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ABSTRACT 
 

In this paper, we introduce three different data transformation approaches such as synthetic data transformation ([1]; [2]; [3]), 

Kaplan-Meier weights ([4]; [5]; [6]) and k-nearest neighbor (kNN) imputation method ([7]) which are commonly used in 

censored data applications. The aforementioned approaches are particularly useful when one deals with censored data. The key 

idea expressed here is to find the smoothing spline estimates for the parametric and nonparametric components of a 

semiparametric regression model with right censored data. The estimation is then carried out based on the modified (or 

transformed) data set obtained via these transformation techniques. In order to compare the outcomes of three approaches in 

semi-parametric regression setting, we carried out a simulation study. According to the results of the simulation, it can be said 

that the Kaplan-Meier weights has been very successful in dealing with censored observations. 
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1. INTRODUCTION 
 

Right-censored data is a common notion that reveals in various applied fields. In general, datasets are 

composed of missing or censored observations for many different reasons such as sudden death, width 

drawn from the study, equipment failure, etc. In statistics literature, it is possible to encounter this type 

of data, especially in medical fields. It can be said that one of the most important problems that disrupts 

the quality of data is censored observations. Moreover, ordinary statistical methods cannot be applied 

directly to these censored data sets.  

 

As indicated before, the focus of this article is to compare the methods used to deal with censored 

datasets. In the semi-parametric regression setting, three different transformation techniques are used to 

deal with censoring observations. After overcoming the censorship problem, the components of the 

semi-parametric regression model defined in the model (1.1) are estimated by smoothing spline method. 

Therefore, three different estimates for the components of the model (1.1) are obtained and a comparison 

of these estimates is also provided in this paper. 

 

Among the data transformation techniques considered in this article, Kaplan Meier weights method is 

proposed by [5] and developed by Stute ([6], [8] and [9]); synthetic data transformation is discussed by 

various authors such as [1], [2] and [3]; the kNN method is proposed [7]. Note also that [10] studied the 

kNN for imputation of microarray data.  

 

Considering the semiparametric regression model 
 

𝑌𝑖 = 𝒙𝑖
𝑇𝛃 + 𝑓(𝑡𝑖) + 𝜀𝑖,   𝑖 = 1, … , 𝑛            (1.1) 

 

where 𝑌𝑖’s are the values of response variable, 𝒙𝑖
𝑇 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) is known p-dimensional 

explanatory variables vector, 𝑡𝑖’s are values of an extra univariate explanatory variable, 𝛃 =

(𝛽1, … , 𝛽𝑝)
𝑇
 is a vector of regression coefficients to be estimated, 𝑓(. ) is an unknown smooth function 
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and 𝜀𝑖′𝑠 are the independent random errors with mean zero and finite variance 𝜎2. In a matrix and vector 

form, the model (1) is described as 

𝐘 = 𝐗𝛃 + 𝐟 + 𝛆       (1.2) 

 

where 𝐘 = (𝑦1, … , 𝑦𝑛)𝑇, 𝐗 = (𝒙1, … , 𝒙𝑝)
𝑇

, 𝐟 = (𝑓(𝑡1), … , 𝑓(𝑡𝑛))
𝑇
 , and 𝛆 = (𝜀1, … , 𝜀𝑛)𝑇. It should 

also be that the first term on the right side of the semiparametric regression model stated in the equation 

(1.2) shows the parametric component (𝐗𝛃), while the second term shows the nonparametric component 

(𝐟). For more details on the model (1.1), see [11] among others 

 

In this paper, our primary interest is in estimating the vector parameter 𝛃 and function 𝑓(. ) in the model 

(1.1) when the 𝑌𝑖’s are observed incompletely and right censored by a random variable 𝐶𝑖, i = 1, 2, . . . , 

n, but 𝒙𝑖
𝑇 and 𝑡𝑖 are observed completely. In this case, instead of observing 𝑌𝑖, we now observe the pair 

of values ( 𝑍𝑖, 𝛿𝑖), i = 1, . . . , n  such that 
 

𝑍𝑖 = min(𝑌𝑖 , 𝐶𝑖) and 𝛿𝑖 = 𝐼(𝑌𝑖 ≤ 𝐶𝑖)     (1.3) 

 

where 𝑍𝑖’s are the values of observed response variable with unknown distribution 𝐾 and 𝛿𝑖’s are the 

values of censoring indicator function that contains the censoring information. If ith observation is 

censored, 𝛿𝑖 = 0 otherwise 𝛿𝑖 = 1. Then, the model (1.2) can be rewritten as follows 

 

𝐙 = 𝐗𝛃 + 𝐟 + 𝛆       (1.4) 

 

where 𝐙 = (𝑧1, … , 𝑧𝑛)𝑇 denotes the values of observed response variable according to censorship. 

Throughout this paper we assume that model (1.4) is considered. To ensure identifiability of the model 

(1.4), we need to make some specification assumptions on the response, censoring and explanatory 

variables and their dependence relationships. For this purpose, we consider the assumptions expressed 

in the study of [6]: 
 

A1. 𝑌𝑖 and 𝐶𝑖 are independent.  

A2. 𝑃(𝑌 ≤ 𝐶|𝑌, 𝑋) = 𝑃(𝑌 ≤ 𝐶|𝑌). 
 

It should be emphasized that Y and 𝐶 also have unknown distributions F and G, respectively. A1 is the 

assumption of a standard independence condition to provide identifiability of the model (4). Assumption 

A2 is required to let for a dependency between explanatory variables and censoring variable 𝐶 

 

This paper organized as follows. Smoothing spline method is introduced in section 2. In section 3, 

solutions for censorship are expressed which are synthetic data transformation, Kaplan-Meier weights, 

kNN imputation methods respectively. In section 4, statistical properties of the estimators are given and 

evaluation measures used for comparison are presented. A simulation study and real data work are 

shown and presented the results in section 5 and 6 respectively. In section 7, promotion of the web 

application is made and usage information is given. Finally, conclusions are presented in section 8. 

 

2. SMOOTHING SPLINES 
 

Smoothing splines is a commonly used method to estimate the vector 𝛃 and the unknown function 𝑓(. ) 

in a semiparametric regression model with right censored data. Let the ordered unique values among 

𝑡1, … , 𝑡𝑛 be denoted by 𝑣1, … , 𝑣𝑞. The connection between 𝑣𝑖’s and 𝑡𝑖’s  also provide a (𝑛 × 𝑞) 

dimensional incidence matrix N with entries 𝑁𝑖𝑗 = 0, if 𝑣𝑗 ≠ 𝑡𝑖 and 𝑁𝑖𝑗 = 1 otherwise (where 𝑖 =

1, … , 𝑛 and 𝑗 = 1, … , 𝑞). Note that the values of 𝑡𝑖 are not identical so that we need focus on 𝑞 ≥ 2.  

Then, fitting a semiparametric model with censored data can make use of a univariate smoothing spline 
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method. Thus, use of a penalized residuals sum of squares approach would lead to choosing the vector 

parameter 𝛃 and function 𝑓(. ) that minimize the criterion ([13]): 

 

𝐿(𝛃; 𝐟) = (𝐙 − 𝐗𝛃 − 𝐍𝐟)𝑇(𝐙 − 𝐗𝛃 − 𝐍𝐟) + 𝜆 ∫ 𝑓′′(𝑡)2𝑑𝑡
𝑏

𝑎
,   (2.1) 

 

for a constant 𝜆 > 0, called a smoothing parameter. The first part in the right hand of the equation (2.1) 

penalizes the luck of fit, whereas the second part ( ∫ 𝑓′′(𝑡)2𝑑𝑡
𝑏

𝑎
) puts a penalty on the roughness of the 

function.  

 

Using properties of the smoothing splines, in the light of Green and Silverman (1994), the penalty term 

∫ 𝑓′′(𝑡)2𝑑𝑡
𝑏

𝑎
 can be defined as 𝐟𝑇𝐊𝐟. Consequently, the penalized criterion in the equation (2.1) can be 

rewritten as 

 𝐿0(𝛃; 𝐟) = (𝐙 − 𝐗𝛃 − 𝐍𝐟)𝑇(𝐙 − 𝐗𝛃 − 𝐍𝐟) + 𝜆𝐟𝑇𝐊𝐟    (2.2) 

where  𝐊 = 𝐐T𝑹−1𝐐 is a (𝑞 × 𝑞) dimensional symmetric and positive definite penalty matrix, 𝐐 and 𝐑 

are tri-diagonal matrices with dimensions (𝑞 − 2) × (𝑞) and (𝑞 − 2) × (𝑞 − 2) respectively. Elements 

of these matrices are given by 

 

𝑄𝑗𝑗 =
1

ℎ𝑗
, 𝑄𝑗,𝑗+1 = − (

1

ℎ𝑗
+

1

ℎ𝑗+1
 ) , 𝑄𝑗,𝑗+2 =

1

ℎ𝑗+1
 

𝑅𝑗−1,𝑗 = 𝑅𝑗,𝑗−1 =
ℎ𝑗

6
,  𝑅𝑗𝑗 = (ℎ𝑗 + ℎ𝑗+1)/3 

 

where ℎ𝑗 = 𝑣𝑗+1 − 𝑣𝑗, 𝑗 = 1, … , 𝑞 − 1. After some algebraic calculations, the smoothing spline 

estimators 𝛃̂ and 𝐟 of the vectors 𝛃 and 𝐟 that minimize the criterion (2.2) can be obtained as follows 
 

𝛃̂ = (𝐗𝑇(𝐈 − 𝐒𝜆)𝐗)−1𝐗𝑇(𝐈 − 𝐒𝜆)𝐙    (2.3) 

and 

𝐟 = 𝐒𝜆(𝐙 − 𝐗𝛃̂)      (2.4)  

 

where 𝐒𝜆 = 𝐍(𝐍𝑇𝐍 + 𝜆𝐊)−1𝐍𝑇 is a positive definite smoothing matrix. If, also, the values of 𝑡𝑖 are 

distinct and already ordered, 𝐍 = 𝐈, and in this case 𝐒𝜆 = (𝐈 + 𝜆𝐊)−1.  
 

Using equations (2.3)-(2.4), the fitted values can be obtained by 
 

𝐙̂ = (𝐗𝛃̂ + 𝐟) = 𝐇𝐙 = 𝐸[𝑍|𝑥, 𝑡]    (2.5) 

for 

𝐇 = 𝐒λ + (𝐈 − 𝐒𝜆)𝐗(𝐗𝑇(𝐈 − 𝐒𝜆)𝐗)−1𝑿𝑇(𝐈 − 𝐒𝜆)    (2.6) 

 

See, Aydin and Yılmaz, (2018) for more detailed discussions.  

 

As mentioned earlier, this article is designed to estimate the observations of the right censored response. 

If the aforementioned observations are directly estimated by the equations (2.3) - (2.4), this situation 

leads to a larger bias in terms of parameter estimates. Therefore, in practice, it is not appropriate to use 

these equations for estimating the components of the semi-parametric model. In this sense, the censoring 

effect should be included in the estimation process. The basic idea is that ono needs to adjust for the 

censoring effect by transforming the data in an unbiased way. To achieve this aim, three transformation 

methods are discussed in the following section. 
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3. DATA TRANSFORMATION TECHNIQUES 

 

The key idea of this section is that in order to handle censored responses one needs to include the effect 

of censored data into the estimation procedure. In this context, to establish the regression model (1.2) 

based on transformed data, we consider three alternative approaches that take censoring into account, 

such as Kaplan-Meier weights, synthetic data and kNN imputation, as expressed in the previous sections.  

 

3.1. Kaplan-Meier Weights 

 

We begin by adapting the smoothing spline method based on censored response observations. To handle 

censored observations we use Kaplan-Meier (K-M) weights discussed in the study of [6]. In the context 

of smoothing spline, the penalized residuals sum of squares minimizing expression in (2.2) is modified 

by the following way  

𝐿1(𝛃; 𝐟) = (𝐙 − 𝐗𝛃 − 𝐍𝐟)𝑇𝑾(𝐙 − 𝐗𝛃 − 𝐍𝐟) + 𝜆𝐟𝑇𝐊𝐟   (3.1) 

 

where 𝐙 = (𝑧(1),…,𝑧(𝑛))′ is a vector that contains the ordered values of observed response variable 𝑍 =

min (𝑌, 𝐶) where 𝐶 is a proper censoring variable, as stated before, 𝐗 is a matrix of parametric 

explanatory variables related to ordered vector 𝐙 , and 𝑾 is a 𝑛 × 𝑛 diagonal matrix that denotes the K-

M weights associated to 𝑍(𝑖). The diagonal elements of this matrix are computed by 

 

𝑤(𝑖) = 𝐹̂(𝑍(𝑖)) − 𝐹̂(𝑍(𝑖−1)) =
𝛿(𝑖)

𝑛−𝑖+1
∏ (

𝑛−𝑗

𝑛−𝑗+1
)

𝛿(𝑖)𝑖−1
𝑗=1    (3.2) 

 

where 𝛿(𝑖) denotes the value of censoring indicator associated with ordered values 𝑍(𝑖)’s. It should be 

emphasized that the K-M weights defined in (3.2) can also be computed as the contribution of Kaplan-

Meier estimator [4] 𝐹̂ of the distribution function 𝐹 of response observations 𝑌𝑖’s at each ordered value 

𝑍(𝑖). 

Hence, the estimators 𝛃̂𝐾𝑀 and 𝐟𝐾𝑀 minimizing the equation (3.1) can be obtained, respectively, 

as 

𝛃̂𝐾𝑀 = (𝐗𝑇(𝐈 − 𝐒𝑊𝜆)𝐖𝐗)−1𝐗𝑇(𝐈 − 𝐒𝑊𝜆)𝐖𝐙         (3.3) 

and 

𝐟𝐾𝑀 = 𝐒𝑊𝜆(𝐙 − 𝐗𝛃̂𝑊)            (3.4) 
 

where 𝐒𝑊𝜆 = 𝐍(𝐍𝑇𝐖𝐍 + 𝜆𝐊)−1𝐍𝑇𝐖 is a smoothing matrix for incidence 𝐍 and the K-M weights 

based on censored observations.  
 

According to the equations (3.3)-(3.4), the fitted values of censored response variable can be calculated 

as follows 

𝐙̂𝐾𝑀 = (𝐗𝛃̂𝑊 + 𝐟𝑊) = 𝐇𝐾𝑀𝐙 = 𝐸[𝑍|𝑥, 𝑡]               (3.5) 

for 

𝐇𝐾𝑀 = 𝐒𝑊𝜆 + (𝐈 − 𝐒𝑊𝜆)𝐗[𝐗′(𝐈 − 𝐒𝑊𝜆)𝐖𝐗]−𝟏𝐗′𝐖(𝐈 − 𝑺𝑊𝜆 ) (3.6) 
 

As can be seen herein, the smoothing parameter 𝜆 plays a critical role for estimating the vectors 𝛃 and 𝐟. 

For these purposes, the improved version of the Akaike information criterion (𝐴𝐼𝐶𝑐) proposed by [12] 

is used, given by  
 

𝐴𝐼𝐶𝑐(𝜆) = 1 + log[‖(𝐒𝜆 − 𝐈)𝐙‖2/𝑛] + [{2𝑡𝑟(𝐒𝜆) + 1} 𝑛⁄ − 𝑡𝑟(𝐒𝜆) − 2]. (3.7) 

 

Hence, the value of 𝜆 that minimizes the 𝐴𝐼𝐶𝑐 is determined as optimum smoothing parameter. 
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3.2. Synthetic Data 
 

The main problem in the case of censored data is that the observed variable 𝑍 and the variable of interest 

𝑌 does not have the same expectation value. In order to provide this, we will use some unbiased 

transformation based on (𝑍, 𝛿 ). In general, this transformation procedure in an unbiased way is referred 

to as the synthetic data approach (see, [14]). Also, several transformation approaches in the literature 

are discussed by authors including [1], [2]. In this study, we consider the transformation suggested by 

[2], which is given by 

𝑍𝑖𝐺 =  
𝛿𝑖𝑍𝑖

1−𝐺(𝑍𝑖)
=

𝛿𝑖𝑍𝑖

𝐺̅(𝑍𝑖)
      (3.8) 

 

where 𝐺 is the distribution function of censoring variable 𝐶, as defined in assumption A2. However, in 

practical applications, 𝐺 is unknown, and therefore transformation stated in (3.8) can not be calculated 

without estimating the distribution 𝐺. To overcome this problem, Koul et al., (1981) suggested replacing 

𝐺 in (3.8) by its Kaplan–Meier estimator [4] 𝐺, given by 

𝐺(𝑡) = 1 − ∏ (
𝑛−𝑖

𝑛−𝑖+1
)

𝐼[𝑍(𝑖)≤𝑠,𝛿(𝑖)=0]
𝑛
𝑖=1 , (𝑡 ≥ 0)    (3.9) 

 

where (𝑍(𝑖), 𝛿(𝑖)), 𝑖 = 1,2, … , 𝑛 are the ordered observations of (𝑍(𝑖), 𝛿(𝑖)) ordered on the  𝑍(𝑖). That is, 

𝑧(1) ≤ 𝑧(2) ≤, … , ≤ 𝑧(𝑛) are the ordered observations of 𝑍 and 𝛿(𝑖) is the censoring indicator associated 

with 𝑍(𝑖).  
 

Since statistical inferences for the parametric and nonparametric components of the semiparametric 

regression model expressed in (1.1) or (1.2) based on transformed data (𝑍𝐺 , 𝑋, 𝑡), the basic requirement 

is that 𝐸(𝑍𝐺|𝑋, 𝑡) = 𝐸(𝑌|𝑋, 𝑡) = 𝑋𝛃 + 𝐟, ensuring that we estimate right components ([13]). 

Accordingly, we employ the transformed data (𝑍𝐺 , 𝑋, 𝑡) instead of (𝑌, 𝑋, 𝑡) to estimate the parameters 

𝛃 and the function 𝑓(. ) can be estimate based on smoothing spline.  

 

Using the equations (2.3)-(2.4), and replacing 𝐙𝐺  by  𝐙, leads to the following smoothing spline 

estimators ( 𝛃̂𝑆𝐷 and 𝐟𝑆𝐷) based on synthetic data (SD) of (𝛃 and 𝐟 ), respectively, as 

 

𝛃̂𝑆𝐷 = (𝐗𝑇(𝐈 − 𝐒𝜆)𝐗)−1𝐗𝑇(𝐈 − 𝐒𝜆)𝐙𝐺̂   (3.10) 

and 

𝐟𝑆𝐷 = 𝐒𝜆(𝐙𝐺 − 𝐗𝛃̂𝐺̂)       (3.11) 

 

where 𝐒𝜆 is the spline smoother matrix, as defined in (2.4). Note also that in equations (3.10)-(3.11), 

𝐙𝐺  denotes the estimated SD vector. In other words, 𝐙𝐺 = (𝑧1𝐺 , … , 𝑧𝑛𝐺) =
𝛿𝑖𝑍𝑖

1−𝐺̂(𝑍𝑖)
= 𝑍𝑖𝐺. Hence, 

according to the equations (3.10)-(3.11), the fitted values based on synthetic data can be obtained as  

 

𝐙̂𝑆𝐷 = (𝐗𝛃̂𝐺 + 𝐟𝐺) = 𝐇𝑆𝐷𝐙𝐺̂ = 𝐸[𝑍|𝑥, 𝑡]    (3.12) 

for 

𝐇𝑆𝐷 = 𝐒𝜆 + (𝐈 − 𝐒𝜆)𝐗[𝐗′(𝐈 − 𝐒𝜆)𝐗]−𝟏𝐗′(𝐈 − 𝑺𝜆 )   (3.13) 

 

3.3. k-NN Imputation 

 

In this section we consider the use of k-NN imputation algorithm to estimate and substitute censoring 

data. The main idea behind using k-NN is that censoring values in a sample can be imputed (or 

approximated) by using values computed from the k-NN method. It should be noted that in this method, 

a censoring value is imputed by either a value measured for the neighbor or the average of measured 

values for multiple neighbors. Some important benefits of this technique are:  
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 Method is a free technique from distribution. This feature provides an important advantage 

for dealing with data that does not fit any distribution family.  

 Right-censored data points are filled with actual observations, not synthetic or constructed values. 

 Unlike synthetic data transformation and K-M weights, the k-NN method uses explanatory 

variables to provide additional information in completing censored data points.  

 One of the most important properties of k-NN imputation is completely nonparametric method 

and it does not include any assumptions about the relationship between observation pairs 

(𝑋𝑖 , 𝑌𝑖) or (𝑋𝑖, 𝑍𝑖), 𝑖 = 1, … , 𝑛.   
 

The k-NN method can work with discrete and continuous variables. It uses most frequently used data 

point among k-closest neighbors. For continuous attributes, it uses the average value of k- closest 

neighbours. In this study, Minkowski norm, which is a distance measurement, is used to evaluate the distance 

between the related observation and neighbors. The distance measure expressed this norm is given by  

𝑑𝑀(𝑋, 𝑌) = (∑ |𝑋𝑖 − 𝑌𝑖|𝑝𝑛
𝑖=1 )

1

𝑝   (3.14) 
 

Note that Minkowski distance is also known as a p-norm and it turns into Euclidean distance when 𝑝 = 2 

and Manhattan distance when 𝑝 = 1. Here, Euclidean distance is used to decide similarity between 

instances. 
 

Table 2. Algorithm for k-NN imputation method 
 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝟏:  k-NN imputation for right censored data 

𝐈𝐧𝐩𝐮𝐭: Right − censored data set 𝑆 
 Censoring indicator 𝛿i associated with 𝑆 
Number of nearest neigbours 𝑘 
Values of predictor variable 𝑥𝑖  related with 𝑆 
𝐎𝐮𝐭𝐩𝐮𝐭: Imputed dataset 𝐲𝑘𝑛𝑛 

 1  𝐛𝐞𝐠𝐢𝐧 

2  𝐟𝐨𝐫 (𝑖 = 1 to 𝑛) do 

3       𝐢𝐟(𝛿𝑖 = 0) 𝐝𝐨  (if data point is censored) 

4              𝐟𝐨𝐫(𝑗 = 1 to 𝑛) do 

5                    Find the distances  between 𝑥𝑗𝑎𝑛𝑑𝑥𝑖for each censored data point with (3.14) 

6       Sort the distances from small to large 

7       𝐟𝐨𝐫 (𝑗 = 1 to 𝑘) do 

8             Take the first 𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 𝑘 − values of 𝑧𝑖  associated to sorted distances  

9             Calculate the 𝑖th imputed value (𝑦𝑖
𝑘𝑁𝑁) with average of nearest 𝑘 − records of 𝑦𝑖  

10Replace the imputed values    (𝑦𝑖
𝑘𝑁𝑁)     with censored data points (𝑧𝑖 , 𝛿𝑖 = 0) in censored data set 𝐳 =

(𝑧1, … , 𝑧𝑛) 

11 Return 𝐘𝑘𝑁𝑁 = (𝑦1
𝑘𝑁𝑁 , … , 𝑦𝑛

𝑘𝑁𝑁)𝑇 

12 𝐞𝐧𝐝 
 

As stated in the previous section, using the equations (2.3)-(2.4) and changing 𝐘𝑘𝑁𝑁 by  𝐙, we obtain 

the smoothing spline estimators 𝛃̂𝑘𝑁𝑁 and  𝐟𝑘𝑁𝑁, based on k-NN imputation method, respectively, as  
 

𝛃̂𝑘𝑁𝑁 = (𝐗𝑇(𝐈 − 𝐒𝜆)𝐗)−1𝐗𝑇(𝐈 − 𝐒𝜆)𝐘𝑘𝑁𝑁                   (3.15) 

and 

𝐟𝑘𝑁𝑁 = (𝐍𝑇𝐍 + 𝜆𝐊)−1𝐍𝑇(𝐲𝑘𝑛𝑛 − 𝐗𝛃̂𝑘𝑁𝑁)     (3.16) 

 

From the equations (3.15)-(3.16), the fitted values on k-NN imputation can be computed as 
 

𝐘𝑘𝑁𝑁 = (𝐗𝛃̂𝑘𝑁𝑁 + 𝐟𝑘𝑁𝑁) = 𝐇𝑘𝑁𝑁𝐘𝑘𝑁𝑁 = 𝐸[𝑍|𝑥, 𝑡]   (3.17) 

for 

𝐇𝑘𝑁𝑁 = 𝐒𝜆 + (𝐈 − 𝐒𝜆)𝐗[𝐗′(𝐈 − 𝐒𝜆)𝐗]−𝟏𝐗′(𝐈 − 𝑺𝜆 )                 (3.18) 
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4. STATISTICAL PROPERTIES OF THE ESTIMATORS 
 

This section provides the some statistical properties of the estimators explained herein. To see the 

calculations of each estimator, we first expand 𝛃̂𝐾𝑀 in Equation (3.3) by the matrix and vector form of  

𝐘 = 𝐗̃𝛃 + 𝐟 + 𝛆̃ such that  
 

𝛃̂𝐾𝑀 = (𝐗𝑇𝐖𝐗̃)
−1

𝐗𝑇𝐖𝐘 = 𝛃 + (𝐗𝑇𝐖𝐗̃)
−1

𝐗𝑇𝐖𝐟 + (𝐗𝑇𝐖𝐗̃)
−1

𝐗𝑇𝐖𝛆̃   (4.1) 

 

where 𝐘 = (𝐈 − 𝐒𝑊𝜆)𝐙,  𝐗̃ = (𝐈 − 𝐒𝑊𝜆)𝐗, 𝐟 = (𝐈 − 𝐒𝑊𝜆)𝐟, and 𝛆̃ = (𝐈 − 𝐒𝑊𝜆)𝛆 . Accordingly, the bias 

and variance-covariance matrix of the estimator (4.1) can be expressed, respectively, as 
 

𝐵𝑖𝑎𝑠( 𝛃̂𝐾𝑀) = 𝐸( 𝛃̂𝐾𝑀) − 𝛃 = (𝐗𝑇𝐖𝐗̃)
−1

𝐗𝑇𝐖𝐟      (4.2) 

𝑉𝑎𝑟( 𝛃̂𝐾𝑀) = σ2(𝐗𝑇𝐖𝐗̃)
−1

𝐗𝑇𝐖(𝐈 − 𝐒𝑊𝜆)2𝐗(𝐗𝑇𝐖𝐗̃)
−1

                 (4.3) 
 

In a similar manner, expanded form of the 𝛃̂𝑆𝐷 in (3.10) is 
 

𝛃̂𝑆𝐷 = (𝐗𝑇𝐗̃)
−1

𝐗𝑇𝐘 = 𝛃 + (𝐗𝑇𝐗̃)
−1

𝐗𝑇𝐟 + (𝐗𝑇𝐗̃)
−1

𝐗𝑇𝛆̃   (4.4) 

 

where 𝐘 = (𝐈 − 𝐒𝜆)𝐙𝐺 and 𝐗̃ = (𝐈 − 𝐒𝜆)𝐗. According to these ideas, the bias and variance of the 

estimator 𝛃̂𝑆𝐷 in (4.4) can be defined, respectively, as  
 

𝐵𝑖𝑎𝑠( 𝛃̂𝑆𝐷) = 𝐸( 𝛃̂𝑆𝐷) − 𝛃 = (𝐗𝑇𝐗̃)
−1

𝐗𝑇𝐟      (4.5) 

𝑉𝑎𝑟( 𝛃̂𝑆𝐷) = σ2(𝐗𝑇𝐗̃)
−1

𝐗𝑇(𝐈 − 𝐒𝜆)2𝐗(𝐗𝑇𝐗̃)
−1

      (4.6) 

 

Finally, as defined in the above statements, the estimator 𝛃̂𝑘𝑁𝑁 based on k-NN imputation, given in 

(3.15), can be expanded as follows   
 

𝛃̂𝑘𝑁𝑁 = (𝐗𝑇𝐗̃)
−1

𝐗𝑇𝐘̃ = 𝛃 + (𝐗𝑇𝐗̃)
−1

𝐗𝑇𝐟 + (𝐗𝑇𝐗̃)
−1

𝐗𝑇𝛆̃   (4.7) 
 

where 𝐘 = (𝐈 − 𝐒𝜆)𝐘𝑘𝑁𝑁 and 𝐗̃ = (𝐈 − 𝐒𝜆)𝐗 . Hence, the bias and variance–covariance matrix of the 

estimator 𝛃̂𝑘𝑁𝑁 stated in (4.7) are  

𝐵𝑖𝑎𝑠( 𝛃̂𝑘𝑁𝑁) = 𝐸( 𝛃̂𝑘𝑁𝑁) − 𝛃 = (𝐗𝑇𝐗̃)
−1

𝐗𝑇𝐟     (4.8) 

𝑉𝑎𝑟( 𝛃̂𝑘𝑁𝑁) = σ2(𝐗𝑇𝐗̃)
−1

𝐗𝑇(𝐈 − 𝐒𝜆)2𝐗(𝐗𝑇𝐗̃)
−1

      (4.9) 
 

As can be seen from the equations stated above, the variance matrices are not practical due to the quantity 

of unknown σ2. Therefore, we only need to derive the estimate of σ2  in order to construct the 

aforementioned variance-covariance matrices. As in linear regression analysis, an estimate of variance 

can be computed by residual sum of squares (RSS) 
 

𝑅𝑆𝑆 = (𝐙 − 𝐇λ𝐙)𝑇(𝐙 − 𝐇𝜆𝐙) = ‖(𝐈 − 𝐇𝜆)𝐙‖2   (4.10) 

 

where 𝐇λ𝐙 = 𝐙̂ is the fitted values for censored response observations, and 𝐇𝜆 is the hat matrix obtained 

from smoothing spline based on any data transformation data technique. Hence, the estimate of 2  can 

be obtained as 

𝜎̂2 =
𝑅𝑆𝑆

𝑡𝑟𝑎𝑐𝑒(𝐈−𝐇𝜆)2 =
‖(𝐈−𝐇𝜆)𝐙‖2

𝑛−2×𝑡𝑟𝑎𝑐𝑒(𝐇𝜆)−𝑡𝑟𝑎𝑐𝑒(𝐇𝜆
𝑇×𝐇𝜆)

   (4.11) 

 

where𝑡𝑟𝑎𝑐𝑒(𝐈 − 𝐇𝜆)2 is called as degrees of freedom (df). It should be emphasized that if we use the 

K-M weights method, the computation of 𝐇𝐾𝑀 stated in (3.6) instead of 𝐇𝜆 pointed in equations (4.10) 
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and (4.11) is needed. In a similar fashion, when we adopt the synthetic data and k-NN method, we need 

to compute the 𝐇𝑆𝐷 in (3.13) and 𝐇𝑘𝑁𝑁 in (3.18) matrices, respectively.  

 

Especially in simulation experiments, to evaluate the outputs and make inferences about parametric 

component of the model, bias and variances of estimators stated in this study are illustrated in equations 

(4.2-4.3), (4.5-4.6) and (4.8-4.9). Also, variance of the model in terms of errors is given in (4.11). In 

addition to ideas, to measure performance of the nonparametric component of the model, the mean 

square error (MSE) is used that can be calculated as follows 

 

𝑀𝑆𝐸 = 𝑛−1 ∑ (𝑓(𝑡𝑖) − 𝑓(𝑡𝑖)
2𝑛

𝑖=1     (4.12) 
 

5. SIMULATION STUDY 

 

A Monte Carlo simulation study is conducted to indicate the impact of censoring and to assess the finite 

sample behaviours of the estimators based on three data transformation approaches. In our context, we 

first generate dataset (𝑌𝑖 , 𝐱𝑖 , 𝑡𝑖) from the following semiparametric regression model  

 

𝑌𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝑓(𝑡𝑖) + 𝜀𝑖 ,   𝑖 = 1, … , 𝑛      (5.1) 

 

where 𝐱𝑖 = (𝑥1𝑖, 𝑥2𝑖, 𝑥3𝑖) is generated from uniform distribution, 𝛃 = (−2, 0.5, 3)𝑇, the 

nonparametric function 𝑓(𝑡𝑖) is obtained by 𝑓(𝑡𝑖) = 𝑡𝑖 sin(𝑡𝑖), where 𝑡𝑖 = 10(𝑖 − 0.5) 𝑛⁄ , and 

𝜀𝑖~𝑁(0, 𝜎2). Censoring variable 𝐶𝑖 is determined by normal distribution with censoring levels (C.L) at 

5%, 20%, and 40%. The censoring indicator is then defined as  𝛿𝑖 = 𝐼(𝑌𝑖 ≤ 𝐶𝑖) and the observations of 

censored response variable are created as 𝑍𝑖 = min(𝑌𝑖 , 𝐶𝑖). For each C.L in simulation experiments, we 

generated 1000 random samples of size 𝑛 = 75, 150, and 200. 

 

5.1. Evaluation of Parametric Component  
 

Estimates of 𝛃 = (−2, 0.5, 3)′s constructing the parametric components of the model (5.1) are 

summarized in the following tables and figures for each censoring levels and samples. The basic 

outcomes from the simulation experiments are summarized in Table 1.   
 

Table 1 shows the averaged biases and variances of parametric coefficients and variances of errors 

obtained from smoothing spline estimators based on tree data transformations techniques.    As can be 

seen from the Table 1, the best scores obtained from estimators are marked with bold color. Clearly, the 

estimator based on K-M weights has smaller bias, while the estimator based on SD has larger bias for 

all simulation configurations. From the Table 1, we also conclude that the estimator using K-M weights 

performs reasonably well with all sample size and censoring levels at 20% and 40% considered in terms 

of small bias and accurate inference based on parametric components of the model (5.1).  
 

Table 1. Assessment of statistical estimations related to the parametric regression coefficients 
 

    SD K-M k-NN 

C.L 

(%). 
n 𝐵𝑖𝑎𝑠(𝛽̂) 𝑉𝑎𝑟(𝛽̂) 𝜎̂2 𝐵𝑖𝑎𝑠(𝛽̂) 𝑉𝑎𝑟(𝛽̂) 𝜎̂2 𝐵𝑖𝑎𝑠(𝛽̂) 𝑉𝑎𝑟(𝛽̂) 𝜎̂2 

5 

75 0.4826 0.3746 0.3745 0.3648 0.1996 0.4480 0.4579 0.3264 0.3301 

150 0.3318 0.1684 0.3666 0.2497 0.0915 0.3305 0.3178 0.1519 0.3250 

200 0.2755 0.1262 0.3392 0.2080 0.0670 0.3620 0.2677 0.1123 0.3002 

20 

75 0.8114 1.0423 1.0500 0.4120 0.2463 0.6542 0.6549 0.6626 0.6686 

150 0.5505 0.4740 1.0395 0.2712 0.1111 0.5462 0.4352 0.3039 0.6540 

200 0.4726 0.3491 0.9644 0.2293 0.0807 0.5007 0.3727 0.4128 0.6082 

40 

75 1.2688 2.3278 2.3824 0.5100 0.3472 0.9356 0.7632 0.8895 0.9435 

150 0.8350 1.0869 2.3518 0.3492 0.1525 0.8929 0.5135 0.4128 0.8980 

200 0.7258 0.7925 2.2147 0.3062 0.1107 0.7869 0.4457 0.3054 0.8293 
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In addition to the ideas given above, the k-NN has some good results for variance of the model with low 

censoring level, but when the censorship level is high, the K-M weights method gives better results. 

Note also that the SD has the worst performance scores in estimating the parametric component. Some 

common characteristics of three methods can be listed as follows: For larger sample sizes and lower 

censoring levels, the data transformation approaches work better, while the approaches perform worse 

for higher censoring levels and smaller samples.  
 

Figure 1 shows different box plots displayed in the two panels. In each panel, “SD(5%), K-M(5%), and k-

NN(5%) demonstrate the parametric biases of 𝛃̂ from the semiparametric regression using smoothing spline 

based on data transformed by SD, K-M, and k-NN methods for censoring level at 5% and samples of size 

n=75 and 200, respectively. Similarly, the remaining box plots denote the parametric biases, but for censoring 

levels at 20% and 40%, respectively. The ordinate indicates the scale of the biases of regression coefficients. 
 

  
Figure 1. Boxplots of estimated regression coefficients for all censoring levels and samples of size n=75 and 200. 

 

The results presented in Figure 1 are consistent with the results in Table 1. As shown in Figure 1, the 

two panels have similar box plots, but the boxes in the right panel represent values smaller biases than 

those in the left panel. The K-M weight method always has boxes that are narrower than others. In both 

panels, the SD does not perform well, especially at the high censoring level 40%. From the results of the 

parametric component of the semiparametric regression model, it can be said that the smoothing spline 

method can solve the censoring regression problems better by applying the K-M instead of applying the 

k-NN and SD methods to transform data. Furthermore, when the data are heavily censored (i.e., 40%), it 

seems that the variances from the K-M and k-NN methods remain stable, while the variance values 

obtained by the SD increase. 
 

5.2. Evaluation of Nonparametric Component  
 

As in the parametric components, we obtained 1000 estimates of the function 𝑓, which is the 

nonparametric part of model (5.1). In this context, 1000 replications are performed for each data 

transformation techniques and the MSE values are computed by (4.12) for each techniques and 

corresponding each 𝑓(. ) under the different censoring levels. The findings are summarized in Table 2. 

 

According to Table 2, the K-M weights method gives the best performance to estimate the non-

parametric component. In addition, at medium and high censorship levels, the K-M weights are 

significantly lower than the other two methods. In addition, the k-NN method has the worst performance 

in estimating the non-parametric component. 
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Table 2. Outcomes from the nonparametric component 
 

C.L.(%) n SD K-M k-NN  

5 

75 1.2615 1.0461 1.2888 

150 1.1231 1.0192 1.1545 

200 1.0828 1.0090 1.1279 

20 

75 2.1807 1.1377 2.3944 

150 1.5267 1.0418 1.9642 

200 1.3771 1.0296 1.9047 

40 

75 4.0265 1.3021 4.5609 

150 2.2942 1.1301 4.0157 

200 2.0365 1.1083 3.8744 

 

In our simulation study, because 27 different configurations are carried out, it is very hard to illus­trate 

all of them. Therefore, only four different configurations will be presented in Figure 2. The panels in 

this figure represent the smoothed curves together with a real function 𝑓(𝑡). In each graph, the smoothed 

curves, 𝑓(𝑆𝐷), 𝑓(K-M), and 𝑓(𝑘𝑁𝑁), respectively, are estimates of 𝑓(𝑡) using smoothing spline based 

on SD, K-M, and k-NN approaches for different censoring levels and sample size. 

 
Figure 2. Fitted curves obtained from three methods for low (5%) and high (40%) censoring levels for all sample sizes. 

 

The two upper panels are obtained by the same sample of size n = 75 to denote how the fitted curves are 

affected by the different censoring rates. From the Figure 2 we observe that k-NN (green line) is highly 

influenced by censored observations in the response variable. In the contrast, the K-M weights method 

gives a fitted curve really close to the real function for all simulation configurations. Of these methods, 

the SD displays quite poorly performance in estimating function 𝑓(𝑡𝑖). Note also that the fitted values 

gives a smoother curve than the small ones, especially for large sample sizes. 

 

6. CONCLUSIONS AND RECOMMENDATIONS 
 

In this paper, three common methods, SD, K-M weights and k-NN valuation method, were used to deal 

with right censored data and to see their contribution to the estimation procedure of the components of 

a semiparametric regression model with censored data. A Simulation study was conducted to compare 

the performance of these three methods. From the simulation results, the K-M weights method provides 
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better performance than the other two methods in terms of estimating both components of the 

semiparametric model.  

 

A detailed assessment of the simulation results provides the significant findings for these data 

transformation methods. Specifically, the K-M weights method provides satisfactory performance for 

different simulation configurations, especially at high censoring levels. In this context, the K-M is 

followed by k-NN and SD methods, respectively, in terms of performance ranking. Conceptually, 

because the censoring values are given zero, and the expected values of real and censored responses will 

be different. However, the SD method only changes the non-censored response values to ensure that the 

actual (𝑌𝑖) and censored responses (𝑌𝑖𝐺) are equal in terms of the expected value, {𝐸(𝑌𝑖|𝑥𝑖 , 𝑡𝑖) ≅
𝐸(𝑌𝑖𝐺|𝑥𝑖, 𝑡𝑖)} (also, see Koul et al., 1981). Probably, the main reason for the failure of the SD method 

compared to others may be that it only changes the observations of non-censored observations. When 

data points are inspected individually, it can be realized that synthetic data points are highly different 

from original response values.  

 

In summary, the outcomes of this study show that one way to overcome the right-censored problems is 

to use the K-M weight method in semiparametric regression setting. In addition, k-NN valuation method 

can be used for low censoring levels. It should be noted that only simulation studies are conducted in 

this paper. To provide general validation of the results, the simulation study can be expanded and some 

real data sets can be applied. 
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