrizable by ρS , while the quasi-metric gtses (RS

l−st, ρ0), (RS
l−om, ρ0) are uniformly

ACB = Sm-quasi-metrizable by ρL,
(iii) The quasi-metric gtses (RS

om, ρ0), (RS
slom, ρ0), (RS

st, ρ0), (RS
sl+om, ρ0) are uniformly

ACB = Sm-quasi-metrizable by min{ρ0, 1}.
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(iv) None of the quasi-metric gtses (RS
lom, ρ−

S ), (RS
lst, ρ−

S ) is uniformly ACB- or Sm-
quasi-metrizable, where

ρ−
S (x, y) = ρS(Φ(−y), Φ(−x)) (with Φ from Example 4.2).

Example 4.7. Let us put J = [0; 1] × {0} and Jq = {q} × [0; 1]. For S = [0; 1] ∩ Q, let
X = J ∪

⋃
q∈S Jq. We consider the collection B of all sets A ⊆ X that have the property:

there exists a finite S(A) ⊆ S such that A ⊆ J ∪
⋃

q∈S(A) Jq.
(i) Let e be the Euclidean metric on X. Then, for each A ∈ B, we have intτ(e)A =

∅, so, for every topology τ2 in X, the bornology B is not (τ(e), τ2)-proper. In
consequence, by Theorem 1.9, the gts (X, EF(τ(e),B)) is not Sm-quasi-metrizable.

(ii) We define another metric ρ on X as follows. For x, y ∈ [0; 1] and q, q′ ∈ S with q ̸=
q′, we put ρ((x, 0), (y, 0)) =| x−y |, ρ((q, x), (q, y)) =| x−y | and ρ((q, x), (q′, y)) =
x+ | q − q′ | +y. Then, for each q ∈ S and for any a, b ∈ [0; 1] with a < b, we have
{q} × (a; b) = intτ(ρ)[{q} × (a; b)] ∈ B. Since there does not exist A ∈ B such that
J ⊆ intτ(ρ)A, we deduce from Theorem 1.9 that the gts (X, EF(τ(ρ),B)) is not
Sm-quasi-metrizable. The space (X, τ(ρ)) can be called the comb with its hand J
and teeth Jq, q ∈ Q (compare with Example IV.4.7 of [14]).

In what follows, if X and Y are gtses, the symbol X×GTSY denotes their GTS-product
(cf. Definition 4.6 of [20]).
Example 4.8. The space Rom ×GTS Rlom is Sm-metrizable by

dom,lom((x1, x2), (y1, y2)) =
∣∣ x1√

1 + x2
1

− x2√
1 + x2

2

∣∣ + |x2 − y2|,

but Rut ×GTS Rlom is not Sm-quasi-metrizable. Similarly, Rst ×GTS Rl+om is Sm-
metrizable. (See Fact 4.10 in [20].)

5. New topological categories
The table of categories in [1], among other categories, says about the category Top

of topological spaces, the category BiTop of bitopological spaces and about the category
Bor of bornological sets. The categories GTS, GTSpt, SS of small generalized topological
spaces and LSS of locally small generalized topological spaces, as well as SSpt and LSSpt,
were introduced in [17] and [18].

In the light of Proposition 2.14 and Fact 3.7(i), we can state the following:
Fact 5.1. The functor pt of partial topologization preserves smallness and local smallness.
More precisely:

(i) pt restricted to SS maps SS onto SSpt;
(ii) pt restricted to LSS maps LSS onto LSSpt.

The categories Top, BiTop, GTS, GTSpt, SS, SSpt and Bor are all topological con-
structs (cf. [1, 11, 17, 18, 20, 22]). Since Top and Bor are topological constructs, it is
obvious that the category UBor of bornological universes (cf. Remark 2.2.70 of [17]) is a
topological construct, too. Let us define several more categories and answer the question
whether they are topological constructs.
Definition 5.2 (cf. 1.2.1 in [11]). Let BX be a boundedness in a set X and let BY be
a boundedness in a set Y . We say that a mapping f : X → Y is (BX ,BY )-bounded (in
abbreviation: bounded) if, for each A ∈ BX , we have f(A) ∈ BY .

Definition 5.3. Suppose that ((X, τX
1 , τX

2 ),BX) and ((Y, τY
1 , τY

2 ),BY ) are bornological
biuniverses. We say that a mapping f : X → Y is a bounded bicontinuous mapping from
((X, τX

1 , τX
2 ),BX) to ((Y, τY

1 , τY
2 ),BY ) if f is bicontinuous with respect to (τX

1 , τX
2 , τY

1 , τY
2 )

and f is (BX ,BY )-bounded.
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Definition 5.4. Suppose that ((X, CovX),BX) and ((Y, CovY ),BY ) are generalized bornolog-
ical universes. We say that a mapping f : X → Y is a bounded strictly continuous
mapping from ((X, CovX),BX) to ((Y, CovY ),BY ) if f is both (BX ,BY )-bounded and
(CovX , CovY )-strictly continuous.

Definition 5.5. A generalized bornological universe ((X, CovX),B) is called:
(i) partially topological if the gts (X, CovX) is partially topological;
(ii) small if the gts (X, CovX) is small.

Definition 5.6. We define the following categories:
(i) BiUBor where objects are bornological biuniverses and morphisms are bounded

bicontinuous mappings;
(ii) GeUBor where objects are generalized bornological universes and morphisms are

bounded strictly continuous mappings;
(iii) GeptUBor where objects are partially topological generalized bornological uni-

verses and morphisms are bounded strictly continuous mappings;
(iv) SmUBor where objects are small generalized bornological universes and mor-

phisms are bounded strictly continuous mappings;
(v) SmptUBor where objects are partially topological small generalized bornological

universes and morphisms are bounded strictly continuous mappings.

Proposition 5.7. All categories BiUBor, GeUBor, GeptUBor, SmUBor and
SmptUBor are topological constructs.

Proof. To check that, for instance, GeptUBor is a topological construct, we mimic the
proof to Theorem 4.4 of [20]. Namely, let us consider a source F = {fi : i ∈ I} of mappings
fi : X → Yi indexed by a class I where every Yi is a partially topological generalized
bornological universe and Yi = ((Xi, Covi),Bi). Let CovX be the GTS-initial generalized
topology for F in X (cf. Definition 4.3 of [20]) and let BX =

⋂
i∈I{A ⊆ X : fi(A) ∈ Bi}.

For X = ((X, CovX),BX), let Xpt = (pt((X, CovX)),BX). The canonical morphism
id : Xpt → X is such that all mappings fi ◦ id are morphisms in GeptUBor. For
any object Z of GeptUBor and a mapping h : Z → Xpt, we can observe that if all
fi ◦ id ◦ h with i ∈ I are morphisms, then id ◦ h is a morphism of GTS, so pt(h) = h is a
morphism of GTSpt. If all fi ◦ id ◦ h are bounded, then pt(h) = h is bounded, too. That
BiUBor, GeUBor, SmUBor and SmptUBor are topological can be proved by using
similar arguments. �

Some other topological constructs, relevant to bornologies or quasi-pseudometrics, were
considered in [3, 23].

Acknowledgment. We thank Prof. W. Pawłucki for turning our attention to a mistake
in an earlier version of Example 3.8, which has made it possible for us to correct the
example.
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