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ABSTRACT 

 
Geometric algebras known as a generalization of Grassmann algebras complex numbers and quaternions are presented by 

Clifford (1878). Geometric algebra describing the geometric symmetries of both physical space and spacetime is a strong 
language for physics. Groups generated from `Clifford numbers` is firstly defined by Lipschitz (1886). They are used for 
defining rotations in a Euclidean space. In this work, Clifford algebra are identified. Energy of classic particles with Clifford 
algebra are defined. This calculations are applied to some Archimedean solids. Also, the vertices of Archimedean solids 
presented in the Cartesian coordinates are calculated. 
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1. INTRODUCTION 

 

The ideas and concepts of physics are best expressed in the language of mathematics. But this language 
is far from unique. Many different algebraic systems exist and are in use today, all with their own 

advantages and disadvantages. In this paper, we describe what we believe to be the most powerful 

available mathematical system developed to date. This is geometric algebra, which is presented as a 
new mathematical tool to add to your existing set as either a theoretician or experimentalist. Our aim is 

to introduce the new techniques via their applications, rather than as purely formal mathematics. These 

applications are diverse, and throughout we emphasize the unity of the mathematics underpinning each 

of these topics. 
 

The history of geometric algebra is one of the more unusual tales in the development of mathematical 

physics. William Kingdom Clifford introduced his geometric algebra in the 1870s, building on the 
earlier work of Hamilton and Grassmann. It is clear from his writing that Clifford intended his algebra 

to describe the geometric properties of vectors, planes and higher-dimensional objects. But most 

physicists first encounter the algebra in the guise of the Pauli and Dirac matrix algebras of quantum 
theory. Few then contemplate using this unwieldy matrix for practical geometric computing. Indeed, 

some physicists come away from a study of Dirac theory with the view that Clifford's algebra is 

inherently quantum-mechanical [1]. 

 
Wessel, Argand, and Gauss used the complex numbers in the solutions of two-dimensional problems. 

The exponential form of complex numbers is useful in the theory of rotational motions. The quaternion 

algebra, which was defined by Sir W. R. Hamilton, was generalized for the three-dimensional complex 
numbers [2]. The quaternion algebra is the Clifford algebra of the two-dimensional anti-Euclidean space. 

Quaternions in the three-dimensional spaces have more useful appearances for the subalgebras of 

Clifford algebra. In the n-dimensional spaces, Grassmann carried on the studies for the multi-

dimensional bodies and defined the central product, which includes both interior and exterior products. 
Grassmann's central product is the Clifford product of vectors. Clifford tried to combine Grassmann's 
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algebra and quaternions in a mathematical system. Then this study, which was entitled "Application of 
Grassmann's Extensive Algebra", was published [3]. 

 

Today, Clifford algebra has an important role in the investigations of the symmetry properties of 

systems, crystallography, molecular and solid-state physics. 
 

The method of point groups in the multi-dimensional spaces is derived by transforming into the 

parameters of the reflections and possible rotational operations. In the three-dimensional spaces, 
Altmann showed that the Euler's angles are not useful for the rotational operations but Euler-Rodriques' 

parameters are more advantageous [4]. To know the rotational pole and angle for each rotational oper-

ations is necessary and enough. So, there is a similarity between proper and improper operations in.  

 
The rest of the paper is organized within 4 sections. Section 2 reveals the quaternions and symmetry 

operations in. In section 3, the Clifford algebra and symmetry operations are shown. An application of 

the symmetry operations with Clifford algebra is given in section 4. Conclusions are drawn in the last 
section [5]. 

 

2. QUATERNIONS AND SYMMETRY OPERATIONS IN R
3
 

 

The abstract quaternion group, discovered by William Rowan Hamilton in 1843, is an illustration of 

group structure [6]. A quaternion is a quantity represented symbolically by A and it is defined through 

the following equations 

 

A = a1 + Axi + Ayj + Azk,          (1) 

 

or A = [a, A ],  A = (Ax, Ay, Az), where all a, Ax, Ay, Az coefficients are the real numbers. The 

unitary quaternions i, j, k satisfy the multiplication rules as follows: 

 

i j = k,   j i= -k, j k= i,   k j= -i,   i k= -j,   k i=j.   (2) 

 

Also i, j and k can be written as e1, e2 and e3, reciprocally. The vector quaternion A with components 

[0, Ax, Ay, Az] and a vector A  of the Euclidean tridimensional space with components (Ax, Ay, Az) are 

reciprocally associated [7]. 

 

If A and B quaternions are 

A =a1+Axe1 + Aye2 + Aze3 = [a, A ],        (3) 

and 

B =b1+Bxe1 + Bye2 + Bze3 = [b, B ],        (4) 

 

the product of two quaternions, namely A and B, is given by AB = [ab - A . B , a B + bA + A X B ], 

 

AB=(ab-AxBx - AyBy - AzBz) + e1(Axb + aBx + AyBz - AzBy) +   

e2(aBy + Ayb-AXBZ+AZBX) + e3(aBz + Azb+AxBy - AyBx),  (5) 
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where the result is a quaternion. It must be noted that the product of quaternions is not commutative, 

but associative. The product of A and B quaternions in the matrix form can be written.  

For each quaternion A, its conjugate is [8] 

 

A*=al - Axe1 - Aye2 - Aze3.  (6) 

 

The rotation of arbitrary points on an unit sphere (R(γk)) can be defined by γ angle around of the definite 

k-axis (0< γ < Π). The poles of rotational operations are defined on the every half-sphere. In general, the 

rotations (counterclokwise) are accepted to be positive direction. If R(βl) and R(αm) are the rotations 

with 8 and α angles around of l and m axes, respectively, then the result of two rotational operations has 

to be equal to a new rotation with γ-angle around of k- axis, i.e. 

 

R(βl) R(αm) = R(γk),  (7) 

 

where k, l, m are the axial vectors that correspond to the k, l, m rotation axes, respectively. Rodriques 

[9] defined the geometrical structure and algebra for the angles γ, β, α and the axes k, l, m in the 

following forms 

 

cos
γ

2
= cos

𝛼

2
cos

𝛽

2
− sin

𝛼

2
sin

𝛽

2
𝐦. l,   (8) 

sin
γ

2
𝑘 = sin

𝛼

2
cos

𝛽

2
m − cos

𝛼

2
sin

𝛽

2
l + sin

𝛼

2
sin

𝛽

2
m ×  l.   (9) 

 

The rotational operations with the normalized quaternions can be written as 

 

R(αm) = [cos
𝛼

2
, sin

𝛼

2
𝐦] ,  (10) 

R(βl)    = [cos
𝛽

2
, sin

𝛽

2
𝐥] .  (11) 

 

In the similar way, from Eqs. (7), (8), (9), R(γk) can be defined by the following equations: 

 

R(γk) = [cos
𝛼

2
, sin

𝛼

2
𝐦] [cos

𝛽

2
, sin

𝛽

2
𝐥] ,  (12) 

R(γk) = [cos
γ

2
, sin

γ

2
𝐤] .   (13) 

 

Any point represented by R quaternion transforms to the a new quaternionic point at the end of a 

rotation defined by A unit quaternion. This new quaternion is; 

 

R' = A R A*,  (14) 

 

where A* is complex conjugate of A [5]. 

 

3. SYMMETRY OPERATIONS WITH CLIFFORD ALGEBRA 

 

Clifford algebra is used for the studies of symmetry in physics.   There are three basic units ei (i=1, 2, 

3) in Clifford algebra such that 
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eiej + ejei = 2δij,  (15) 

which are equivalent to 

eiej= 1, (16) 

eiej= –ejei.  (17) 

 

The easiest way to understand the geometric product is by example, so consider a two-dimensional 

space (a plane) spanned by two orthonormal vectors e1 and e2. These basis vectors satisfy 

 

e1
2 = e2

2 = 1  (18) 

e1.e2 = 0  (19) 

 

The final entity present in the algebra is the bi-vector e1Λe2. This is the highest grade element in the 

algebra, since the outer product of a set of dependent vectors is always zero. The Clifford product of 

two vectors, namely a⃗  and b⃗ , with components 

 

a = a1e1 + a2e2,  (20) 

and 

b = b1e1 + b2e2,  (21) 

is given by 

ab a.b  a Λ b = a1b1 + a2b2 + (a1b2 – a2b1)e12,  (22) 

 

where "Λ" is called as the wedge product [10]. To study the properties of the bivec- tor e1 Λ e2 we first 

recall that for orthogonal vectors the geometric product is a pure bivector: 

 

e1e2 = e1.e2 + e1 Λ e2 = e1 Λ e2 = e12  (23) 

 

 

 
 

Figure  1. The geometrical meaning of a Λ b [11]. 

 

and that orthogonal vectors anticommute: 

 

e2e1 = e2 Λ e1 = —e1 Λ e2 = -e1e2 (24) 

 

We can now form products in which e2e1 multiplies vectors from the left and the right . First from the 

left we find that 

(e1 Λ e2)e1 = (-e2e1)e1 = -e2e1e1 = -e2 (25) 

and 

(e1 Λ e2)e2 = (e1e2)e2 = e1e2e2 = e1 (26) 
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If we assume that e1 and e2 form a right-handed pair, we see that left multiplication by the bivector 

rotates vectors 90° clockwise(i.e. in a negative sense). 

 

Similarly, acting from the right 

 

e1(e1e2) = e2, (27) 

e2(e1e2) = -e1, (28) 

 

So right multiplication rotates 90° anticlockwise -a positive sense. 

The final product in the algebra to consider is the square of the bivector e1Λ e2: 

 

(e1 Λ e2)
2 = e1e2e1e2 = -e1e1e2e2 = -1. (29) 

 

Geometric consideration have led naturally to quantity which square to -1. This fits with the fact that 

two successive left (or right) multiplication of a vector by e1e2 rotates the vector through 180°, which is 

equivalent to multiplying by -1. 1, e1, e2, e12 form the basis of the Clifford algebra Cl2 of the vector plane 

R2. 

 

The Clifford algebra Cl2 is the four-dimensional linear space and its basis elements have the 

multiplication table as follows: 

Table 1. The basis of Clifford Algebra 

 

 e1 e2 e12 

e1 1 e12 e2 

e2 -e12 1 -e1 

e12 -e2 e1 -1 

The reflection of r  across the line a , namely the mirror image r  of r   

with respect to a is given by 

 

r = a r a -1 (30) 

 

Equation (30) can be directly obtained from using the commutation properties of Clifford algebra [10]. 

The composition of two reflections,  

first across a and then across b , is given by 
 

r = b r b -1 = b ( a r a -1) b -1 = ( b a ) r ( b a )-1 (31) 

 

The composite of these two reflections is a rotation by twice the  

angle between a and b . 
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Figure 2. When x is subjected two successive reflection first with respect to a plane perpendicular to a and then 

with to a plane perpendicular to b, the result is a rotation of x about an axis in the direction axb.  
 

 1 the scalar 

  e1, e2, e3.      Vectors   

e1e2, e1e3, e2e3                                bivectors      (32) 

 e1e2e3      a volume element       

An arbitrary element in Cl3 is a sum of a scalar, a vector, a bivector and a volume element, and can be 

written as 

 

u = u0+u1e1 + u2e2 + u3e3 + u12e12 + u13e13 + u23e23 + u123e123.   (33) 

 

The Clifford units, ei 's, are identified with orthogonal reflections (mirrors) 
 

e1 ↔ σyz, e2 ↔ σxz, e3 ↔ σxy. (34) 
 

The mappings between the Clifford bivectors eiej and the corresponding quaternion units are defined 
 

e3e2  ↔   σxyσxz = C2x ↔ [0, (1, 0, 0)], (35) 

e1e3  ↔  σyzσxy = C2y ↔ [0, (0,1, 0)], (36) 

e2 e1  ↔  σxzσyz = C2z ↔ [0, (0, 0,1)]. (37) 

 

The inversion, which is a product of three reflections, is obtained by a trivector as follows: 

 

e1e2e3  ↔  σyzσxzσxy = i, (38) 

 

where  e1e2e3   Cl3 is performed [5]. 
 

4. AN APPLICATION OF THE SYMMETRY OPERATIONS WITH CLIFFORD ALGEBRA 
 

The reflection and rotation operations in the solid state physics and molecular physics play an important 
role.  

Table 2. Numbers for the five Platonic solids 

 

 Number of faces Number of edges Number of vertices Edges per face 

Tetrahedron 4 6 4 3 

Cube 6 12 8 4 

Octahedron 8 12 6 3 

Icosahedron 20 30 12 3 

Dodecahedron 12 30 20 5 
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The symmetry operations can be easily applied on the regular polyhedra, which are called Platonic 
Solids., and semi-regular poly-hedra, which are called Archimedean Solids. The Platonic solids are 

tetrahedron, cube, octahedron, icosahedron and dodecahedron. Some important numbers for the Platonic 

solids are shown in Table 2. The Archimedean solids are truncated tetrahedron, cuboctahedron, 

truncated cube, truncated octahedron, rhombicuboctahedron (or small rhombicuboctahedron), truncated 
cuboctahedron (or great rhombicuboctahedron), snub cube ( or snub hexahedron), icosidodecahedron, 

truncated dodecahedron, truncated icosahedron, rhombicosidodecahedron (or small rhombicosi-

dodecahedron), truncated icosidodecahedron (or great rhombicosidodecahedron), snub dodecahedron 
(or snub icosidodecahedron). Some important numbers for the Platonic solids are shown in Table 3 [14]. 

 

Table 3. Numbers for the thirteen Archimedean solids 

 

 Number of faces Number of edges Number of 

vertices Truncated Tetrahedron 8(4 triangles,4 hexagons) 18 12 

Cuboctahedron 14 ( 8 triangles,6 squares) 24 12 

Truncated Cube 14 ( 8 triangles,6 octagons) 36 24 

Truncated Octahedron 14 6 squares,8 hexagons) 36 24 

Rhombicuboctahedron 26 ( 8 triangles,18 squares) 48 24 

Truncated Cuboctahedron 26 (12 squares,8 hexagons,6 octagons) 72 48 

Snub Cube 38 (32 triangles,6 squares) 60 24 

Icosidodecahedron 32 (20 triangles,12 pentagons) 60 30 

Truncated Dodecahedron 32 (20 triangles,12 decagons) 90 60 

Truncated Icosahedron 32 (12 pentagons,20 hexagons) 90 60 

Rhombicosidodecahedron 62 (20 triangles,30 squares,12 pentagons) 120 60 

Truncated Icosidodecahedron 62 (30 squares,20 hexagons,12 decagons) 180 120 

Snub Dodecahedron 92 (80 triangles,12 pentagons) 150 60 

 

Table 4. For the model, shown in Fig. 1, the vertices of a rhombicuboctahedron 

corner x y z 

1 a -a 1,85 

2 a a 1,85 

3 -a a 1,85 

4 -a -a 1,85 

5 a -1,85 a 

6 1,85 -a a 

7 a -1,85 -a 

8 1,85 -a -a 

9 -a 1,85 a 

10 -1,85 a a 

11 -a 1,85 -a 

12 -1,85 a -a 

13 1,85 a a 

14 a 1,85 a 

15 1,85 a -a 

16 a 1,85 -a 

17 -1,85 -a a 

18 -a -1,85 a 

19 -1,85 -a -a 

20 -a -1,85 -a 

21 a -a -1,85 

22 a a -1,85 

23 -a a -1,85 

24 -a -a -1,85 
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A rhombicuboctahedron has twenty four-vertices. The vertices of a dodecahedron, whose origin was 
chosen at the centre of body, are indexed as cartesian coordinates in Table 3. 
 

Assuming the distances of midpoints of all the edges to the origin of the rhombicuboctahedron are 

normalized. We suppose that edge lenght is 2a. 
 

Now, for example, from eqs.(12), (13) and (21), the C2 rotation of 13th vertex around the z-axis is 
 

R' = AzR13az
* 

= 

 

 

 

 

 

 

= 

 

 

 

where Az, R13 and az
* are the (4x4)-matrix representations of rotation z-axis and 13th vertex, (4 × 1)-

column matrix representation of the (4 × 4) matrix of Az
* respectively. This result of the matrix 

operation defines the 17th vertex of the rhombicuboctahedron. 
 

This method is the conventional geometrical method of the rotation operation for rhombicuboctahedron. 

Using quaternions, the same calculation can be obtained as follows: 

 
Figure  3. Rhombicuboctahedron 

 

R'= az R13 az
*        

= (1e12)(1,85e1 + ae2 + ae3)(–le12)
     

= (–1,85e1 + –ae2 + ae3)       

 

This result is equal to the quaternionic definition of 17th vertex, as well. Now we investigate another 
rotation operation of 17th z-axis around the straight line. 

0  0   0 1

0  0 1  0

0  1   0   0

1   0   0   0

 
 


 
 
 
 

0    1,85 a a

1,85     0   a a

a          a      0 1,85

a          a      1,85   0

   
 

 
 
 
 
 

0

0

0

1

 
 
 
 
 
 

   0

1,85

 a

    a

 
 

 
 
 
 
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The rotation 90° of 17th vertex z-axis around this straight line. 
 

R' = az R17 az
*     

= (
√2

2
 + 

√2

2
 e12 )(–1,85e1 – ae2 + ae3)( 

√2

2
 – 

√2

2
 e12) 

= (—ae1 + 1,85e2 + ae3). 
 

This result is equal to the quaternionic definition of 9th vertex. The rotation 45° of 9th vertex z-axis 

around this straight line 
 

R' = az R9 az
*       

= (
√√2+2

2
+ 

√2−√2

2
 e12)(–ae1+ 1,85e2 + ae3) (

√√2+2

2
− 

√2−√2

2
 e12)   (56) 

= (ae1 + 1,85e2 + ae3).   

 

This result is equal to the quaternionic definition of 14th vertex. The reflection operations can be also 

defined by the Clifford algebra elements. According to the xz-plane, the reflection of 2th vertex with 

Clifford algebra is 

 

R'= σxz R10 σxz
-1  

=e13(ae1 + ae2 + 1,85e3)e13  

=ae1 – ae2 + 1,85e3 , 

 

where σxz
-1 is the inverse of σxz operation. The reflection of 10th vertex on the xz-plane is equal to the 

1th vertex. After this reflection of the 2th vertex on the xz-plane, the reflection of 1th vertex on the xy-

plane can be written as 

 

R" = σxy R' σxy
-1 

=σxy (σxz R2 σxy
-1) σxy

-1 

= (σxyσxz)R2(σxzσxy) 

= ae1- ae2 - 1,85e3. 
 

This result is equal to the quaternionic definition of 21th vertex in Table 4. 

 

The rotations 45° (C8), 90° (C4), 180° (C2) of around axis which are perpendicular to the this surface, 

from the midpoint of each square face and the rotations 60° (C6) of around axis which are perpendicular 

to the this surface, from the midpoint of each face of triangle are possible. 3 reflection in a plane 

perpendicular to a 3-fold axis and the rotoreflections 180° (S2) of around the axis drawn from each 

corner to the other corner are also possible. Oh (*432) group; achiral octahedral symmetry or full 

octahedral symmetry; is made up of all this operations of rotation and reflection. 

 

5. CLASSICS PARTICLES' ENERGY AT ARCHIMEDEAN SOLIDS WITH CLIFFORD 

ALGEBRA 

 

The reflection and rotation operations in the solid state physics and molecular physics play an important 

role. The symmetry operations can be easily applied on the regular polyhedra, which are called Platonic 

Solids. At the same time the operations can be apply to The Archimedean solids. 
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Any point represented by R quaternion transforms to the a new quaternionic point at the end of a rotation 
defined by A unit quaternion. This new quaternion is  
 

R ́=A R A*,  

where A* is complex conjugate of A.  

The reflection of r across the line a, namely the mirror image r’ of r with respect to a, is given by  

r’=ara
-1 

 
 

For example rhombicuboctahedron’s 17
th 

vertices’s replasement and potential energy with Clifford 
algebra:  
 

R' = az R17 az
*     

= (
√2

2
 + 

√2

2
 e12 )(–1,85e1 – ae2 + ae3)( 

√2

2
 – 

√2

2
 e12) 

= (—ae1 + 1,85e2 + ae3). 
 

This result is equal to the quaternionic definition of 14th vertex. 

We can calculate difference of potential energy for this two points. The potential energy of this points 
are equal. 
 

14th vertex’s coordiante is (ae1 + 1,85e2 + ae3) and 21th vertex’s coordiante is ae1- ae2 -1,85e3. 

R21’-R14= (ae3)-(-1,85e3.)= 2,85e3 

The difference of potential energy for this points is  

U=mg(2,85). 

 

Table 5. Potential energies of rhombicuboctahedron’s edges 
(m is mass, g is gravitational acceleration) 

Vertices 

number’s 

z 

1 1,85 gh 

2 1,85 gh 

3 1,85 gh 

4 1,85 gh 

5 a gh 

6 a gh 

7 -a gh 

8 -a gh 

9 a gh 

10 a gh 

11 -a gh 

12 -a gh 

13 a gh 

14 a gh 

15 -a gh 

16 -a gh 

17 a gh 

18 a gh 

19 -a gh 

20 -a gh 

21 -1,85 gh 

22 -1,85 gh 

23 -1,85 gh 

24 -1,85 gh 
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6. CONCLUSIONS 
 

In this study we apply Clifford Algebra to Archimedean Solids. They are semi-symmetric solids. The 
geometrical methods and matrices are used for the investigation of symmetry operations of the 

symmetric solid too [5]. Clifford algebras are algebras of geometries and quaternions are hypercomplex 

numbers [15]. In this study, Clifford algebra and quaternions are used for the symmetry operations. 
When these operations are made with Clifford algebra and quaternions, it is obvious that the calculations 

are easy and compact. The quaternions and Clifford algebra are much simpler to apply to the symmetry 

operations than the conventional methods of molecular symmetry. This method can be applied to the 

more complex structures. 
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