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Abstract. This paper deals with an inverse problem to determine a space-

dependent coefficient in a one-dimensional time fractional diffusion-wave equa-

tion defined in heterogeneous medium with additional boundary measurement.
Then, we construct the explicit finite difference scheme for the direct problem

based on the equivalent partial integro-differential equation and Simpson’s
rule. Using the matrix analysis and mathematical induction, we prove that

our scheme is stable and convergent . The least squares method with homotopy

regularization is introduced to determine the space-dependent coefficient, and
an inversion algorithm is performed by one numerical example. This inversion

algorithm is effective at least for this inverse problem.

1. Introduction

In this paper, we consider the following equation:

cDαt u (x, t) =
∂

∂x

(
D (x)

∂u (x, t)

∂x

)
+ f (x, t) , 0 < x < L, 0 < t ≤ T, (1.1)

with the initial conditions

u (x, 0) = ψ (x) , ut (x, 0) = ϕ (x) , 0 ≤ x ≤ L, (1.2)

and the Neumann boundary conditions

∂u (0, t)

∂x
=
∂u (L, t)

∂x
= 0, 0 ≤ t ≤ T, (1.3)

where u (x, t) denotes state variable at space point x and time t, and 1 < α < 2
is called fractional order of the derivative in time, D (x) is the space-dependent
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coefficient, f (x, t) is a source term, and cDαt u (x, t) means the Caputo derivative
defined by:

CDαt u (x, t) =
1

Γ (2− α)

∫ t

0

(t− s)1−α ∂
2u (x, s)

∂s2
ds. (1.4)

In this study, we are concerned with the inverse problem of approximating the
unknown space-dependent coefficient D (x), while the initial functions ψ (x) and
ϕ (x) and the source term f (x, t) are considered as known functions. To determine
the set of functions (u,D) in the inverse problem (1.1)-(1.3), we need an over-
specified condition:

u (x, T ) = η (x) , 0 < x < L, (1.5)

is used.

2. The direct problem

The direct problem is composed by Eq. (1.1) with the initial and boundary value
conditions (1.2) and (1.3).

2.1. The explicit finite difference scheme. Firstly, we have the following lemma:

Lemma 2.1. ([2, 3]) Let α ∈ ] 1, 2 [ and y ∈ C2 ([0, T ]) with T > 0. Then, we
have

(1) C
0 Dα−1

t

(
Iα−1
t y (t)

)
= y (t),

(2) Iα−1
t

(
C
0 Dαt y (t)

)
= Iα−1

t

[
C
0 Dα−1

t (y′ (t))
]

= y′ (t)− y′ (0),

where C
0 Dαt is the Caputo fractional derivative operator defined in (1.4) and Iα−1

t

is the Riemann-Liouville integral operator defined as

Iα−1
t g (t) =

1

Γ (α− 1)

∫ t

0

(t− s)α−2
g (s) ds. (2.1)

Based on this lemma, we have the following theorem.

Theorem 2.2. ([2, 5]). The equation (1.1) is equivalent to the following partial
integro-differential equation

ut (x, t) = ϕ (x) + Iα−1
t [D′ (x)ux (x, t) +D (x)uxx (x, t)] + Iα−1

t f (x, t) , (2.2)

where F (x, t) = Iα−1
t f (x, t).

We consider Ωτ = {tn : tn = nτ, 0 ≤ n ≤ N} a uniform mesh of the interval [0, T ]
with τ = T/N and using Simpson’s rule [3], we obtain the following lemma.

Lemma 2.3. If g ∈ C4 ([0, T ]) and α ∈ ] 1, 2 [ , then

Iα−1
t g (tn) =

τα−1

3Γ (α− 1)

n∑
k=1

ωkg (tn−k) +O
(
τ5
)
,

where ω1 = 5, ωk = 6kα−2, k = 2, . . . , n− 2, ωn−1 = 5 (n− 1)
α−2

, ωn = nα−2.
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Let Ωh = {xi/xi = ih, 0 ≤ i ≤M} is a uniform mesh of the interval [0, L] with
h = L/M and M ∈ N∗. Suppose u = {uni /0 ≤ i ≤M, 0 ≤ n ≤ N} is a grid func-
tion on Ωhτ = Ωh × Ωτ . Considering the Eq.(2.2) at the point (xi, tn) and with
Lemma 2.3, we obtain an explicit scheme for (2.2) in the following matrix form:

U0 = ψ,

U1 = (I + 5A)U0 + τϕ+ τα

3Γ(α−1)f
0,

Un = (I + 5A)Un−1 + τϕ+ τα

3Γ(α−1)

∑n
k=1 ωkf

n−k +

n∑
k=2

ωkAU
n−k.

(2.3)

Here I is the M − 1 order identity matrix. Where Un =
(
un1 , u

n
2 , . . . , u

n
M−1

)T
, ϕ =

(ϕ1, ϕ2, . . . , ϕM−1)
T
, ψ = (ψ (x1) , . . . , ψ (xM−1))

T
, fn =

(
fn1 , f

n
2 , . . . , f

n
M−1

)T
and

A = (aij) , i, j = 1, 2, . . . ,M − 1 is defined by

A =



−p1 p1 0 . . . 0 0
p2 − q2 q2 − 2p2 p2 . . . 0 0

0 p3 − q3 q3 − 2p3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . qM−2 − 2pM−2 pM−2

0 0 0 . . . pM−1 − qM−1 qM−1 − pM−1


(2.4)

2.2. Stability and convergence. Firstly, we have the following lemma.

Lemma 2.4. Suppose that D : [0, L]→ R+ is a continuously differentiable function
on ] 0, L [ . Then, the matrix A given by (2.4) is negative definite, and we have

aii = −
M−1∑
j=1,j 6=i

|aij | , ‖A‖ ≤
4τα

3h2Γ (α− 1)
max

0≤x≤L
D (x) . (2.5)

By utilizing linear difference scheme (2.3), we can easily get
E0 = ψ̃ − ψ
E1 = (I + 5A)E0,

En = (I + 5A)En−1 +

n∑
k=2

ωkAE
n−k,

(2.6)

where ψ̃ denotes the initial function with noises, En = Ũn−Un denotes the solutions
error for the n-th step iteration, and n = 1, . . . , N .

Theorem 2.5. The explicit difference scheme defined by (2.3) is unconditionally
stable.

We denote eni = u (xi, tn)− uni , i = 1, . . . ,M − 1, n = 1, . . . , N , where u (xi, tn)
is the exact solution of the direct problem (1.1)-(1.3) at mesh point (xi, tn) and uni is

the solution of the difference scheme (2.3) also at (xn, tn), and en =
(
en1 , e

n
2 , . . . , e

n
M−1

)T
.

Note that e0
i = u (xi, 0)− ψ (xi) = 0. We have

e1 = R1,

en = (I + 5A) en−1 +

n∑
k=2

ωkAe
n−k +Rn,

(2.7)

where Rn =
(
Rn1 , R

n
2 , . . . , R

n
M−1

)T
denotes the truncated term.
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Theorem 2.6. The solution of the explicit difference scheme (2.3) is convergent
to the exact solution of the direct problem (1.1)-(1.3) as h, τ → 0 for finite time
domain.

3. The inverse problem

The inverse problem is formulated by: the fractional diffusion-wave equation
(1.1), the initial conditions (1.2), the boundary conditions (1.3) and the additional
condition (1.4). For the solution of the inverse problem, suppose that the function
D ∈ C (0, L). Let V be a subspace of C (0, L) of finite dimension s and (ηi (x)),
i = 1, . . . , s une base de V . We can write the diffusion-wave coefficient D(x) by:

D (x) =

s∑
i=1

piηi (x) . (3.1)

For D(x) given, the direct problem (1.1)-(1.3) admits a unique solution noted by

u (x, t,D). To find D(x) just find the vector P = (p1, p2, . . . , ps)
T ∈ Rs. Let β > 0,

we notice Sβ = {P ∈ Rs : ‖P‖ ≤ β} the admissible set of unknowns P .

3.1. Nonlinear least squares problem. To solve the inverse problem we solve
a nonlinear least squares problem:{

min Φ (P ) = ‖u (L, t;P )− ψ (t)‖22 , 0 < t ≤ T.
P ∈ Sβ

(3.2)

The objective function Φ continuous and convex on the set Sβ closed and bounded.
Therefore, according to Weierstrass theorem, the problem (3.2) admits at least one
solution. On the other hand the problem (3.2) is ill-posed so that the problem
admits several solutions. For uniqueness, using Homotopy regularization [1], we
consider the following regularized problem:{

min Φλ (P ) = (1− λ) ‖u (L, t;P )− ψ (t)‖22 + λ ‖P‖22 ,
P ∈ Sβ ,

(3.3)

where 0 < λ < 1 is the regularization parameter. To get P j , we assume that
P j+1 = P j + δP j , j = 0, 1, . . .. We need to determine a regularized vector

δP j =
(
δpj1, δp

j
2, . . . , δp

j
s

)T
. Using Taylor’s approximation to order one, we find:

u (L, t;P + δP ) ≈ u (L, t;P ) +∇TPu (L, t;P ) · δP. (3.4)

From (3.3) and (3.4) the objective function of the regularized problem becomes:

Fλ(δP ) = (1− λ)
∥∥∇TPu(L, t;P ).δP − (ψ(t)− u(L, t;P ))

∥∥2

2
+ λ ‖δP‖22 . (3.5)

By the finite difference method, we obtain:

∇TPu(L, tn;P ).δP ≈
s∑
i=0

u(L, tn; (p0, . . . , pi + τ, . . . , ps))− u(L, tn; p)

τ
.δpi. (3.6)

We define the matrix H = (hni)N×(s+1) by:

hni =
u(L, tn; (p0, . . . , pi + τ, . . . , ps))− u(L, tn; p)

τ
. (3.7)
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Let U = (u(L, t1; p), u(L, t2; p), . . . , u(L, tN ; p))T , Ψ = (ψ(t1), ψ(t2), . . . , ψ(tN ))T .
Using (3.6) and (3.7), we can write (3.5) in the form:

Fλ(δP ) = (1− λ) ‖HδP − (Ψ− U)‖22 + λ ‖δP‖22 . (3.8)

We have the following equivalence result:

Proposition 3.1. ([4, 5]).

3 δP a minimum point of Fλ if only if δP solution of the normal equation:

(1− λ)HTHδP + λδP = HT (Ψ− U). (3.9)

3 For all 0 < λ < 1, the normal equation (3.9) has a unique solution.

Algorithm 1 (Inversion algorithm, [4, 5])

1: Give an initial value P , the step τ , α, λ and ε,
2: Solve the scheme (2.3) to get u(`, tn;P ) and u(`, tn; (p0, . . . , pi + τ, . . . , ps)), for

all n = 1, 2, . . . , N et i = 0, 1, . . . , s
3: Calculate the matrix H and the vectors U , Ψ,

4: Calculate a regularization vector δP by: δP =
[
(1− λ)HTH + λI

]−1
HT (Ψ−

U).
5: If ‖δP‖2 ≤ ε stop, and P + δP is considered a solution. Otherwise, go to step

2 by replacing P with P + δP .

3.2. Numerical test. ([4, 5])

• T = 1, L = 1, ϕ(x) = x2(1−x)2,
ψ(x) = 0, λ = 0.01,

• f(x, t) =
2x2(1− x)2t2−α

Γ(3− α)
− (1 + t2)(16x3 − 6x2 − 8x+ 2),
• D(x) = 1 + x, P 0 = (1, 1).
τ = 0.4, ε = 10−6, α = 1.8,
• M = 20, N = 1000.
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