A lexicographical order induced by Schauder bases

Neşet Özkan Tan(D)
Department of Mathematics, Uşak University, 1 Eylül Kampusu, Uşak

Abstract

In this paper, we show that every Banach space with a Schauder basis can be seen as a totally ordered vector space. Indeed, this order can be considered as a lexicographical order since it is a generalization of lexicographical order in \mathbb{R}^{n}. We also provide order structural properties of the order by approaching geometrical (cone) sense.

Mathematics Subject Classification (2020). 06A05, 49J27, 06A05, 46A45, 46A40
Keywords. total order, cone, Schauder basis

1. Introduction

The ordered vector spaces have been studying since at the beginning of the last century and it has efficient applications the other disciplines, see $[1,2,4,5]$. Since the significant properties of the optimization problems in a vector space are frequently based on an order-structure, the optimality concept has been started to approached by the properties of the cone which is a geometric way to understand order structures in the vector spaces. Some of these studies have a wide range of applications such as equilibrium theory and well-posedness problems, see [7, 9-11,16].

In this study, we show that we can obtain a totally order by using projections of a Schauder basis of a Banach space that gives us a lexicographical-like order structure. In fact, this cone can be considered as a "generalization" of the lexicographical cone in \mathbb{R}^{n}. We also show that the equivalent Schauder basis generates order-isomorphic vector lattices. By associating our findings with some well-known results in Banach space theory, such as every infinite-dimensional Banach space has a subspace that has a Schauder basis [6], we can immediately get the following conclusions: Every separable Banach space has a totally ordered subspace, every infinite-dimensional Banach space has an infinitedimensional quotient space which can be considered as a totally ordered vector lattice. Among the other things mentioned above, we obtain a generalization of the main results of the papers $[9,10]$.

[^0]
2. Preliminaries

Let us recall some of the notions of the ordered vector spaces. In this section, all definitions and aligned properties can be found in [3, 4, 8, 12-14, 19]. Throughout of this section, let E be a real vector space and θ be zero vector in E. A subset \mathcal{K} of E is called a cone if: $\mathcal{K}+\mathcal{K} \subset \mathcal{K}, \alpha . \mathcal{K} \subset \mathcal{K}$ for all $\alpha \in \mathbb{R}^{\geq 0}$ and $-\mathcal{K} \cap \mathcal{K}=\{\theta\}$. A subset \mathcal{W} of E is called a wedge if it satisfies all cone axioms except the axiom $-\mathcal{K} \cap \mathcal{K}=\{\theta\}$. The Minkowski sum of $A, B \subseteq E$ is defined by $A+B=\{a+b: a \in A$ and $b \in B\}$ and the scalar multiplication is defined by $\alpha . A=\{\alpha . a: a \in A\}$. It is well known that if \mathcal{K} is a cone in a vector space E then :

$$
a \leq b \text { if and only if } b-a \in \mathcal{K}
$$

is a partial order in E. So that, the vector space E with a cone structure \mathcal{K} can be seen as a pair (E, \mathcal{K}) which is ordered vector space. Two ordered vector spaces (E, \mathcal{K}) and (M, \mathcal{L}) is called order isomorphic if there is a linear bijection, $T: E \rightarrow M$ such that $T(\mathcal{K})=\mathcal{L}$. If a pair (E, \mathcal{K}) has lattice property (i.e., $\sup \{x, y\}$ or $\inf \{x, y\}$ exists for every pair of $x, y \in E)$ then the pair (E, \mathcal{K}) is called an ordered vector lattice or a Riesz space. A sequence $\left\{x_{n}: n \in \mathbb{N}\right\}$ in the ordered vector lattice E is called order convergent to an element $x \in E$ if there exits a monotone decreasing sequence $\left\{q_{n}: n \in \mathbb{N}\right\}$ in E with $\inf \left\{q_{n}\right\}=\theta$ such that $\sup \left\{\left(x_{n}-x\right),\left(x-x_{n}\right)\right\}<q_{n}$ for all $n \in \mathbb{N}$.

If a cone \mathcal{K} has additional property that $-\mathcal{K} \cup \mathcal{K}=E$, then the cone \mathcal{K} is called a totally ordering cone. In this case, the order relation which is induced by the cone structure is called a totally order. Let us introduce some of subspaces of an ordered vector lattice which provide useful information about whole vector lattice. Let I be a subspace of E. If I has lattice property then I is called a vector sub-lattice of E. If a vector sub-lattice I has solid property (i.e, if a triple of $x, y, y-x \in \mathcal{K}$ with $y \in I$ implies that $x \in I$) then I is called an order ideal of E. The Minkowski sum of order ideals and intersection of order ideals is an order ideal as well. An order ideal I is called a maximal order ideal if it is the only proper ideal which is contained by itself. Let (E, \mathcal{K}) be an ordered vector lattice, (E, \mathcal{K}) is called an Archimedean vector lattice if for all $n \in \mathbb{N}$ and for any $x \in E$, $y, y-n x \in \mathcal{K}$ implies that $x=\theta$ or $x \in-\mathcal{K}$. It is well known that the unique totally ordered Achimedean vector lattice is \mathbb{R} with the cone $[0, \infty)$, up to vector lattice isomorphism. The lexicographical order is a non-Archimedean totally order which is defined on $\mathbb{R}^{n \geq 2}$, with the following relation: $\left(x_{1}, x_{2}, \ldots, x_{n}\right)<\left(y_{1}, y_{2}, \ldots, y_{n}\right) \Longleftrightarrow x_{i}<y_{i}$ for the smallest i for which $x_{i} \neq y_{i}$. A sequence $\left(b_{n}\right)$ in a Banach space X is called a Schauder basis of X if for every $x \in X$ there is an unique sequence of scalars $\left(\alpha_{n}\right)$ so that $x=\sum_{n=1}^{\infty} \alpha_{n} \cdot b_{n}$. We should emphasise that for a Schauder basis, there is not only countability, but a specific ordering of base elements. Let E and L be two Banach spaces with Schauder basis $\left(b_{n}\right)$ and $\left(c_{n}\right)$, respectively. Basis $\left(b_{n}\right)$ and $\left(c_{n}\right)$ are called equivalent base if any convergence of $\sum_{n=1}^{\infty} \alpha_{n} . b_{n}$ or $\sum_{n=1}^{\infty} \alpha_{n} \cdot c_{n}$ implies each other.

3. Totally ordering cones with Schauder basis

Let E be an infinite dimensional Banach space with Schauder basis $\left(b_{n}\right)$. Each of element $x \in E$ correspond to unique scalar sequence $\left(\alpha_{n}\right)$ where $x=\sum_{n=1}^{\infty} \alpha_{n} . b_{n}$, in the sense of norm convergence. The linear mappings $P_{n}: E \rightarrow E$, defined by

$$
P_{n}(x)=\sum_{k=1}^{n} \alpha_{k} \cdot b_{k} .
$$

Let $b_{n}^{*}: E \rightarrow \mathbb{R}$ denote the functional, where b_{n}^{*} assigns to every vector x in E the coordinate α_{n} of x in the above expansion. Each b_{n}^{*} is a bounded linear functional on E.

Let us define the sequence of sets

$$
\begin{gathered}
B_{1}=\left\{x \in E: b_{1}^{*}(x)>0\right\} \\
B_{2}=\left\{x \in E: b_{1}^{*}(x)=0 \text { and } b_{2}^{*}(x)>0\right\}, \ldots \\
B_{n}=\left\{x \in E:\left(b_{i}^{*}(x)=0 \text { for all } i<n\right) \text { and } b_{n}^{*}(x)>0\right\}, \ldots
\end{gathered}
$$

If $\mathcal{K}=\bigcup_{n=1}^{\infty} B_{n} \cup\{\theta\}$ then \mathcal{K} is cone in E that produces totally order for the elements of E.

Theorem 3.1. (E, \mathcal{K}) is a totally ordered vector lattice.
Proof. We will show that $\mathcal{K}=\bigcup_{n=1}^{\infty} B_{n} \cup\{\theta\}$ is a totally ordered cone. Let us first show that $\mathcal{K}+\mathcal{K} \subset \mathcal{K}$. If at least one of $x, y \in \mathcal{K}$ is zero vector then $x+y \in \mathcal{K}$. If $x \neq \theta$ and $y \neq \theta$ then $b_{i}^{*}(x)>0, b_{j}^{*}(y)>0$ for some $i, j \in \mathbb{N}$, and $b_{n}^{*}(x)=b_{n}^{*}(y)=0$ for all $n<\min \{i, j\}$ Since b_{k}^{*} is a linear functional for all $k \in \mathbb{N}, x+y \in B_{\min \{i, j\}}$, and so $\mathcal{K}+\mathcal{K} \subset \mathcal{K}$. The linearity of b_{k}^{*} 's implies that $\alpha \mathcal{K} \subset \mathcal{K}$ for all $\alpha \geq 0$. Thus \mathcal{K} is a wedge. The linearity of b_{k}^{*} 's also implies that $-\mathcal{K} \cap \mathcal{K}=\{\theta\}$. Now let $\theta \neq x \in E$ then let us define $k:=\min \left\{i \in \mathbb{N}: b_{i}^{*}(x) \neq 0\right\}$. Thus $x \in-B_{k} \cup B_{k} \subset-\mathcal{K} \cup \mathcal{K}$. Therefore, the cone \mathcal{K} is a totally ordering cone in E.

The rest of the paper, the notation " (E, \mathcal{K}) " means that totally ordered vector lattice with the cone \mathcal{K} which is induced by Schauder basis of the vector space E.
Proposition 3.2. Let E and L be two Banach spaces with equivalent basis $\left(b_{n}\right)$ and $\left(c_{n}\right)$, respectively. If \mathcal{B} and \mathcal{C} are totally ordering cones induced by $\left(b_{n}\right)$ and $\left(c_{n}\right)$, respectively, then (E, \mathcal{B}) and (L, \mathcal{C}) are order isomorphic vector lattices.
Proof. From Closed Graph Theorem, b_{n} and c_{n} are equivalent basis if and only if there is an isomorphism $T: E \rightarrow L$ such that $T\left(b_{n}\right)=c_{n}$ for all $n \in \mathbb{N}$. It is easy to see that for each $x \in E$, we have $b_{n}^{*}(T(x))=c_{n}^{*}(x)$ for all $n \in \mathbb{N}$. Therefore the equality $T(\mathcal{B})=\mathcal{C}$ holds and so, T is an order isomorphism.

The following corollary is immediately obtained from Proposition 3.2 by considering the case $E=L$.

Corollary 3.3. Let \mathcal{B} and \mathcal{C} be totally ordering cones in a Banach space E which are induced by equivalent basis b_{n} and c_{n}, respectively. Then (E, \mathcal{B}) and (E, \mathcal{C}) are order isomorphic vector lattices.
Proposition 3.4. The subset $I_{1}=\left\{x \in E: b_{1}^{*}(x)=0\right\}$ of E is a maximal order ideal in (E, \mathcal{K}).
Proof. Firstly, let us show that I_{1} is an order ideal in (E, \mathcal{K}). It is not hard to see that I_{1} is a vector sub-lattice of E. To show I_{1} has the solid property, let $x, y, y-x \in \mathcal{K}$ with $y \in I_{1}$. Since $b_{1}^{*}(y)=0$ and $b_{1}^{*}(y-x)=b_{1}^{*}(y)-b_{1}^{*}(x)$, then $b_{1}^{*}(x)$ is zero or a negative real number. But the case being negative contradicts with being $x \in K$. Therefore $x \in I_{1}$ and so that I_{1} is an order ideal in E.

Now let us show that it is a maximal order ideal. Suppose L is an order ideal in E such that $I_{1} \subsetneq L$. If $x \in L \backslash I_{1}$ then $b_{1}^{*}(x) \neq 0$. We will show that $L=E$. Let us assume that there exists $e \in E \backslash L$, then it is easily to see that $b_{1}^{*}(e) \neq 0$. We can assume that both of $b_{1}^{*}(e)$ and $b_{1}^{*}(x)$ are positive otherwise we can rearrange $-x$ or $-e$ as the positive values. Now, since real numbers are Archimedean there exists $\alpha \in \mathbb{R}$ such that $\alpha b_{1}^{*}(x)>b_{1}^{*}(e)$. The solid property of L implies $e \in L$. Therefore $L=E$ and I_{1} is a maximal order ideal in (E, \mathcal{K}).

Indeed, it is not hard to see that $I_{n}=\left\{x \in E: b_{i}^{*}(x)=0\right.$ for all $\left.i \leq n\right\}$ is an order ideal for each $n \geq 1$. Let $I(E)$ be the family of all order ideals in E. It is well known that $I(E)$ has a lattice structure if one consider Minkowski sum and intersection as the lattice operations.

Proposition 3.5. $I(E)$ has countable cardinality.
Proof. We will show that all order ideals of E, except itself and $\{\theta\}$, are one of the $I_{n}=\left\{x \in E: b_{i}^{*}(x)=0\right.$ for all $\left.i \leq n\right\}$ for some $n \in \mathbb{N}$. Suppose that a proper order ideal $M \neq I_{n}$ for all $n \geq 1$. Then from maximality of I_{1}, it is easy to see that $M \subset I_{1}$. Otherwise, by following second part of proof of Proposition 3.4, M must contain all elements of E. Indeed, M should be also a subset of I_{2}. If it is between I_{1} and I_{2} then again by following second part of proof of Proposition $3.4, M$ should be equal I_{1}. Now, one can get the desired result by induction over $n \geq 1$. Therefore all order ideals of E must be equal one of $\left\{I_{n}\right\},\{\theta\}$ or E.
Corollary 3.6. The lattice $I(E)$ is totally ordered.
It is well known that if I is an order ideal in a vector lattice E, then the quotient vector space E / I is a vector lattice with the following order : $\phi(x)>0$ if $x+y>\theta$ for all $y \in I$, where ϕ is the canonical map from E to E / I. If I is a maximal order ideal in a vector lattice E then the quotient vector lattice E / I is order isomorphic to the real numbers, see [17]. So the following corollary is obtained immediately from the proof of Proposition 3.5, since I_{1} is the unique maximal ideal of E we have the following corollary.

Corollary 3.7. E / I_{1} is lattice isomorphic to \mathbb{R}.
The cone \mathcal{K} is not Archimedean (A totally ordered cone is closed if and only if it has at most 1 dimension, see [4]), nevertheless, we have following relationship between order convergence and base projections.

Lemma 3.8. If a sequence $\left\{x_{n}\right\}$ of E is order convergent to $x \in E$, then the real sequence $\left\{b_{k}^{*}\left(x_{n}-x\right)\right\}$ converges to zero for each $k \in \mathbb{N}$.
Proof. First of all, let us show that if $q_{n} \downarrow \theta$ in E, then $b_{k}^{*}\left(q_{n}\right) \downarrow 0$ for each $k \in \mathbb{N}$. Let us assume that $q_{n} \downarrow \theta$ in E but $r:=\inf _{n \in \mathbb{N}} b_{k_{0}}^{*}\left(q_{n}\right) \neq 0$ for a $k_{0} \in \mathbb{N}$. We can assure that this infimum exits because of that the sequence $b_{k_{0}}^{*}\left(q_{n}\right)$ is bounded below from zero. Let y be chosen such that $0<b_{k_{0}}^{*}(y)<r$ and $b_{k}^{*}(y)=0$ for all $k<k_{0}$. Then obviously $y \neq \theta$ and $q_{n}>y$ for all $n \in \mathbb{N}$ which contradicts with being $q_{n} \downarrow \theta$.

Now, let x_{n} be order convergent to $x \in E$. Then there exits a sequence $q_{n} \downarrow \theta$ such that $\left|x_{n}-x\right|<q_{n}$ for each $k \in \mathbb{N}$. From the inequality $b_{k}^{*}\left(\left|x_{n}-x\right|\right)<b_{k}^{*}\left(q_{n}\right)$ and with the previous observation, we obtain that the sequence $b_{k}^{*}\left(\left|x_{n}-x\right|\right)$ converges to zero for each $k \in \mathbb{N}$. By using linearity of b_{k}^{*}, we can easily get the desired result.
Example 3.9. The norm convergence does not imply the order convergence and vice versa. Let us consider the Banach space c_{0} with sup norm. Now consider sequence of $x_{n}=\left(\frac{1}{n}, 0,0, \ldots\right)$ for $n \in \mathbb{N}$. It is easy to see that the sequence $\left\{x_{n}: n \in \mathbb{N}\right\}$ converges to zero with sup norm. But it does not order converge to zero. To see this, it is enough to observe that $\inf _{n \in \mathbb{N}}\left\{x_{n}\right\}>(0,1,0,0, \ldots)>\theta$.

In order to see that order convergence does not imply norm convergence, let us consider the Schauder basis $\left(e_{n}\right)_{n=1}^{\infty}$ of c_{0} which is not a Cauchy sequence with respect to sup norm, but it is order convergent to zero vector. It is clear that zero vector is a lower bound for the sequence $\left\{e_{n}\right\}$ and let us assume that $e \in E$ is another lower bound for $\left\{e_{n}\right\}$ such that $e>\theta$. Since $e>\theta$ then there exits an integer n_{0} such that n_{0} th term of the sequence e is a positive real number. But in this case we obtain $e_{n_{0}+1}<e$ and this contradict with property of e that being lower bound of $\left\{e_{n}\right\}$. Therefore θ is greatest lower bound of $\left\{e_{n}\right\}$, so that it is order convergent to zero vector.

It is well known that Hamel base of the finite dimensional Banach spaces can be seen as a Schauder basis and they are all equivalent to Hamel base of \mathbb{R}^{n}. Since there is only
one totally ordering cone in \mathbb{R}^{n} and by Proposition 3.2 , we can re-state the following well-known corollary.

Corollary 3.10. Every finite dimensional totally ordered vector lattice is order isomorphic to $\left(\mathbb{R}^{n},<_{l e x}\right)$.

Indeed, it is well known that in a Hilbert space, all orthonormal basis are equivalent. Since every orthogonal base in a separable Hilbert space can be seen as a Schauder basis, Proposition 3.2 gives us the following corollary which is the main result of [10].

Corollary 3.11. Every separable Hilbert space has totally ordering cone.

References

[1] C.D. Aliprantis, C. Bernard and R. Tourky Economic equilibrium: Optimality and price decentralization, Positivity, 6 (3), 205-241, 2002.
[2] C.D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, American Mathematical Society, Providence, RI, 2003.
[3] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
[4] C.D. Aliprantis and R. Tourky, Cones and duality, 84, American Mathematical Society, Providence, RI, 2007.
[5] C.D. Aliprantis, R. Tourky and C.Y. Nicholas, Cone conditions in general equilibrium theory, J. Econom. Theory 1, 96-121, 2000.
[6] C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17, 151-164, 1958.
[7] M. Ehrgott, Multicriteria optimization, Springer Science and Business Media, 2005.
[8] E. Jonge and A.C.M Rooij, Introduction to Riesz spaces, Mathematisch Centrum, 1977.
[9] M. Kucuk, M. Soyertem and Y. Kucuk, On constructing total orders and solving vector optimization problems with total orders, J. Global Optim. 50, (2), 235-247, 2011.
[10] M. Kucuk, M. Soyertem and Y. Kucuk, The generalization of total ordering cones and vectorization to separable Hilbert spaces, J. Math. Anal. Appl. 389, (2), 1344-1351, 2012.
[11] M. Kucuk, M. Soyertem, Y. Kucuk and I. Atasever, Vectorization of set-valued maps with respect to total ordering cones and its applications to set-valued optimization problems, J. Math. Anal. Appl. 385 (1), 285-292, 2012.
[12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I-II Function Spaces, Springer, 1996.
[13] W.A. Luxemburg and A.C. Zaanen, Riesz Spaces I, North-Holland, Amsterdam, 1971.
[14] N.P. Meyer, Banach Lattices, Springer, Berlin, 1991.
[15] A. Pelczynski and I. Singer, On non-equivalent basis and conditional basis in Banach spaces, Studia Math. 1 (25), 5-25, 1964.
[16] A.L. Quoc and D.T. Quoc, Tykhonov well-posedness for lexicographic equilibrium problems, Optimization, 65 (11), 1929-1948, 2016.
[17] H.H. Schaefer, Banach lattices and positive operators, Springer-Verlag, 1974.
[18] J. Schauder, Zur Theoriestetiger Abbildungenin Funktionalraumen, Math. Z. 26, 4765, 1927.
[19] A.C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, 1997.

[^0]: Email address: n.ozkan.tan@gmail.com
 Received: 16.12.2019; Accepted: 29.08.2020

