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Abstract

In this paper, we discuss a two-grid iterative method for solving a class of Fredholm
functional integral equations based on the radial basis function interpolation. Firstly,
the existence and uniqueness of the solution are proved by Banach fixed point theorem.
Secondly, the algorithm and convergence analysis of the radial basis function approximation
method is given on the coarse grid. Thirdly, the fine grid iterative solution and convergence
results are obtained. Finally, the validity and reliability of the theoretical analysis are
verified by two numerical experiments.

1. Introduction

Integral equations are widely used in quantum physics, engineering design, astronomy, geography, biomedicine and other fields, so it is of
great application value to explore the solution of integral equations.
For a long time, the algorithms of integral equations have been widely concerned and studied. Many different methods have been used to
approximate the solutions of some integral equations [1, 2]. In recent years, F.Muller and W.Varnhorn [3] have studied approximation and
numerical solution of Fredholm integral equations of second kind using quasi-interpolation. Some convergence analysis for 2-dimensional
Fredholm integral equation with complex factors by Meshless method were introduced in [4]. Application of Legendre wavelets for solving
a class of functional integral equations were discussed in [5]. Chelyshkov collocation approach was developed in [6] for solving linear
weakly singular Volterra integral equations. In addition, we know that the computational complexity of numerical integral discretization
depends on the diameter h of mesh generation. The calculated workload is usually O(n3), where n = 1/h. Therefore, the construction of a
suitable two-grid algorithm can solve the difficulty of computational complexity. Two-grid method is a discretization technique based on two
meshes of different sizes, which has been concerned by many researchers [7]-[10] for a long time. Therefore, it is very necessary to enrich
the efficient algorithms of different types of integral equations.
In this paper, we consider the following as a class of Fredholm functional integral equations

u(x)−A(x)u(α(x)) = f (x)+λ

∫
Ω

k(x,s)u(s)ds, x ∈Ω, (1.1)

where Ω is the bounded closed area in Rd ,d = 1,2,3, x = (x1,x2, · · · ,xd), s = (s1,s2, · · · ,sd), α(x) = (α1(x),α2(x), · · · ,αd(x)), and
A(x),α(x), f (x),k(x,s) are properly smooth known functions, u(x) ∈ R is the unknown function.
The contents of this article are as follows. Section 2 contains the proofs of the existence and uniqueness of the exact solution for (1.1). In
section 3, we discuss the radial basis function approximation method and convergence results on the coarse grid for (1.1). Section 4, is
devoted to the two-grid iterative method and convergence results on the fine grid for (1.1). In the last section, the correctness of the theory is
proved by two numerical examples.
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2. The existence and uniqueness of solution

In this section, the conditions which provides the existence and uniqueness of exact solution of (1.1) are given by using Banach fixed point
theorem.

Theorem 2.1. Assume that Ω is a suitable Banach space and A(x),α(x), f (x) ∈C(Ω),k(x,s) ∈C(Ω×Ω). If the following conditions are
satisfied {

(i)α(x) ∈Ω, f or x ∈Ω,
(ii)‖A(x)‖∞ + |λ | · ‖

∫
Ω
|k(x,s)|ds‖∞ = γ < 1,

where ‖ · ‖∞ = max | · |. Then the (1.1) has a unique solution.

Proof. Let T be a mapping from C(Ω) to C(Ω) with

Tu(x) = A(x)u(α(x))+ f (x)+λ

∫
Ω

k(x,s)u(s)ds,

for u ∈C(Ω). Let u1,u2 be two solutions of (1.1), then we have

‖Tu1−Tu2‖∞ = ‖A(x)[u1(α(x))−u2(α(x))]+λ
∫

Ω
k(x,s)[u1(s)−u2(s)]ds‖∞

≤ (‖A(x)‖∞ + |λ | · ‖
∫

Ω
|k(x,s)|ds‖∞) · ‖u1−u2‖∞

≤ γ · ‖u1−u2‖∞.

Note that 0 < γ < 1, by the Banach fixed point theorem, then T is a contractive mapping on (C(Ω),‖ ·‖∞). So there exists the unique solution
u∗ ∈C(Ω) such that Tu∗ = u∗, and (1.1) has a unique solution.

3. The radial basis function interpolation and convergence on the coarse grid

In this section, we give the algorithm of the radial basis function interpolation for (1.1), and obtain the convergence theorem in the infinite
norm sense.
First of all, Assume {xi}m

i=1,x
i = (xi

1,x
i
2, · · · ,x

i
d) ∈Ω is a series of irregular observation points of u(x) on Ω, and let the basis of the radial

basis function is ϕ1(x),ϕ2(x), · · · ,ϕm(x), where ϕi(x) = ϕ(‖x− xi‖2), i = 1,2, · · · ,m. Note that r = ‖x− xi‖2. There are three common
radial basis functions (see [11]):
(1)Gaussian distribution function ϕ(r) = e−a2r2

;
(2)MQ function ϕ(r) = (c2 + r2)b and IMQ function ϕ(r) = (c2 + r2)−b(b > 0);
(3)Thin plate splines function ϕ(r) = r2k−d logr.

Now, we construct vector space Vm(Ω)= span{ϕ1(x),ϕ2(x), · · · ,ϕm(x)}. And let the radial basis function interpolation uI
m(x)=

m
∑

i=1
ciϕi(x)∈

Vm, satisfying uI
m(x

i) = u(xi), i = 1,2, · · · ,m. From [11], we can get the following error estimation between the radial basis function and the
exact solution:

‖u(x)−uI
m(x)‖∞ ≤ ch

e
2 ,

where h = sup
x∈Ω

min
1≤i≤m

‖x− xi‖.

Therefore, let u(x) = uI
m(x)+ εm(x) where εm(x) is the interpolation remainder of u(x) on Vm(Ω) . Then we can obtain

uI
m(x)+ εm(x)−A(x)[uI

m(α(x))+ εm(α(x))] = f (x)+λ

∫
Ω

k(x,s)[uI
m(s)+ εm(s)]ds. (3.1)

Ignore the error terms εm(x) and εm(α(x)) and substitute uI
m(x) =

m
∑

i=1
ciϕi(x) into (3.1), we get the approximate equation of (1.1):

m

∑
i=1

ciϕi(x)−A(x)
m

∑
i=1

ciϕi(α(x)) = f (x)+
m

∑
i=1

ciλ

∫
Ω

k(x,s)ϕi(s)ds.

Remove the items then we have
m

∑
i=1

ci[ϕi(x)−A(x)ϕi(α(x))−λ

∫
Ω

k(x,s)ϕi(s)ds] = f (x). (3.2)

Let ψi(x) = ϕi(x)−A(x)ϕi(α(x))−λ
∫

Ω
k(x,s)ϕi(s)ds, i = 1,2, · · · ,m, then (3.2) can be written as

m

∑
i=1

ciψi(x) = f (x). (3.3)

Since ϕ1(x),ϕ2(x), · · · ,ϕm(x) are linear independent functions on Vm(Ω) and satisfies the condition of Theorem 2.1, which implies
ψ1(x),ψ2(x), · · · ,ψm(x) are also linear independent functions on Vm(Ω). Here’s the proof.
Because

m

∑
i=1

ciψi(x) =
m

∑
i=1

ciϕi(x)−A(x)
m

∑
i=1

ciϕi(α(x))−λ

∫
Ω

k(x,s)
m

∑
i=1

ciϕi(s)ds,
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and

‖
m

∑
i=1

ciϕi(α(x))‖∞ ≤ ‖
m

∑
i=1

ciϕi(x)‖∞, α(x) ∈Ω.

From Theorem 2.1 and trigonometric inequality we can get

(1− γ) · ‖
m

∑
i=1

ciϕi(x)‖∞ ≤ ‖
m

∑
i=1

ciψi(x)‖∞ ≤ (1+ γ) · ‖
m

∑
i=1

ciϕi(x)‖∞ (3.4)

For x ∈Ω, assume that
m
∑

i=1
ciψi(x) = 0, then we obtain ‖

m
∑

i=1
ciψi(x)‖∞ = 0. From (3.4) we have ‖

m
∑

i=1
ciϕi(x)‖∞ = 0. Therefore,

m

∑
i=1

ciϕi(x) = 0.

And because ϕ1(x),ϕ2(x), · · · ,ϕm(x) are linear independent functions on Vm(Ω), so

c1 = c2 = · · ·= cn = 0.

The proof is complete.

(3.3) take the collocation points x = x j = (x j
1,x

j
2, · · · ,x

j
d), j = 1,2, · · · ,m, then we get

m
∑

i=1
ciψi(x j) = f (x j). Written in matrix form is

Gm ·Cm = Fm, (3.5)

where Cm = (c1,c2, · · · ,cm)
T , Fm = ( f (x1), f (x2), · · · , f (xm))T , Gm = (gi j)m×m, gi j = ψi(x j), i, j = 1,2, · · · ,m.

Let Gm is a nonsingular matrix, then G−1
m exists. So there is

C∗m = G−1
m ·Fm = (c∗1,c

∗
2, · · · ,c∗m)T .

Therefore, u∗m(x) =
m
∑

i=1
c∗i ϕi(x) is called the approximate solution of radial basis function of (1.1).

Theorem 3.1. Assume that u(x) is the exact solution and u∗m(x) is the approximate solution of radial basis function, then

‖u−u∗m‖∞ ≤ ch
e
2 +

m

∑
i=1
‖ϕi(x)‖∞ · ‖G−1

m ‖∞ · ‖Rm(ε)‖∞,

where Rm(ε) =−εm(x)+A(x)εm(α(x))+λ
∫

Ω
k(x,s)ε(s)ds, and for ∀x ∈Ω, we have

lim
h→0

u∗m(x) = u(x).

Proof. For (3.1) and uI
m(x) =

m
∑

i=1
ciϕi(x), we can get

m

∑
i=1

ciϕi(x)+ εm(x)−A(x)[
m

∑
i=1

ciϕi(α(x))+ εm(α(x))] = f (x)+λ

∫
Ω

k(x,s)[
m

∑
i=1

ciϕi(s)+ εm(s)]ds,

abbreviated in the following form
m

∑
i=1

ciψi(x) = f (x)+ [−εm(x)+A(x)εm(α(x))+λ

∫
Ω

k(x,s)εm(s)ds].

Now we write down the above equation as
m

∑
i=1

ciψi(x) = f (x)+Rm(ε),

where Rm(ε) =−εm(x)+A(x)εm(α(x))+λ
∫

Ω
k(x,s)εm(s)ds. The corresponding matrix form is

Gm ·Cm = Fm +Rm(ε). (3.6)

Subtracting (3.5) from (3.6)to get Gm(Cm−C∗m) = Rm(ε), so

‖Cm−C∗m‖∞ ≤ ‖G−1
m ‖∞ · ‖Rm(ε)‖∞.

Then for

‖u−u∗m‖∞ = ‖u−uI
m +uI

m−u∗m‖∞

≤ ‖u−uI
m‖∞ +‖uI

m−u∗m‖∞

≤ ch
e
2 +‖∑

m
i=1(ci− c∗i )ϕi(x)‖∞

≤ ch
e
2 +∑

m
i=1 |ci− c∗i |‖ϕi(x)‖∞

≤ ch
e
2 +∑

m
i=1 ‖ϕi(x)‖∞ · ‖G−1

m ‖∞ · ‖Rm(ε)‖∞.

Since ‖Rm(ε)‖∞→ 0, ‖u−u∗m‖∞→ 0.
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4. Two-grid iterative method and convergence analysis

As we all know, for the discretization of numerical integration of (1.1), the computational complexity depends on the diameter h of mesh
subdivision, and the workload of numerical calculation is usually O(n3), where n = 1/h. Therefore, computational complexity can be well
solved by constructing an appropriate two-layer grid algorithm.
In this section, a new fixed point iterative approximation method is introduced in three steps to obtain two-grid iterative solution on the fine
grid. The iterative algorithm is as follows
Algorithm 1.
Step 1. Select a series of irregular observation points of u(x) on the fine grid as (y1,y2, · · · ,yn),yi = (yi

1,y
i
2, · · · ,y

i
d), i = 1,2, · · · ,n,d =

1,2 or 3.
Step 2. Approximate solution of Radial basis function on the fine grid is

u(0)n (x) =
n

∑
i=1

liΦi(x),

where Φi(x) = ϕ(‖x− yi‖), i = 1,2, · · · ,n.
Step 3. Take the initial value u(0)n (x) = u∗m(x) and construct iterative scheme

u(k+1)
n (x) = A(x)u(k)n (α(x))+ f (x)+λ

∫
Ω

k(x,s)u(k)n (s)ds, k = 0,1,2, · · · . (4.1)

The error estimation and convergence results between the fine grid approximate solution of radial basis function uI
n(x) and the two-grid

iterative solution u(k+1)
n (x) are given below.

Theorem 4.1. Let uI
n(x) is the fine grid approximate solution of radial basis function and u(k+1)

n (x) is the (k+ 1)th iterative solution
determined by (4.1), then

‖uI
n(x)−u(k+1)

n (x)‖∞ ≤ γ
k+1 · ‖un(x)−u(0)n (x)‖∞,

where γ < 1 as in Theorem 2.1.
For ∀x ∈Ω, there holds

lim
k→∞

u(k)n (x) = uI
n(x).

Proof. Replace uI
n(x) =

n
∑

i=1
ciϕi(x) in (1.1) and get

uI
n(x) = A(x)uI

n(α(x))+ f (x)+λ

∫
Ω

k(x,s)uI
n(s)ds. (4.2)

Subtracting (4.1) from (4.2), we have

uI
n(x)−u(k+1)

n (x) = A(x)[uI
n(α(x))−u(k)n (α(x))]+λ

∫
Ω

k(x,s)[uI
n(s)−u(k)n (s)]ds,

then

‖uI
n(x)−u(k+1)

n (x)‖∞ = ‖A(x)[uI
n(α(x))−u(k)n (α(x))]+λ

∫
Ω

k(x,s)[uI
n(s)−u(k)n (s)]ds‖∞

≤ (‖A(x)‖∞ + |λ | · ‖
∫

Ω
|k(x,s)|ds‖∞) · ‖uI

n−u(k)n ‖∞

≤ γ · ‖uI
n−u(k)n ‖∞.

In this way,

‖uI
n(x)−u(k+1)

n (x)‖∞ ≤ γ
k+1 · ‖uI

n−u(0)n ‖∞

can be obtained by progressive recursion.
From Theorem 2.1, we get 0 < γ < 1, such that

lim
k→∞

γ
k+1 = 0.

For x ∈Ω, there exists

lim
k→∞

u(k)n (x) = uI
n(x).
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5. Numerical examples

In this section, two numerical examples (d = 2) are given to illustrate the feasibility and validity of the above algorithm and its convergence
analysis. The exact solution is compared with the two-grid iterative solution and its error estimation in the infinite norm sense is provided by
using Matlab 2015a.

Selecting {(m,n)}= {(8,32),(8,64),(16,64)}, we calculate the maximum error ‖un(x,y)−u(k)n (x,y)‖∞ = max
(xi,yi)∈Ω

|un(xi,yi)−u(k)n (xi,yi)|

between the fine grid radial basis interpolation solution un(x,y) and two-grid iterative solution u(k)n (x,y) with {k}= {3,4,5,6}.

Example 5.1. Consider the following Fredholm functional integral equation

u(x,y)− x+ y
16

u(α1(x),α2(y)) = f (x,y)+
1
20

∫
Ω

(x+ y)u(s1,s2)ds1ds2, (5.1)

where Ω = {(x,y)|0≤ x≤ 1,0≤ y≤ x2}, α1(x) = 1
4 x, α2(x) = 1

16 x2 and f (x,y) = xy− 1
240 x− 1

240 y− 1
16 xy2( f racx64+ y

64 ). (5.1) has an
exact solution u(x,y) = xy.

We solve (5.1) by two-grid method based on radial basis interpolation, and our experimental results can be seen from Table 1. The results were
obtained by using Gaussian distribution function (a = 1) and IMQ function (c =

√
2,b = 1), respectively. Next, the exact solution u(x,y)

and the two-grid iterative solution u(k)n (x,y) which are given and can be seen from Figure 5.1(a) and Figure 5.1(b) while (m,n,k) = (8,64,6).

‖un−u(k)n ‖∞ ‖un−u(k)n ‖∞ ‖un−u(k)n ‖∞

m n k Gaussian IMQ m n k Gaussian IMQ m n k Gaussian IMQ
8 32 3 9.1698e-04 1.3462e-04 8 64 3 1.5243e-03 9.3253e-04 16 64 3 1.2412e-05 7.5523e-06

4 2.2979e-05 2.1310e-05 4 2.4130e-04 1.4762e-04 4 1.9648e-06 1.1955e-06
5 1.9648e-06 3.3734e-06 5 3.8198e-05 2.3368e-05 5 3.1103e-07 1.8925e-07
6 5.7583e-07 5.3401e-07 6 6.0467e-06 3.6992e-06 6 4.9236e-08 2.9958e-08

Table 1: The maximum error ‖un(x)−u(k)n (x)‖∞ for Example 5.1.

(a) The exact solution u(x,y) of example 5.1 (b) The two-grid iterative solution u(k)n (x,y) of example 5.1

Example 5.2. Consider the following Fredholm functional integral equation

u(x,y)− 1
10

exyu(α1(x),α2(y)) = f (x,y)+
1
10

∫
Ω

xys1s2u(s1,s2)ds1ds2, (5.2)

where Ω = {(x,y)|0 ≤ x ≤ 1,0 ≤ y ≤ x}, α1(x) = x, α2(x) = 1
2 x and f (x,y) = ex+y − 1

10 ex+ y
2 exy − xy

20 . (5.2) has an exact solution
u(x,y) = ex+y.

We also solve (5.2) by two-grid method based on radial basis interpolation, and the experimental results can be seen from Table 2. The results
were obtained by using Gaussian distribution function (a = 1) and MQ function (c = 4,b = 1

2 ), respectively. Next, the exact solution u(x,y)

and the two-grid iterative solution u(k)n (x,y) which are given and can be seen from Figure 5.1(c) and Figure 5.1(d) while (m,n,k) = (8,64,6).
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‖un−u(k)n ‖∞ ‖un−u(k)n ‖∞ ‖un−u(k)n ‖∞

m n k Gaussian IMQ m n k Gaussian IMQ m n k Gaussian IMQ
8 32 3 5.3422e-03 1.5322e-03 8 64 3 8.7424e-03 1.6395e-03 16 64 3 4.4892e-04 9.7401e-05

4 1.6000e-03 4.5476e-04 4 2.6000e-03 4.8660e-04 4 1.3324e-04 2.8909e-05
5 4.7488e-04 1.3497e-04 5 7.7168e-04 1.4442e-04 5 3.9546e-05 8.5802e-06
6 1.4094e-04 4.0059e-05 6 2.2903e-04 4.2864e-05 6 1.1737e-05 2.5466e-06

Table 2: The maximum error ‖un(x)−u(k)n (x)‖∞ for Example 5.2.

(c) The exact solution u(x,y) of example 5.2 (d) The two-grid iterative solution u(k)n (x,y) of example 5.2

6. Conclusion

In this paper, a new two-grid method based on the radial basis function interpolation for solving a class of Fredholm functional integral
equations, which has practical value is presented. The algorithm and convergence analysis of two-grid iterative solution are given.
At the same time, the method can greatly reduce the computational workload. Our numerical results can successfully prove the correctness
of the proposed error estimation. Extending this method to other integral equations is our further research.
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