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ABSTRACT 
 

In this study, inductive radio-frequency (RF) argon (Ar) discharge and afterglow downstream discharge at low pressure were 

investigated with optical emission spectroscopy (OES). Spectral lines recorded with OES measurements were detected in the 

wavelength range of 650-900 nm. For all measurements, a spectrum line that remained at approximately the same value was 

taken as the value of the reference wavelength throughout the study. The changes in the optical emission spectrum ratios of the 

inductive RF Ar discharge and the afterglow downstream discharge with respect to time were compared. As a result, it was 

reported that some transitions for both regions were to be increased in time. The transitions in time for some wavelengths 

(738.39, 751.47, 772.42, 801.48, 810.37 and 842.46 nm) have been approximately improved between 20% and 34% for 

discharge zone. Also, it can be increased for wavelength of 801.48 nm in afterglow downstream discharge region (32.55%). 
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1. INTRODUCTION 
 

In recent years, the high-density plasmas can be improved as the inductive coupled RF discharge at low 

pressure. Inductive coupled plasmas sources have been researched for over a century. Because the 

inductive RF discharge plasmas (low temperature) at low pressure can be used for the commercial 

purpose and researches. A coil surrounds the plasma chamber. A radio frequency magnetic flux is 

generated by the currents in the coil. RF magnetic flux will penetrate the plasma zone. According to 

Faraday’s law, a solenoid RF electric field will be induced by the time-varying magnetic flux density. 

The free electrons will be accelerated by a solenoid RF electric field and the discharge will be sustained. 

Non-local thermodynamic equilibrium (non-LTE) plasmas can be produced with inductively coupled 

plasmas at low pressure [1].  

 

Descoeudre et al examined the effects of the plasma parameters via optical emission spectroscopy (OES) 

and calculated the plasma temperature and density [2]. Canal et al has used the modified Saha equation 

in order to obtain the electron temperature of Ar inductive RF discharge at low pressure [3]. Relative 

intensities of OES lines were used to define the kinetic temperature of electrons, and to specify the 

number density of particles that emerged in the plasma [4]. When gas is exposed to an electric field 

under low pressure at room temperature, a plasma can be generated. In this case, some optical properties 

can be determined with OES from gases in the glow and afterglow downstream discharges [5]. If we 

look at other study, one of them is that the capacitively coupled RF Ar discharge and afterglow 

downstream discharge have been analyzed using numerical modelling and the modified Boltzmann 

method [6]. While the plasma includes very much particles, the afterglow downstream discharge only 

occurs in stable and metastable particles. Also, the positive ion densities are seldom determined by OES, 

since ionic emission lines in low temperature plasmas are generally weak. However, OES gives the 

density of the electrons under certain conditions and in certain plasmas and the density of the electrons 

are equal to the positive ion density.  
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The study is outlined as follows: The introduction part of this study was given in sect. 1, and the 

experimental setup were expressed in sect. 2. Plasma are determined by the results of spectral analysis 

in sect. 3. The importance of this study is given in conclusion. 

 

2. EXPERIMENTAL SETUP 

 

First, in this study; the initial test parameters such as gas type, gas flow rate, tube material and size, 

plasma generation method (capacitive or inductive), RF power, and integration time of spectral 

measurements were determined. Total measurement period for the experiments was 30 min and the 

measurements were performed in every five minutes after the first minute. 

 

Ar discharge and afterglow downstream discharge are generated in inductive RF discharge system 

(Figure 1). The plasma tube is a cylindrical quartz glass vacuum chamber. Its length and diameter are 

50 and 6 cm, respectively. This includes stainless steel flanges in 6 arms and it is kept as perpendicular 

(for high intensity). Pure Ar gas is sent from the top of chamber. The mechanical vacuum pump was 

operated to evacuate the plasma chamber down to 10-4 mbar. Vacuum pump was connected to Edwards 

RV8 the bottom of tube. The pressure was initially obtained 6.4x10-3 mbar. Pressures of the plasma 

chamber varied from 0.07 mbar to 1.90 mbar during gas inlet. The values of Ar flow rates were adjusted 

between 0.05 and 0.20 L/min using mass stream flowmeter (M + W instrument). 

 

Advanced Energy RF matching box and Cesar generator are used as power supply in the inductively 

system. Solenoid with 8 turns at the top of the chamber is connected to power supply. The height and 

diameter of the solenoid are 8 and 6.5 cm, respectively. Using RF generator with 13.56 MHz and 

automatic impedance circuit, the discharge was generated at the top of the tube via the coil in the 

chamber. The pure Ar discharge was generated by RF powers as 100, 160 and 200 W. The integration 

time for spectra is 5 ms.  

 

Our system consists of two parts. First one is the discharge region containing active neutral particles and 

the other is the afterglow downstream discharge zone, in which the particle types form or disappear. The 

measurements of OES for the resulting radiation of discharge and afterglow downstream discharge of 

pure Ar were realized by Ocean Optics HR2000+. Figure 1 shows a plasma state with large spatial 

variations. However, the radiations of discharge and afterglow downstream discharge were recorded 

from A and B points as seen from Figure 1. 

 

 
 
Figure 1. The experimental setup and photograph of discharge and afterglow downstream discharge region in 

inductive RF vacuum chamber 
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3. RESULTS AND DISCUSSION 

 

The photograph of the discharge in Figure 1 indicates that the discharge parameters are strongly 

structured in space. As seen in Figure 1, optical emission spectral measurements have been taken from 

two points which are closest to regions of the discharge and far away regions of the discharge. These 

measurements show an axial dependence along the discharge. Therefore, the measurements for two 

points in the quartz chamber have been compared each other. 

 

Wavelengths of spectral lines for pure Ar discharge are determined from optical emission 

measurements. In addition, they are found from the standard data of National Institute of Standards and 

Technology (NIST) for each peak as seen in Table 1. The upper energy levels can be seen in Table 1. 

As seen from the results of OES measurement, the spectral lines have been recorded in the range 696 - 

912 nm. Spectra are normalized as in Figure 2. 

 
Table 1. Spectral Lines of Ar with OES [7] 

 

Wavelengths (nm) Ion Ep (eV) 

696.54 Ar I 13.328 

706.87 Ar I 14.848 

738.39 Ar I 13.302 

750.39 Ar I 13.480 

751.47 Ar I 13.273 

763.51 Ar I 13.172 

772.42 Ar I 13.328 

794.82 Ar I 13.283 

801.48 Ar I 13.095 

810.37 Ar I 13.153 

811.53 Ar I 13.076 

826.45 Ar I 13.328 

842.46 Ar I 13.095 

852.14 Ar I 13.283 

912.30 Ar I 12.907 

 

According to the optical emission spectra, the intensity of spectral line at wavelength of 811.53 nm in 

the discharge and afterglow downstream discharge is higher than other spectral lines. The highest 

intensity in the spectral lines obtained under different pressure, power and flow belongs to the 

wavelength of 811.53 nm. It is obvious that the intensity of spectral line of the wavelength of 842.46 

nm in the afterglow downstream discharge is reduced. The energy of particles in discharge is transferred 

each other. This energy increases with the increasing amount of particle. Hence, this situation can cause 

a decrease in the electron temperature. 
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

 
Figure 2. Normalized spectra for 0.05 L/min flow rate of inductive Ar discharge at (a) 100 W, (b) 160 W, (c) 200 

W and afterglow downstream discharge at (d) 100 W, (e) 160 W (f) 200 W  

 

According to the raw results of OES measurements, in Figure 3, the variation of rate of spectral lines 

(𝐼 𝐼𝑟𝑒𝑓
⁄ ) over measurement times for inductive discharge and afterglow downstream discharge have been 

compared. In particular, the same flow and power data are restricted to selecting from intensity rates. In 
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this study, the reference wavelength (Iref) is chosen as 811.53 nm (arbitrary reference line). The reason 

is that the change in wavelength of 811.53 nm remains almost the same for all measurement times. Also, 

the intensity of this wavelength is almost the highest value in all spectra. According to a reference value, 

intensity rates (𝐼 𝐼𝑟𝑒𝑓⁄ ) versus measurement time (t) is compared for the first time. G. Musa et al reported 

the M effect in gas mixtures [8]. The changes of different wavelengths in different gas mixtures have 

been just reported. Also, the optical characteristics for capacitively and inductively helium discharges 

were also defined by M. Tanışlı and N. Şahin. The electron temperature of capacitively and inductively 

radio frequency discharges of helium is estimated using the spectral lines obtained from optical emission 

spectra. It is determined for the first time that the line ratio rates are changing according to the 

measurement time for helium at low pressure [9]. This study supports a comparison for OES of 

capacitive and inductive discharges for He in detail and shows the change of line ratio with time. In 

addition to this, the discharge stability was estimated by monitoring the changes of the CN emission 

upon the discharge power [10]. This study shows the linearity between the applied voltage and emission 

intensity. S Siepa et al. shows that the line-ratio method is applicable for pure Ar discharges and the 

line-ratios are determined in a purely experimental investigation to enhance the accuracy of the method 

[11]. 

 

 
 

(a) (b) 

 

Figure 3. (𝐼 𝐼𝑟𝑒𝑓
⁄ ) versus measurement time (a) Discharge (b) Afterglow downstream-discharge (Iref = 811.53 nm, 

for 0.10 L/min and 100 W) 

 

4. CONCLUSIONS 

 

The inductive RF discharge and afterglow downstream discharge of Ar are investigated by means of 

OES and their characteristics have been determined. Similarity and differences between the discharge 

and afterglow downstream discharge regions have been described. According to initial parameters, the 

optical properties of inductive RF afterglow downstream discharge of pure Ar at low pressure have been 

obtained in detail. In the literature, there are lots of works on the use of especially the collisional radiative 

model of the RF Ar discharge at atmospheric pressure. However, there are still unknown parts about the 

RF Ar discharge at low pressure. The novelty of this study is principally to determine the time change 

of the line ratio rate for the RF Ar discharge and afterglow downstream discharge at low pressure.  

 

The transitions in time for some wavelengths (738.39, 751.47, 772.42, 801.48, 810.37 and 842.46 nm) 

have been approximately improved between 20% and 34% for discharge zone. Also, the intensity of the 

spectral lines at the wavelength of 801.48 nm can increase in the afterglow downstream discharge region 

(32.55%). These results can indicate a change for discharge type, the time variable parameter (the range 

of minute) and the relative intensities of the transition. It is seen that some transitions can be intensified 
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over time. The exchange of large results may be obtained in small unobservable changes. Also, the 

plasma begins to change slowly over time.  

 

The laser wavelength charts show the common types of lasers, and major wavelengths associated with 

them. According to this list, the wavelengths find here correspond to the region in the specified range. 

These could be used as a new wavelength laser source. Thus, the new laser types to be added to the table 

can be produced. A new wavelength that changes in the afterglow downstream region may be considered 

as a monochromatic laser source. In the discharge zone, the intensity of some peaks, except for certain 

peaks, tends to increase. For a region just above the visible region, it can be thought as a double or triple-

beam laser sources in a single discharge tube. 

 

ACKNOWLEDGEMENTS 

 

We are grateful to Eskişehir Technical University via Research Project No: 19ADP154. 

 

REFERENCES 

 

[1] Bogaerts A, Neyts E, Gijbels R, van der Mullen J. Gas discharge plasmas and their applications. 

Spectrochim. Acta Part B 2002; 57: 609–658. 

 

[2] Descoeudres A, Hollenstein C, Demellayer R, Wälder G. Optical emission spectroscopy of 

electrical discharge machining plasma. Journal of Materials Processing Tech. 2004; 149: 184-190. 

 

[3] Canal GP, Luna H, Galv ́ao RMO, Castell R. An approach to a non-LTE Saha equation based on the 

Druyvesteyn energy distribution function: a comparison between the electron temperature obtained 

from OES and the Langmuir probe analysis. J. Phys. D: Appl. Phys. 2009; 42: 135202 (6pp). 

 

[4] Roth JR Industrial Plasma Engineering Volume 1: Principles, London: IOP Publishing Ltd, 1995. 

 

[5] Donnelly VM. Plasma electron temperatures and electron energy distributions measured by trace 

rare gases optical emission spectroscopy. J. Phys. D: Appl. Phys. 2004; 37: R217-R236. 

 

[6] Tanışlı M, Rafatov İ, Şahin N, Mertadam S, Demir S. Spectroscopic study and numerical simulation 

of low-pressure radio-frequency capacitive discharge with argon downstream. Can. J. Phys. 2017; 

95: 190-200. 

 

[7] https://physics.nist.gov/PhysRefData/ASD/lines_form.html (Available: 01.08.2019) 

 

[8] Musa G, Ciobotaru CL, Chiru P, Baltog A. The M-effect in argon-hydrogen gas mixtures. J. Opt. 

Adv. Materials 2004; 6: 459-464. 

 

[9] Tanisli M and Sahin N. Optical characteristics for capacitively and inductively radio frequency 

discharge and post-discharge of helium. Phys. Plas. 2016; 23: 013513. 

 

[10] Luo D, Ma D, He Y, Li X, Wang S, Duan Y. Needle electrode-based microplasma formed in a 

cavity chamber for optical emission spectrometric detection of volatile organic compounds through 

a filter paper sampling. Microchemical Journal 2017; 130: 33-39. 

 

[11] Siepa S, Danko S, Tsankov TV, Mussenbrock T, Czarnetzki U. On the OES line-ratio technique in 

argon and argon-containing plasmas. J. Phys. D: Appl. Phys. 2014; 47: 445201 (16pp). 

 


