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Abstract. This paper considers the question of the output stabilization for
a class of infinite dimensional bilinear systems evolving on a spatial domain

Ω. Then, we give sufficient conditions for exponential, strong and weak sta-

bilization of the output of such systems. Examples and simulations illustrate
the efficiency of such controls.

1. Introduction

In this paper, we consider the following bilinear system{
ż(t) = Az(t) + v(t)Bz(t), t ≥ 0,

z(0) = z0,
(1.1)

where A : D(A) ⊂ H → H generates a strongly continuous semigroup of con-
tractions (S(t))t≥0 on a Hilbert space H, endowed with norm and inner product
denoted, respectively, by ‖.‖ and 〈., .〉, v(.) ∈ Vad (the admissible controls set) is a
scalar valued control and B : H → H is a linear bounded operator. The problem of
feedback stabilization of distributed system (1.1) was studied in many works that
lead to various results. In [1], it was shown that the control

v(t) = −〈z(t), Bz(t)〉, (1.2)

weakly stabilizes system (1.1) provided that B be a weakly sequentially continuous
operator such that, for all ψ ∈ H, we have

〈BS(t)ψ, S(t)ψ〉 = 0, ∀ t ≥ 0 =⇒ ψ = 0, (1.3)

and if (1.3) is replaced by the following assumption∫ T

0

|〈BS(s)ψ, S(s)ψ〉|ds ≥ γ‖ψ‖2, ∀ ψ ∈ H, (for some γ, T > 0), (1.4)

then control (1.2) strongly stabilizes system (1.1) (see [2]). In [3], the authors show
that when the resolvent of A is compact, B self-adjoint and monotone, then strong
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stabilization of system (1.1) is proved using bounded controls. Let the output state
space Y be a Hilbert space with inner product 〈., .〉Y and the corresponding norm
‖.‖Y , and let C ∈ L(H,Y ) be an output operator. The system (1.1) is augmented
with the output

w(t) := Cz(t). (1.5)

The output stabilization means that w(t)→ 0 as t→ +∞ using suitable controls.
In the case when Y = H and C = I, one obtains the classical stabilization of the
state. When C 6= I, the output stabilization for distributed systems was studied
in many works: in [14], authors considered the output exponential stabilization for
one-dimensional wave equations with boundary control. In [4], authors considered
output stabilization for Kirchhoff-type equation with boundary control. They stud-
ied the existence and uniqueness of solution of system and the strong stabilization
of such equation was proved. In [6], authors established the output stabilization for
a class of nonlinear systems with boundary control. They investigated the existence
of solution and the exponential stabilization of such systems. In [7], author studied
weak and strong output stabilization for semilinear systems using controls that do
not take into account the output operator. In [11], authors considered exponential,
strong and weak output stabilization of semilinear systems. If Ω ⊂ Rd (d ≥ 1) be
the system evolution domain and ω ⊂ Ω, when C = χω, the restriction operator
to a subregion ω of Ω, one is concerned with the behaviour of the state only in a
subregion of the system evolution domain. This is what we call regional stabiliza-
tion. The notion of regional stabilization is useful in systems theory since there
exist systems which are not stabilizable on the whole domain but stabilizable on
some subregion ω. Moreover stabilizing a systems on a subregion is cheaper than
stabilizing it on the whole domain [12]. In [13], regional stabilization for bilinear
systems was studied using decomposition of system (1.1) into regional stable and
regional unstable subsystems, therefore regional stabilization of system (1.1) turns
out to stabilizing its unstable part. In [10], authors proved regional strong and weak
stabilization of bilinear systems with unbounded control operator. In [9], authors
considered regional weak, strong and exponential stabilization of bilinear systems
with control operator B assumed to be bounded with respect to the graph norm
of the operator A. In this paper, we study the exponential, strong and weak sta-
bilization of the output (1.5) using bounded controls. Then, we develop sufficient
conditions that allow exponential, strong and weak stabilization of the output of
such system. Illustrations by examples and simulations are given. The approach
is based on the decay of an adapted function, the exact and weak observability
conditions, and semigroup properties. The paper is organized as follows. The sec-
ond section discusses sufficient conditions to achieve exponential, strong and weak
stabilization of the output (1.5). In the third section, we give illustrating examples.
The fourth section is devoted to simulations.

2. Output stabilization

In this section, we develop sufficient conditions that allow exponential, strong
and weak stabilization of the output (1.5).

Definition 2.1. The output (1.5) is said to be:
1. weakly stabilizable, if there exists a control v(.) ∈ Vad such that for any initial
condition z0 ∈ H, the corresponding solution z(t) of system (1.1) is global and
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satisfies
〈Cz(t), ψ〉Y → 0, ∀ψ ∈ Y, as t→∞,

2. strongly stabilizable, if there exists a control v(.) ∈ Vad such that for any initial
condition z0 ∈ H, the corresponding solution z(t) of system (1.1) is global and
verifies

‖Cz(t)‖Y → 0, as t→∞,
3. exponentially stabilizable, if there exists a control v(.) ∈ Vad such that for any
initial condition z0 ∈ H, the corresponding solution z(t) of system (1.1) is global
and there exist α, β > 0 such that

‖Cz(t)‖Y ≤ αe−βt‖z0‖, ∀t > 0.

Remark. It is clear that exponential stability of (1.5) implies strong stability of
(1.5) implies weak stability of (1.5).

2.1. Exponential stabilization. In this subsection, we develop sufficient condi-
tions for exponential stabilization of the output (1.5).
The following result concerns the exponential stabilization of (1.5).

Theorem 2.1. Let A generate a semigroup (S(t))t≥0 of contractions on H and B
is a bounded control operator. If the conditions:
1. Re(〈C∗CAy, y〉) ≤ 0, ∀y ∈ D(A),
2. Re(〈C∗CBy, y〉〈By, y〉) ≥ 0, ∀y ∈ H,
3. there exist T, γ > 0, such that∫ T

0

|〈C∗CBS(t)y, S(t)y〉|dt ≥ γ‖Cy‖2Y , ∀ y ∈ H, (2.1)

hold, then the control

v(t) =

{
− 〈C

∗CBz(t),z(t)〉
‖z(t)‖2 if z(t) 6= 0

0 if z(t) = 0,
(2.2)

exponentially stabilizes the output (1.5).

Proof. System (1.1) has a unique weak solution z(t) (see [8]) defined on a maximal
interval [0, tmax] by

z(t) = S(t)z0 +

∫ t

0

g(z(s))S(t− s)Bz(s)ds, (2.3)

where

g(z(t)) =

{
− 〈C

∗CBz(t),z(t)〉
‖z(t)‖2 if z(t) 6= 0

0 if z(t) = 0.

Since (S(t))t≥0 is a semigroup of contractions, we deduce

d

dt
‖z(t)‖2 ≤ 2g(z(t))〈Bz(t), z(t)〉.

Integrating this inequality over the interval [0, t], we have

‖z(t)‖2 − ‖z(0)‖2 ≤ 2

∫ t

0

g(z(s))〈Bz(s), z(s)〉ds.

Using hypothesis 2 of Theorem 2.1, it follows that

‖z(t)‖ ≤ ‖z0‖. (2.4)
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For all z0 ∈ H and t ≥ 0, we have

〈C∗CBS(t)z0, S(t)z0〉 = 〈C∗CBz(t), z(t)〉 − 〈C∗CBz(t), z(t)− S(t)z0〉
+ 〈C∗CBS(t)z0 − C∗CBz(t), S(t)z0〉.

Since B is bounded, then

|〈C∗CBS(t)z0, S(t)z0〉| ≤ |〈C∗CBz(t), z(t)〉|+ 2α‖B‖‖z(t)− S(t)z0‖‖z0‖, (2.5)

where α is a positive constant.
Using (2.4), we deduce

|〈C∗CBz(t), z(t)〉| ≤ |g(z(t))|‖z(t)‖‖z0‖, ∀t ∈ [0, T ]. (2.6)

While from (2.3) and using Schwartz’s inequality, we obtain

‖z(t)− S(t)z0‖ ≤ ‖B‖

(
T

∫ T

0

|g(z(t))|2‖z(t)‖2dt

) 1
2

. (2.7)

Integrating (2.5) over the interval [0, T ] and taking into account (2.6) and (2.7), we
have∫ T

0

|〈C∗CBS(t)z0, S(t)z0〉|dt ≤ 2αT
3
2 ‖B‖2‖z0‖

(∫ T

0

|g(z(t))|2‖z(t)‖2dt

) 1
2

+ T
1
2 ‖z0‖

(∫ T

0

|g(z(t))|2‖z(t)‖2dt

) 1
2

. (2.8)

Let us consider the nonlinear semigroup U(t)z0 := z(t) (see [1]). Replacing z0 by
U(t)z0 in (2.8), and using the superposition properties of the semigroup (U(t))t≥0,
we deduce that∫ T

0

|〈C∗CBS(s)U(t)z0, S(s)U(t)z0〉|ds ≤ 2αT
3
2 ‖B‖2‖U(t)z0‖ (2.9)

×

(∫ t+T

t

|g(U(s)z0)|2‖U(s)z0‖2ds

) 1
2

+ T
1
2 ‖U(t)z0‖

(∫ t+T

t

|g(U(s)z0)|2‖U(s)z0‖2ds

) 1
2

.

Thus, by using (2.1) and (2.9), it follows that

γ‖CU(t)z0‖Y ≤M

(∫ t+T

t

|g(U(s)z0)|2‖U(s)z0‖2ds

) 1
2

, (2.10)

where M = (2αT‖B‖2 + 1)T
1
2 is a positive constant depending on ‖z0‖ and T .

From hypothesis 1 of Theorem 2.1, we have

d

dt
‖CU(t)z0‖2Y ≤ −2|g(U(t)z0)|2‖U(t)z0‖2. (2.11)

Integrating (2.11) from nT and (n+ 1)T, (n ∈ N), we obtain

‖CU(nT )z0‖2Y − ‖CU((n+ 1)T )z0‖2Y ≥ 2

∫ (n+1)T

nT

|g(U(s)z0)|2‖U(s)z0‖2ds.
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Using (2.10), (2.11) and the fact that ‖CU(t)z0‖Y decreases, it follows(
1 + 2

( γ
M

)2
)
‖CU((n+ 1)T )z0‖2Y ≤ ‖CU(nT )z0‖2Y .

Then

‖CU((n+ 1)T )z0‖Y ≤ β‖CU(nT )z0‖Y ,
where β = 1(

1+2( γ
M )

2
) 1

2
. By recurrence, we show that ‖CU(nT )z0‖Y ≤ βn‖Cz0‖Y .

Taking n = E( tT ) the integer part of t
T , we deduce that

‖CU(t)z0‖Y ≤ Re−σt‖z0‖,

where R = α
(

1 + 2
(
γ
M

)2) 1
2

, with α > 0 and σ =
ln
(

1+2( γ
M )

2
)

2T > 0, which achieves

the proof. �

2.2. Strong stabilization. The following result will be used to prove strong sta-
bilization of the output (1.5).

Theorem 2.2. Let A generate a semigroup (S(t))t≥0 of contractions on H and
B : H → H is a bounded linear operator. If the conditions:
1. Re

(〈
C∗CAψ,ψ

〉)
≤ 0, ∀ψ ∈ D(A),

2. Re
(〈
C∗CBψ,ψ

〉〈
Bψ,ψ

〉)
≥ 0, ∀ψ ∈ H,

hold, then control

v(t) = −
〈
C∗CBz(t), z(t)

〉
1 + |

〈
C∗CBz(t), z(t)

〉
|
, (2.12)

allows the estimate(∫ T

0

|
〈
C∗CBS(s)z(t), S(s)z(t)

〉
|ds
)2

= Θ

(∫ t+T

t

|
〈
C∗CBz(s), z(s)

〉
|2

1 + |
〈
C∗CBz(s), z(s)

〉
|
ds

)
,

as t→ +∞.
(2.13)

Proof. We have

1

2

d

dt

〈
Cz(t), Cz(t)

〉
Y

= Re
(〈
CAz(t), Cz(t)

〉
Y

)
+Re

(
v(t)

〈
CBz(t), Cz(t)

〉
Y

)
.

Then

1

2

d

dt

〈
Cz(t), Cz(t)

〉
Y

=
1

2

d

dt
‖Cz(t)‖2Y = Re

(〈
C∗CAz(t), z(t)

〉)
+Re

(
v(t)

〈
C∗CBz(t), z(t)

〉)
.

From hypothesis 1 of Theorem 2.2, we have

1

2

d

dt
‖Cz(t)‖2Y ≤ Re

(
v(t)〈C∗CBz(t), z(t)〉

)
.

In order to make the function 1
2‖Cz(t)‖

2
Y nonincreasing, we consider the control

v(t) = −
〈
C∗CBz(t), z(t)

〉
1 + |

〈
C∗CBz(t), z(t)

〉
|
,

so that the resulting closed-loop system is

ż(t) = Az(t) + f(z(t)), z(0) = z0, (2.14)
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where f(z) = −
〈
C∗CBz,z

〉
Bz

1+|
〈
C∗CBz,z

〉
|
, ∀ z ∈ H.

Since f is locally Lipschitz, then system (2.14) has a unique mild solution z(t) (see
Theorem 1.4, pp 185 in [8]) defined on a maximal interval [0, tmax] by

z(t) = S(t)z0 +

∫ t

0

S(t− s)f(z(s))ds. (2.15)

Because of the contractions of the semigroup (i.e Re
(〈
Aψ,ψ

〉)
≤ 0, ∀ ψ ∈ D(A)),

we have
d

dt
‖z(t)‖2 ≤ −2

〈
C∗CBz(t), z(t)

〉
〈Bz(t), z(t)〉

1 + |
〈
C∗CBz(t), z(t)

〉
|

.

Integrating this inequality over the interval [0, t], we deduce

‖z(t)‖2 − ‖z(0)‖2 ≤ −2

∫ t

0

〈
C∗CBz(s), z(s)

〉
〈Bz(s), z(s)〉

1 + |
〈
C∗CBz(s), z(s)

〉
|

ds.

Using condition 2 of Theorem 2.2, it follows that

‖z(t)‖ ≤ ‖z0‖. (2.16)

From hypothesis 1 of Theorem 2.2, we have

d

dt
‖Cz(t)‖2Y ≤ −2

|
〈
C∗CBz(t), z(t)

〉
|2

1 + |
〈
C∗CBz(t), z(t)

〉
|
.

Integrating this inequality, we deduce

‖Cz(t)‖2Y − ‖Cz(0)‖2Y ≤ −2

∫ t

0

|
〈
C∗CBz(s), z(s)

〉
|2

1 + |
〈
C∗CBz(s), z(s)

〉
|
ds. (2.17)

While from (2.15) and using Schwartz inequality, we obtain

‖z(t)−S(t)z0‖ ≤ ‖B‖‖z0‖
(
T

∫ t

0

|
〈
C∗CBz(s), z(s)

〉
|2

1 + |
〈
C∗CBz(s), z(s)

〉
|
ds

) 1
2

, ∀t ∈ [0, T ]. (2.18)

Since B is bounded and C continuous, we have

|〈C∗CBS(s)z0, S(s)z0〉| ≤ 2K‖B‖‖z(s)−S(s)z0‖‖z0‖+|〈C∗CBz(s), z(s)〉|, (2.19)

where K is a positive constant. Replacing z0 by z(t) in (2.18) and (2.19), we deduce

|〈C∗CBS(s)z(t), S(s)z(t)〉| ≤ 2K‖B‖2‖z0‖2
(
T

∫ t+T

t

|
〈
C∗CBz(s), z(s)

〉
|2

1 + |
〈
C∗CBz(s), z(s)

〉
|
ds

) 1
2

+ |〈C∗CBz(t+ s), z(t+ s)〉|, ∀t ≥ s ≥ 0.

Integrating this relation over [0, T ] and using Cauchy-Schwartz, we obtain∫ T

0

|〈C∗CBS(s)z(t), S(s)z(t)〉|ds ≤
(

2K‖B‖2T 3
2 + T

(
1 +K‖B‖‖z0‖2

))
×

(∫ t+T

t

|
〈
C∗CBz(s), z(s)

〉
|2

1 + |
〈
C∗CBz(s), z(s)

〉
|
ds

) 1
2

,

which achieves the proof. �

The following result gives sufficient conditions for strong stabilization of the
output (1.5).
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Theorem 2.3. Let A generate a semigroup (S(t))t≥0 of contractions on H and B
is a bounded linear operator. If the assumptions 1, 2 of Theorem 2.2 and∫ T

0

|〈C∗CBS(t)ψ, S(t)ψ〉|dt ≥ γ‖Cψ‖2Y , ∀ ψ ∈ H, (for some T, γ > 0), (2.20)

hold, then control (2.12) strongly stabilizes the output (1.5) with decay estimate

‖Cz(t)‖Y = Θ

(
1√
t

)
, as t −→ +∞. (2.21)

Proof. Using (2.17), we deduce

‖Cz(kT )‖2Y − ‖Cz((k + 1)T )‖2Y ≥ 2

∫ k(T+1)

kT

|
〈
C∗CBz(t), z(t)

〉
|2

1 + |
〈
C∗CBz(t), z(t)

〉
|
dt, k ≥ 0.

From (2.13) and (2.20), we have

‖Cz(kT )‖2Y − ‖Cz((k + 1)T )‖2Y ≥ β‖Cz(kT )‖4Y , (2.22)

where β = γ2

2
(

2K‖B‖2T
3
2 +T

(
1+K‖B‖‖z0‖2

))2 . Taking sk = ‖Cz(kT )‖2Y , the inequality

(2.22) can be written as

βs2
k + sk+1 ≤ sk, ∀k ≥ 0.

Since sk+1 ≤ sk, we obtain

βs2
k+1 + sk+1 ≤ sk, ∀k ≥ 0.

Taking p(s) = βs2 and q(s) = s − (I + p)−1(s) in Lemma 3.3, page 531 in [5], we
deduce

sk ≤ x(k), k ≥ 0,

where x(t) is the solution of equation x′(t) + q(x(t)) = 0, x(0) = s0.
Since x(k) ≥ sk and x(t) decreases give x(t) ≥ 0, ∀t ≥ 0. Furthermore, it is easy
to see that q(s) is an increasing function such that

0 ≤ q(s) ≤ p(s),∀s ≥ 0.

We obtain −βx(t)2 ≤ x′(t) ≤ 0, which implies that

x(t) = Θ(t−1), as t→ +∞.
Finally the inequality sk ≤ x(k), together with the fact that ‖Cz(t)‖Y decreases,
we deduce the estimate

‖Cz(t)‖Y = Θ

(
1√
t

)
, as t −→ +∞.

�

2.3. Weak stabilization. The following result provides sufficient conditions for
weak stabilization of the output (1.5).

Theorem 2.4. Let A generate a semigroup (S(t))t≥0 of contractions on H and B
is a compact operator. If the conditions:
1. Re

(〈
C∗CAψ,ψ

〉)
≤ 0, ∀ψ ∈ D(A),

2. Re
(〈
C∗CBψ,ψ

〉〈
Bψ,ψ

〉)
≥ 0, ∀ψ ∈ H,

3.
〈
C∗CBS(t)ψ, S(t)ψ

〉
= 0, ∀t ≥ 0 =⇒ Cψ = 0,

hold, then control (2.12) weakly stabilizes the output (1.5).
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Proof. Let us consider the nonlinear semigroup Γ(t)z0 := z(t) and let (tn) be a
sequence of real numbers such that tn −→ +∞ as n −→ +∞.
From (2.16), Γ(tn)z0 is bounded in H, then there exists a subsequence (tφ(n)) of
(tn) such that

Γ(tφ(n))z0 ⇀ ψ, as n→∞.

Since B is compact and C continuous, we have

lim
n→+∞

〈C∗CBS(t)Γ(tφ(n))z0, S(t)Γ(tφ(n))z0〉 = 〈C∗CBS(t)ψ, S(t)ψ〉.

For all n ≥, we set

Λn(t) :=

∫ φ(n)+t

φ(n)

|
〈
C∗CBΓ(s)z0,Γ(s)z0

〉
|2

1 + |
〈
C∗CBΓ(s)z0,Γ(s)z0

〉
|
ds.

It follows that ∀t ≥ 0, Λn(t)→ 0 as n→ +∞.
Using (2.13), we deduce

lim
n→+∞

∫ t

0

|〈C∗CBS(s)Γ(tφ(n))z0, S(s)Γ(tφ(n))z0〉|ds = 0.

Hence, by the dominated convergence Theorem, we have∫ t

0

|〈C∗CBS(s)ψ, S(s)ψ〉|ds = 0.

We conclude that

〈C∗CBS(s)ψ, S(s)ψ〉 = 0, ∀s ∈ [0, t].

Using condition 3 of Theorem 2.4, we deduce that

CΓ(tφ(n))z0 ⇀ 0, as n −→ +∞. (2.23)

On the other hand, it is clear that (2.23) holds for each subsequence (tφ(n)) of (tn)
such that CΓ(tφ(n))z0 weakly converges in Y . This implies that ∀ϕ ∈ Y , we have
〈CΓ(tn)z0, ϕ〉 → 0 as n −→ +∞ and hence

CΓ(t)z0 ⇀ 0, as t −→ +∞.

�

3. Examples

Example 3.1. Let Ω denote a bounded open subset of Rn, and consider the follow-
ing wave equation

∂2z(x, t)

∂t2
−∆z(x, t) = v(t)

∂z(x, t)

∂t
Ω×]0,+∞[

z(x, t) = 0 ∂Ω×]0,+∞[

z(x, 0) = z0(x),
∂z(x, 0)

∂t
= z1(x) Ω.

(3.1)

This system has the form of equation (1.1) if we set H = H1
0 (Ω) × L2(Ω) with

〈(y1, z1), (y2, z2)〉 = 〈y1, y2〉H1(Ω)+〈z1, z2〉L2(Ω), A =

(
0 I
∆ 0

)
and B =

(
0 0
0 I

)
.
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We consider the output operator C = I, we have A is skew-adjoint on H and the
assumption (2.20) holds (see [2]). Then the control

v(t) = −
‖∂z(., t)

∂t
‖2L2(0,1)

1 + ‖∂z(., t)
∂t

‖2L2(0,1)

, (3.2)

strongly stabilises system (3.1) with the decay estimate

‖(z(., t), ∂z(., t)
∂t

)‖H = Θ(
1√
t
), as t −→ +∞.

Example 3.2. Let us consider a system defined on Ω =]0, 1[ by
∂z(x, t)

∂t
= Az(x, t) + v(t)a(x)z(x, t) Ω×]0,+∞[

z(x, 0) = z0(x) Ω,
(3.3)

where H = L2(Ω), Az = −z, and a ∈ L∞(]0, 1[) such that a(x) ≥ 0 a.e on ]0, 1[
and a(x) ≥ c > 0 on subregion ω of Ω and v(.) ∈ L∞(0,+∞) the control function.
System (3.3) is augmented with the output

w(t) = χωz(t), (3.4)

where χω : L2(Ω) −→ L2(ω), the restriction operator to ω and χ∗ω is the adjoint
operator of χω. The operator A generates a semigroup of contractions on L2(Ω)
given by S(t)z0 = e−tz0. For all z0 ∈ L2(Ω) and T = 2, we obtain∫ 2

0

〈
χ∗ωχωBS(t)z0, S(t)z0

〉
dt =

∫ 2

0

e−2tdt

∫
ω

a(x)|z0|2dx

≥ β‖χωz0‖2L2(ω),

with β = c

∫ 2

0

e−2tdt > 0.

Then the control

v(t) = −

∫
ω

a(x)|z(x, t)|2dx

1 +

∫
ω

a(x)|z(x, t)|2dx
,

strongly stabilizes the output (3.4) with decay estimate

‖χωz(t)‖L2(ω) = Θ

(
1√
t

)
, as t −→ +∞.

Example 3.3. Consider a system defined in Ω =]0,+∞[, and described by
∂z(x, t)

∂t
= −∂z(x, t)

∂x
+ v(t)Bz(x, t) Ω×]0,+∞[

z(x, 0) = z0(x) Ω,
(3.5)



ON THE STABILIZATION FOR A CLASS OF DISTRIBUTED BILINEAR SYSTEMS ... 37

where Az = −∂z
∂x

with domain D(A) = {z ∈ H1(Ω) | z(0) = 0, z(x) → 0 as x →

+∞} and Bz =

∫ 1

0

z(x)dx. The operator A generates a semigroup of contractions

(S(t)z0)(x) =

{
z0(x− t) if x ≥ t
0 if x < t.

Let ω =]0, 1[ be a subregion of Ω and system (3.5) is augmented with the output

w(t) = χωz(t). (3.6)

We have

Re(
〈
χ∗ωχωAz, z

〉
) = −Re(

∫ 1

0

z′(x)z(x)dx)

= −z
2(1)

2
≤ 0,

so, the assumption 1 of Theorem 2.4 holds. The operator B is compact and verifies〈
χ∗ωχωBS(t)z0, S(t)z0

〉
=

(∫ 1−t

0

z0(x)dx

)2

, 0 ≤ t ≤ 1.

Thus
〈χ∗ωχωBS(t)z0, S(t)z0〉 = 0, ∀t ≥ 0 =⇒ z0(x) = 0, a.e on ω.

Then, the control

v(t) = −

(∫ 1

0

z(x, t)dx

)2

1 +

(∫ 1

0

z(x, t)dx

)2 , (3.7)

weakly stabilizes the output (3.6).

4. Simulations

Consider system (3.5) with z(x, 0) = sin(πx), and augmented with the output
(3.6).
• For ω =]0, 2[, figure 1 shows that the state is stabilized on ω with error equals
3.4× 10−4, and the evolution of control function is given by figure 2.
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Figure 1. The stabilization of the state on ω =]0, 2[.

Figure 2. Evolution of control function.

• For ω =]0, 3[, figure 3 shows that the state is stabilized on ω with error equals
7.8× 10−4 and the evolution of control is given by figure 4.
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Figure 3. The stabilization of the state on ω =]0, 3[.

Figure 4. Evolution of control function.

5. Conclusion

The output stabilization of bilinear systems is discussed. Under sufficient con-
ditions, we give bounded controls depending on the output operator that expo-
nentially, strongly and weakly stabilizes the output of such systems. Numerical
simulations illustrate the efficiency theoretical results. This work gives an opening
to others questions, this is the case of output stabilization of semilinear systems
with bounded controls.
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