
ESKİŞEHİR TECHNICAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY  

A- APPLIED SCIENCES AND ENGINEERING 

 
2019, Vol: 20, pp. 41 - 48, DOI: 10.18038/estubtda.631060 
 

*Corresponding Author: abkilic@eskisehir.edu.tr 
Received: 04.10.2019     Published: 16.12.2019 

 

 

THE STRUCTURE’ VORTEX OF CONDENSED GAS IN TRAPPED CLOUD  

 

Utku KAYA
1
, Abidin KILIÇ

2*
  

 
1 Program in Railroad Electric and Electronics Tech, Eskisehir Technical University, Eskisehir, Turkey 

2 Physics Department, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey 

 

ABSTRACT 

 
Bose-Einstein condensation, which has a very low particle density and a highly complex quantum structure, has been 
experimentally proven to date for rubidium, sodium, lithium, hydrogen, metastable helium, cesium and chromium atoms. Due 
to the differences between the properties and binary interactions of these atoms, experimental studies on condensation have 
found many impressive results. The structure of a vortex in a trapped environment and the factors affecting it were investigated 
in this study. Angular Momentum was calculated using Thomas-Fermi Approach. 
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1. INTRODUCTION 

 

The Bose-Einstein concentration, first proposed by Einstein in 1925 for the first time, was observed 

experimentally in 1995 in the rubidium, sodium and lithium alkali atoms. Bose-Einstein estimates that 

condensation is for particles that do not interact under certain temperatures. A phase transition will occur 

with each other by condensing the macroscopic distribution of the gas. 
 

At the center of the atomic cloud of the Bose-Einstein condensate, the particle density is in the order of 

1013-1015 cm-3. This can be interpreted as the dilution of the Bose-Einstein condensation when compared 
to the density of air molecules at room temperature and atmospheric pressure, 1019 cm-3. In systems with 

such low density, the temperature must be in the order of 10-5 K for the quantum phenomenon to be 

examined. 
 

Bose-Einstein condensate has been experimentally obtained to date for rubidium, sodium, lithium, 

hydrogen, metastable helium, cesium and chromium atoms. Due to the differences between the 

properties of these atoms and their binary interactions, many impressive results have been obtained from 
experimental studies on condensation. When nuclear and electronic spin rates are included in the system, 

the system content is richer [1]. 

 

2. FORMALISM 

 

Bose-Einstein gas properties that do not interact with each other in the trap can be determined by 

statistical mechanics. The Bose distribution function is given by 
 

       (1) 

for the thermal balanced uninterrupted bosons, where the average number of settlements of the single-

particle state  is the single-particle state energy  for a given trapped potential. For a free particle 
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in a given 3-dimensional internal state, there is an average state in each volume (2h)3 of the phase 

space. The momentum space region, which is less than the p momentum, has a cubic volume ( ) 

with a p radius, since it is the energy of the particle with momentum  is given by , the 

total number of states  with lower energies than the energy is given by 

 

     (2) 

where V is the volume in this system.  
 

The number of states between  and energetic levels is usually given by  the state density: 

 

         (3) 

The  transition temperature can also be defined as the maximum temperature at which the 

macroscopic settlement occurs in the lowest-energy state. The number of particles in excited levels is 
given by 

        (4) 

When , it takes its maximum value. The transition temperature is when examined for the case 

where the total number of particles is in the evoked levels:  
 

      (5) 

The number density ( ) defined as the number of particles per unit volume for uniform Bose 

gas in the V volume three-dimensional box can be expressed by the Equation (6). 
 

      (6) 

the number of particles in the excited levels below the transition temperature, as in Equation (4) 

( ): 

       (7) 

For particles ( ) in the three-dimensional box, the number of excited particles  in the unit 

volume is given by Equation (7): 
 

       (8) 

Utilizing the thermodynamic properties of the ideal Bose gas, energy, entropy and other properties of 

condensed phase, can be determined. Since the number of basal augmentations and the interactions 
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between particles are low in the temperatures below, the chemical potential is lifted off and the 

internal energy is given by 
 

   (9) 

The specific heat  is therefore given by; 
 

         (10) 

The intrinsic heat is also found Equation (11), because it can be expressed by using the term entropy S 

by : 

        (11) 

It should be noted here that under  temperature, energy, entropy and specific heat are not dependent 

on the total number of particles. 
 

When these results are examined in the classical limit, the result that the Bose-Einstein distribution 
transforms into the Boltzmann distribution at high temperatures is reached. The total number of particles 

and energy is Equation (12) and Equation (13) in this case: 
 

       (12) 

       (13) 

In the case of full condensation, all bosons are at the same  single-particle level, and for this reason 

the wave function is given by  
 

       (14) 

for the system consisting of N particles. If the single-particle wave function is normalized and written 
energy, then  
 

    (15) 

is found. By equating the  variation to zero according to , the time-independent Gross-

Pitaevski equation in the form of  
 

     (16) 

is reached [2]. 
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3. DYNAMICS OF CONDENSATION 

 

The continuity equation is derived to understand the nature of the velocity of the condensate. When the 

time-dependent Gross-Pitaevski equilibrium is multiplied by , the complex conjugate of the 

equation obtained is subtracted and 

      (17) 

result is reached. This is the same as that obtained from the linear Schrödinger equation because the 

nonlinear potential in the Gross-Pitaevski equation is the reel. 

 
4. ROTATING CONDENSATION 

 

One of the properties of superfluidity is the response to rotation. In addition, for charged superfluids, 

the response to the magnetic field is also a evidence. One of the important properties of superfluids is 
the result of the forced movements that occur due to the rate of coagulation being proportional to the 

gradient of the phase of the wave function. The speed of a condensate is the gradient of the  scalar: 

 

         (18) 

This equation is one of the consequences of the condensation's possible actions, affecting many features 

of the condensation. 

 

In general, the condensate wave function is monovalent. The change in  in the wave function phase 

around a closed contour must be a multiple of . Or it must have  
 

        (19) 

 conditions, an integer l. Thus,  circulation around a closed contour: 

        (20) 

Equation (20) shows that the circulation is quantized with h/m. The value of the quantum circulation is 

about 
 
m2 s-1, which A is the mass number. As a simple example of such a flow, a 

completely azimuthal flow in the invariant trap under rotation around the axis can be considered. In 

order to provide a single valued condition, the condensation wave function  must be changed to  

with the azimuthal angle. In order to satisfy the condition of being a mono-valued condition, the 

condensate wave function must be changed by . Here  is azimuth angle. 


 is the distance from the axis of the trap, velocity equation; 

 

         (21) 

is reached. The angular momentum per particle is not quantized, but the circulation of the other levels 
is quantized. The generalized state is  
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        (22) 

where  is for the level having the vortex extending along the z-axis. Where  is the two-

dimensional Dirac delta function in the 
 
plane, and  and  are the unit vector in the z 

direction. When there are a large number of vortices, the right side of the above equation is the sum of 
the two-dimensional delta functions on the perpendicular surfaces in the direction of the vortex line. The 

intensity of the delta function is a vector oriented along the vortex line, and the value is equal to the 

value of the circulation associated with the vortex [3]. 

If the wave function for the trap with axial symmetry is , the wave function of the condensation is  

        (23). 

in the spherical polar coordinates.  is a real number. Equation (15) uses for the energy value: 

    (24) 

The difference between the energy obtained from Equation (24) and the energy obtained when the phase 

is not dependent on the position of the condensation is the addition of the term . This leads to a 

 increase in the kinetic energy density and is a result of the azimuthal 

movement of the condensate. The value of the amplitude of the vortex wave function can be obtained 

from the Gross-Pitaevski equation in Equation (16): 
 

   (25) 

5. VORTEX IN UNIFORM MEDIUM 

 

When the infinite mean of the uniform potential  is taken into account, the wave function in 

the base state is not dependent on z, and therefore the derivatives related to z are off. For distances 

farther distally, the radial derivative and the centrifugal barrier in the form of  lose their 

significance and therefore the value of the choke wave function becomes . The 

derivative and centrifugal superposition dominates near the axis and the appropriate solution on the axis 

behaves like  in a free particle with unit angular momentum in two dimensions. The terms in the 

Gross-Pitaevski equation in Equation 25 show that, in the course of the distance from the axis to a certain 
distance, the transition between the two states occurs. For this reason, it is possible to scale the lengths 

taking advantage of a certain length of  [3]: 
 

         (26) 

Where  is the intensity in the distant regions of the vortex.  is the amplitude of the vortex 

wave function in distant regions from the vortices, and .  is the energy density when 
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       (27) 

Gross-Pitaevski's expression in Equation (27) 
 

       (28) 

 is found [4].  

Another magnitude that must be taken into account for calculating the energies of the annulus is the 

extra energy that represents the energy of the particle and the enthalpy of the same number in uniform 
level. The  energy in the unit length of the vortex is: 
 

      (29) 

The number of particles per unit length is 

( )  −−==

b b
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22 22        (30) 

Thus, the uniform system has a unit-length energy  

      (31) 

The energy  at unit length pertaining to the vortex is the difference between Equations 28 and 30: 

 (32) 

The above expression is found in  

         (33) 

when it is used in the numerical solution of the Gross-Pitaevski equation. This result was obtained by 

Ginzburg and Pitaevski in the phenomenological theory of liquid 4He around T . The mathematical 

form of the theory is identical to the Gross-Pitaevsky theory for zero temperature coherence; but the 

physical appearance of constants is different. Equation (32) can be used as a basis for the variational 

solution of the vortex wave function. In general, the energy is minimized by using the test form for f , 

taking into account the parameters of the test function. When the trial wave function at source [4] is 

used, the result  
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is reached. 
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The correct results are achieved for both small and large length values, with a  being the optimum value 

of 2.   the chemical potential is kept constant. As in Equation (32), the vortex energy is equal to the 

minimization of NE − . Where E is the total energy. ( ) ( ) /497,1ln/2 bmn=  is a value close to the 

original result in the form of variant 2= . According to the chatter wave function in Equation (23), 

each particle carries one unit of angular momentum and is therefore given by the total angular 
momentum 

=L            (35) 

in the unit length. 

 

6. VORTEX IN A TRAPED CLOUD 

 

The vortex energy in the Bose-Einstein condensate cloud in the trap is important for predicting the 
lowest angular velocity that is appropriate for energy in order to generate vortex in the cloud. For this 

purpose, considering the rotationally invariant harmonic trap potential around the z-axis and the number 

of atoms is sufficiently high for the Thomas-Fermi approach to be good, the localized vortex core radius 
on the z-axis of the trap determined by the consistent length is short compared to the cloud size. 

 

Considering the two-dimensional problem by neglecting the trap force in the z-direction, the cloud is 

cylindrical to have the radius 2  and the energy of unit length 
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where 0n  is the particle density when there is no vortex for 0→ , and 0  is the consistent length 

determined for this density value. Since the value of the velocity is mhv 2/= , the density in the 

harmonic trap varies with 
22 /1 R−  in the Thomas-Fermi approach. 

 

The angular momentum L  per unit length is obtained by multiplying the total number of particles   

per unit length. The second case for   is found using the Thomas-Fermi approach as follows: 
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When the three-dimensional problem is considered, z-axis is formed in the Z-direction and the size of 

the cloud in this direction is greater than the consistent length. In this case, the energy of the cloud can 

be asserted as the sum of the horizontal cloud slice energies, so that kinetic energy from the vertical 

gradient of the condensation wave function is neglected. The total kinetic energy and is integrated over 

the vertical axis of the cloud and found: 
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Thus, energy is obtained as follows: 
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is reached. This result is well consistent with numerical calculations for large clouds. 

Total angular momentum: 
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7. CONCLUSION 

 

The vortex energy in the Bose-Einstein condensate cloud in the trap is important for predicting the 
lowest angular velocity that is appropriate for energy in order to generate vortex in the cloud. Angular 

momentum for a vortex in a uniform environment is a result of rotational symmetry. The angle of the 

angular momentum for the cloud that is not in the input trap axis depends on the position of the input. 
In addition, the angular momentum is not maintained for an invariant trap by rotating about the axis of 

rotation, and therefore has no particular value. The expression of total angular momentum is simply a 

velocity-dependent magnitude. 
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