

Araştırma Makalesi - Research Article

Nadir Toprak Elementi İlaveli ZnO-Esaslı Varistörlerin Elektriksel Özelliklerinin Karşılaştırılması

Fatih APAYDIN^{1*}, Ali ÇELİK¹, Yasemin ÇELİK²

Geliş / Received: 21/09/2019

Revize / Revised: 31/10/2019

Kabul / Accepted: 02/11/2019

ÖZ

ZnO esaslı varistörler sahip oldukları doğrusal olmayan akım-voltaj (I-V) özelliği ile elektronik devreleri ve devre elemanlarını voltaj dalgalanmalarına karşı korumaktadır. Doğrusal olmayan I-V özelliği sayesinde varistörler farklı voltaj değerlerinde farklı direnç gösterir. Varistörlerde kırılma voltajı olarak belirtilen kritik voltaj değeri aşıldığı takdirde, varistör daha iletken hale gelerek oluşan yüksek akımı kendi üzerinden geçirerek devreyi koruyan sigorta görevi görür. Bu çalışmada ZnO-Bi₂O₃ esasla varistörlere çeşitli nadir toprak elementi katkısının (Y₂O₃, Er₂O₃, Sm₂O₃, La₂O₃, Yb₂O₃) mikroyapısal ve elektriksel özelliklerine etkileri karşılaştırılmıştır. % 98,5 mol ZnO, % 1 mol Bi₂O₃, % 0,5 mol (Y₂O₃, Er₂O₃, Sm₂O₃, Yb₂O₃) komposizyonunda beş farklı varistör hazırlanmıştır. Bu kompozisyonlarda hazırlanan numuneler 1100°C'de 10 °C/dk ısıtma/soğutma hızında 1 saat sinterlenmiştir. Sonrasında hazırlanan varistörlerin mikroyapısal ve elektriksel özellikleri incelenmiştir. Yapılan analiz ve hesaplamalar sonucunda en küçük tane boyutu (4µm) La₂O₃ katkılı varistörde, en büyük tane boyutu (6,66 µm) Y₂O₃ katkılı varistörde gerçekleşmiştir. Üretilen varistörlerin kırılma voltajı (E_b) büyükten küçüğe doğru sırasıyla Sm₂O₃, La₂O₃, Fr₂O₃, Y₂O₃ ve Yb₂O₃ katkılı numunelerde 149, 142, 116, 114 ve 28 volt/mm olarak ölçülmüştür.

Anahtar Kelimeler- Varistör, Zno, Nadir Toprak Elementi

^{1*}Sorumlu yazar iletişim: fatih.apaydin@bilecik.edu.tr (<u>https://orcid.org/0000-0002-6905-7465</u>) Metalurji ve Malzeme Mühendisliği, Bilecik Şeyh Edebali Üniversitesi

²İletişim: ali.celik@bilecik.edu.tr (<u>https://orcid.org/ 0000-0001-6206-1587</u>)

Metalurji ve Malzeme Mühendisliği, Bilecik Şeyh Edebali Üniversitesi

³İletisim: vbozkaya@eskisehir.edu.tr (https://orcid.org/ 0000-0003-3993-6095)

Malzeme Bilimi ve Mühendisliği, Eskişehir Teknik Üniversitesi

Comparison of Electrical Properties of Rare Earth Elements Doped ZnO-Based Varistor

ABSTRACT

Zinc oxide based varistors protect electronic circuits and circuit elements against voltage fluctuations due to their non-linear current-voltage (I-V) feature. The nonlinear I-V feature is the different resistance of the varistor at different voltage values, and if the critical voltage is exceeded, the varistor protects the circuit by losing a large part of its resistance and passing over the high current generated. In this study, the effects of various rare earth element additives (Y_2O_3 , Er_2O_3 , Sm_2O_3 , La_2O_3 , Yb_2O_3)to varistors on ZnO-Bi2O3 were compared with microstructural and electrical properties. Five different varistors were prepared in 98.5 mol% ZnO, 1 mol% Bi₂O₃, 0.5 mol% (Y_2O_3 , Er_2O_3 , Sm_2O_3 , La_2O_3 , Yb_2O_3) composition. Samples prepared in these compositions were sintered at 1100 ° C for 10 hours at a heating / cooling rate of 10 ° C / min. Then microstructural and electrical properties of varistors were investigated. As a result of the analysis and calculations, the smallest grain size (4μ m) was realized in the La_2O_3 doped varistor and the largest grain size (6.66 μ m) was in the Y_2O_3 layer varistor. The breakdown voltage (E_b) of the varistors produced was measured from 149 to 142, 116, 114 and 28 volts / mm in samples Sm_2O_3 , La_2O_3 , Ya_2O_3 , Ya

Keywords- Varistor, Zno, Rare Earth Element

I. GİRİŞ

Elektronik devreler ve güç sistemleri kısa devre, yıldırım düşmesi ve elektrostatik deşarj gibi nedenlerden dolayı geçici aşırı gerilim işlemlerine maruz kalabilirler [1]. Bu şekilde çeşitli dalgalanmaların üstesinden gelmenin en ekonomik yolu varistör kullanmaktır. ZnO varistörleri, az miktarda çeşitli metal oksitleri içeren ZnO tozunun sinterlenmesiyle üretilen doğrusal olmayan voltaj (V)- akım (I) özelliklerine sahip seramik cihazlardır [2-4].

1970 yılların başında Matsuoka'nın varistörleri keşfinden beri özellikle ZnO-Bi₂O₃-MeO, ZnO-Sb₂O₃-MeO karışımların mükemmel varistör özellikleri gösterdiği bilinmektedir [5-10]. Yapılan tüm bu çalışmalarda ZnO varistörlerin lineer olmayan I-V özelliklerinin, tane sınırlarında bulunan çift Schottky engeline bağlı olduğu belirtilmektedir. Bi₂O₃, Co₂O₃, MnO₂, Cr₂O₃, Sb₂O₃ CuO ve TiO₂, gibi katkı maddeleri ZnO özelliğini modifiye etmek için geleneksel varistör üretiminde kullanılmıştır. Bu katkılardan Bi₂O₃, ZnO seramiklerin düzensizlik katsayısını iyileştirilmesi için çift schottky engellerinin indükleyicisi olarak kabul edilir. Cr₂O₃, Co₂O₃ ve MnO₂ gibi geçiş metal oksitler ise, düzensizlik katsayını (α) artırmak ve daha düşük sızıntı akımı elde etmek için bariyer miktarını artırmada tercih edilirler [11]. Düzensizlik katsayısı (α), varistörlerin kararlı olarak çalışmasını temsil eden bir katsayıdır. Düzensizlik katsayısı artıtıkça varistörün kararlılığı artmaktadır [12]. Yüksek voltaj seramikleri ince taneli bir yapıya ihtiyaç duyar bunun için genellikle Sb₂O₃ ZnO'nun tane büyümesini engellemek için ilave edilir.

Son zamanlarda çeşitli nadir toprak elementlerinin varistörlerin kırılma voltajı ve enerji karakteristlerini önemli ölçüde artırdığı belirtilmektedir. Bernik ve arkadaşları yaptıkları çalışmada ZnO-Bi₂O₃- esaslı varistörlere Y₂O₃'ün etkilerini inceledikleri çalışmada Y₂O₃'ün tane boyutunu incelttiğini ve kırılma voltajını artırdığını belirtmiştir [13]. ZnO-Pr₆O₁₁-Co₃O₄-MnCO₃ karışımına Y₂O₃'ün etkilerinin incelediği diğer bir çalışmada Y₂O₃'ün varisötörün yoğunluğunu azalttığını ve yalnızca bir miktar elektriksel özelliklerde iyileşme sağladığını belirtilmiştir [14]. Choon yaptığı çalışmada ZnO-Pr₆O₁₁-CoO-C₂rO₃-Y₂O₃- varistör sistemine farklı oranlara Er2O3 katkısının etkisini incelediği çalışmasında, Er2O3'ün ortalama tane boyutunu küçülttüğünü, sinterleme yoğunluğunu, kırılma voltajını ve düzensizlik katsayını artırdığını belirtmiştir[15]. Hongyu ve arkadaşlarının çalışmasında ZnO esaslı varistöre farklı oranlarda Er₂O₃ katkısının düzensizlik katsayısını ve tane boyutunu küçülttüğünü buna karşın kırılma voltajını artırdığını belirtmiştir [16]. Sm₂O₃ etkilerinin incelendiği farklı bir çalışmada ise Ashraf ve arkadaşları, Sm₂O₃ katkısının tane boyutunu azalttığını, düzensizlik katsayını ve kırılma voltajını artırdığını belirtmişlerdir [17]. Zang ve arkadaşları,SiO₂ katkılı SnO₂-Zn₂SnO₄ seramik sistemine Sm₂O₃ katkısını etkilerini inceledikleri çalışmada Sm₂O₃'ün kapasidans değerini artıklarını belirtmiştir [18]. Nadir toprak elementi olan La₂O₃ katkısının etkileri üzerine de cesitli calısmalar yapılmıştır. Xu ve arkadasları, ZnO-Bi₂O₃ sistemine %0-1 La₂O₃ ilavesi yaptıkları calısmalarında %0.8 La₂O₃ katkılı varistörün bu sistem için en ideal özellikler gösterdiğini kırılma voltajının 320 volt/mm, düzensizlik katsayının 36,8 ve sızıntı akım değerini 0,29 μ A olduğunu belirtmiştir [19]. Xu ve arkadaşları yaptıkları diğer bir çalışmada, ZnO-Bi $_2O_3$ sistemine %0-0,4 mol oranında Yb₂O₃ katkısı yaptıkları varistör sisteminde, en iyi elektriksel özellikleri %0,2 Yb₂O₃ katkılı 900 °C'de sinterlenmiş numunelerde elde etmişlerdir.

Literatürde yapılan çalışmalarda ZnO varistör sisteminde çok kompleks (ZnO-A₂O₃-B₂O₃-...) karışımlara nadir toprak elementlerini etkileri incelenmiştir. Yaptığımız bu çalışmada basit sistemde (ZnO-Bi₂O₃-X₂O₃) nadir toprak elementlerinin tek başına etkilerini incelemek için beş farklı (Y₂O₃, Er₂O₃, Sm₂O₃, La₂O₃, Yb₂O₃) nadir toprak elementinin katkısının varistörün mikroyapısına ve elektriksel özelliklerine etkisi incelenmiştir.

II. DENEYSEL ÇALIŞMALAR

Çalışmalarda %99,99 saflıkta Merk marka ZnO, Bi_2O_3 , Y_2O_3 , Er_2O_3 , Sm_2O_3 , La_2O_3 ve Yb_2O_3 hammaddeler kullanılmıştır. % (98,5 mol) ZnO, % 1 (mol) Bi_2O_3 , % 0,5'er mol Y_2O_3 , Er_2O_3 , Sm_2O_3 , La_2O_3 ve Yb_2O_3 kompozisyonunda karışımlar hazırlanmıştır. Tablo 1'de hazırlanan numunelerin oranları ve kodlama sistemi belirtilmiştir Hazırlanan bu karışımlar propil alkol ortamında bilyeli değirmende 2 saat homojen olarak karıştırılmış, sonrasında vakumlu eveparatörde kurutulup toz haline getirilmiştir.

	A	B	С	D	E
ZnO	98,5	98,5	98,5	98,5	98,5
Bi ₂ O ₃	1	1	1	1	1
Y_2O_3	0,5				
Er ₂ O ₃		0,5			
Sm ₂ O ₃			0,5		
La_2O_3				0,5	
Yb ₂ O ₃					0,5
Toplam	100	100	100	100	100

Tablo 1. Karışımların kodlanması

Hazırlanan toz karışımları 1 g tartılarak silindirik pelet kalıbında şekillendirilip ardından 2500 bar basınçta soğuk izostatikpreste (CIP) preslenmiştir. Preslenerek şekillendirilen numuneler 1100 °C'de 1 saat 10 °C/dak ısıtma ve soğutma hızında kül fırınında sinterlenmiştir.

Üretilen varistörlerin teorik yoğunluğu (1) nolu formüle göre hesaplanırken, bağıl yoğunluğu Arşimet Prensibine göre aşağıdaki (2) formülle göre hesaplanmıştır. Varistör karışımlarının relatif yoğunlukları ise (3) denkleme göre (V_i, karışımda bulunan metal oksidin hacim oranı) hesaplanmıştır.

$$\rho T = V 1.\rho 1 + V 2.\rho 2 + \cdots \tag{1}$$

$$Bağıl yoğunluk = W_{ya_{\$}} / W_{ya_{\$}} - W_{ar_{\$}}$$
⁽²⁾

Malzemenin relatif yoğunluğu (3) nolu eşitlikte verilen formül yardımı ile

$$% Relatifyoğunluk = \rho_{(bağıl yoğunluk)} / \rho_{(Teorikyoğunluk)} x100$$
(3)

Sinterlenen numuneler klasik metalografik zımparalama ve parlatma işlemleri sonrasında iletkenlik sağlanması için altın kaplanmıştır. Altın kaplanan numunelerin SEM görüntüleri ve EDS analizleri Bilecik Şeyh Edebali Üniversitesi Merkezi Araştırma Laboratuvarı ve Uygulama Merkezinde bulunan Zeiss Supra 40 modeli SEM cihazında alınmıştır. Üretilen varistörlerin faz analizleri Panalytical marka Empyrean model XRD cihazında tarama açısı 10-90 ° aralığında yapılmıştır. Varistörlerin tane boyutunun belirlenmesinde lineer kesişme yöntemi kullanılmıştır. Bu yöntemde görüntü üzerine belirli uzunlukta rastgele doğrular çizilir ve bu doğruların tanelerle kesişme sayısı saptanır. Elde edilen değerler (4) formülünde yerine konarak istatistiki olarak ortalama tane boyutu "G" hesaplanır. Buradaki 1,56 değeri iki boyutlu fotoğraftan alınan değerlerin üç boyuta çevrilmesi için kullanılan matematiksel katsayısını belirtirken "L" de kesişme sayısını belirtmektedir.

$$G = 1,56.L \tag{4}$$

Sinterlenen varistörlerin yüzeyleri Sputter kaplama teknolojisi ile Bilecik Şeyh Edebali Üniversitesinde bulunan Qourum marka sputter cihazı ile altın kaplanmıştır. Hazırlanan numunelerin elektriksel ölçümleri Varyak marka voltaj dc kaynağı ile yapılmıştır. Kırılma voltajı (E_b) ve düzensizlik katsayının (α) hesaplanması için 0,1 ve 1 mA/mm² akımlarda numunelerin varistör voltajları ölçülmüştür. α değerleri denklem (5) de verilen formül ile hesaplanmıştır. 0,1 mA/mm²'deki voltaj değeri kırılma voltajı (E_b) olarak alınmıştır. Varistörlerin düzensizlik katsayısı (α) E-J eğrisi üzerinde 0,1-1 mA/mm² arasında uygulanan voltajın bir fonksiyonudur ve aşağıdaki şekilde formüle edilebilir:

 $\propto = d(\log I) / d(\log V) \text{ veya} \propto = d(\log J) / d(\log E)$ (5)

III. DENEYSEL SONUÇLAR VE TARTIRŞMA

Şekil 1'de Geleneksel sinterleme yöntemi ile 1100 °C'de 10 °C/dk ısıtma/soğutma hızında 1 saat sinterlenmiş numunelerin SEM görüntüleri ve EDS analizleri verilmiştir. Normal bir ZnO esaslı varistör yapısı ana yapıda ZnO fazı ve onun etrafını çevreleyen Bizmutça zengin faz ve bazı durumlarda genellikle tanelerin üçlü kesişim notlarında bulanan spinel fazlarından oluşmaktadır [20]. Şekil 1'de ki SEM görüntüleri ve EDS

BSEU Journal of Science DOI: 10.35193/bseufbd.622699

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

analizlerine bakıldığında sinterleme sonrası oluşan yapıların tipik bir varistör mikroyapısına uyduğu görülmektedir. Gri renkte görülen ana fazın ZnO fazından oluştuğu, beyaz renkle görülen tane sınırlarının ise katkı ilavesinin çeşidini içeren bizmutça zengin fazlar olduğu görülmektedir. Oluşan ürünlerin tane boyutlarının bir birinden farklı olduğu görülmektedir. A kodlu Y₂O₃ katkılı varistörde en iri tane boyutu elde edilirken en küçük tane boyutu ise D kodlu La₂O₃ katkılı varistörde elde edilmiştir.

Şekil 1. Sinterlenen varistörlerin SEM görüntüleri ve EDS analizleri (a: Y₂O₃, b:Er₂O₃, c: Sm₂O₃, d: La₂O₃, e:Yb₂O₃ katkılı ZnO-Bi₂O₃ varistörleri)

Şekil 2'de oluşan ürünlerin XRD analizleri verilmiştir. Yapılan XRD analizleri sonucunda A kodlu (Y₂O₃ katkılı), C kodlu (Sm₂O₃ katkılı), D kodlu (La₂O₃ katkılı) ve E kodlu (Yb₂O₃ katkılı) numunelerin ZnO fazı ve bu katkıların bizmutça zengin fazlarından oluştuğu görülmektedir. B kodlu (Er₂O₃ katkılı) numunenin ise ZnO, Bi₂O₃ ve ErZn₅ fazından oluştuğu bu numune de spinel fazının oluşmadığı gözlemlenmiştir.

BŞEÜ Fen Bilimleri Dergisi 6 (2), 415-423, 2019

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

Şekil 2. Oluşan ürünlerin XRD analizleri (A: Y₂O₃, B:Er₂O₃, C: Sm₂O₃, D: La₂O₃, E:Yb₂O₃ katkılı ZnO-Bi₂O₃ varistörleri)

Şekil 3.'de 1100 °C'de 1 saat sinterlenen A, B, C, D ve E kodlu numunelerin tane boyutu ilişkisi gösterilmiştir. En küçük tane boyutu (4 μ m) D kodlu (La₂O₃) numunede ölçülürken en büyük tane boyutu (6,66 μ m) ise A kodlu (Y₂O₃ katkılı) numunede ölçülmüştür. Şekil 4'de 1100 °C'de 1 saat sinterlenen A, C, D ve E kodlu numunelerin relatif yoğunluk ilişkisi gösterilmiştir. A, C, D ve E kodlu numunelerde relatif yoğunluk 0,97 olarak gerçekleşirken B kodlu (Er₂O₃ katkılı) numunede 0,96 olarak ölçülmüştür.

Şekil 3. 1100 °C'de 1 saat sinterlenen A,B, C, D ve E kodlu numunelerin tane boyutu ve relatif yoğunluk

BILECIK ŞEYH EDEBALİ ÜNİVERSİTESİ

BŞEÜ Fen Bilimleri Dergisi 6 (2), 415-423, 2019

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

Şekil 4. 1100 °C'de 1 saat sinterlenen A,B, C, D ve E kodlu numunelerin tane boyutu ve relatif yoğunluk

Şekil 5'de 1100 °C'de 1 saat sinterlenmiş A, B, C, D ve E kodlu numunelerin E-J eğrileri verilmiştir. Varistörlerin kırılma voltajı (E_b) 0,1 mA/mm² voltaj değeri alınmıştır. Varistörlerin düzensizlik katsayısı (α) E-J eğrisi üzerinde 0,1-1 mA/mm² arasında denklem (5)'e göre hesaplanan değerdir. Hesaplanan kırılma voltajı (E_b) büyükten küçüğe sırasıyla C (149 volt/mm), D (142 volt/mm), B (116 volt/mm), A (114 volt/mm) ve E (28 volt/mm) şeklinde gerçekleşmiştir.

Şekil 5. Varistörlerin E-J eğrileri

IV. SONUÇLAR

% 98,5 mol ZnO, % 1 mol Bi₂O₃, % 0,5 mol (Y₂O₃, Er₂O₃, Sm₂O₃, La₂O₃, Yb₂O₃) komposizyonunda hazırlanan beş farklı varistör karışımı, 1100°C'de 1 saat sinterlendikten sonra bunların mikroyapı ve elektriksel

özellikleri incelenmiştir. Buna göre elde edilen tüm varistörler (A, B, C, D ve E) de elde edilen mikro yapılar genel varistör mikroyapına uygun bir şekilde ana yapıda ZnO fazı ve tane sınırlarını çevreleyen bizmutça zengin fazdan oluşmuştur. Yapılan SEM görüntüleme sonucunda varistörlerin tane boyutunun küçültülmesinde D kodlu (La₂O₃ katkılı) varistör etkin olmuştur. Sinterlenen numunelerin yoğunluk ölçümü sonrasında tüm bu numunelerin yoğunlukları arasında belirgin bir fark ortaya çıkmamıştır. Elektriksel özelliklerinin ölçümü sonrası kırılma voltajı (E_b) büyükten küçüğe sırasıyla C (149 volt/mm), D (142 volt/mm), B (116 volt/mm), A (114 volt/mm) ve E (28 volt/mm) şeklinde gerçekleşmiştir. α düzensizlik katsayısı ise D (21,6), C (18,3), B(16,8), A(12,8) ve E (9,0) şeklinde gerçekleşmiştir. Kırılma voltajı (E_b) ve düzensizlik katsayısı (α) değerleri göz önüne alındığında C kodlu (Sm₂O₃ katkılı, E_b:149 volt/mm, α: 18,3) ve D kodlu (La₂O₃ katkılı, E_b: 142 volt/mm, α:21,6) varistörler daha üstün özellikler göstermiştir.

KAYNAKLAR

- [1] Nahm, C. W., & Shin, B. C. (2003). Highly stable nonlinear properties of ZnO-Pr₆O₁₁-CoO-Cr₂O₃-Y₂O₃-based varistor ceramics. *Materials Letters*, 57(7), 1322–1326. https://doi.org/10.1016/S0167-577X(02)00980-1
- [2] Desouky, O. A., & Rady, K. E. (2016). Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO₂. *Chinese Physics B*, 25(6), 068402.
- [3] Levinson, L. M., & Philipp, H. R. (1986). Zinc Oxide Varistors- A Review. American Ceramic Society Bultein., 65(4), 639.
- [4] Choi, S., Jung, H., & Kang, S. (2018). The correlation between surge energy capability and Bi₂O₃ volatilization in ZnO varistor, 2–6. *Journal of the Ceramic Society of Japan* 126 [4] 236-240 2018 DOI http://doi.org/10.2109/jcersj2.17184
- [5] Shen, B., Yao, X., Kang, L., & Peng, D. (2004). Effect of CuO or/and V₂O₅ oxide additives on Bi₂O₃–ZnO– Ta₂O₅ based ceramics. *Ceramics International*, 30(7), 1203–1206. https://doi.org/10.1016/J.CERAMINT.2003.12.101
- [6] Kim, C. H., & Kim, J. H. (2004). Microstructure and electrical properties of ZnO-ZrO₂-Bi₂O₃-M₃O₄ (M=Co, Mn) varistors. *Journal of the European Ceramic Society*, 24(8), 2537–2546. https://doi.org/10.1016/j.jeurceramsoc.2003.07.002
- [7] Xu, Z., Bai, H., Ma, S., Chu, R., Hao, J., Chen, C., & Li, G. (2016). Effect of a Bi-Cr-O synthetic multiphase on the microstructure and electrical properties of ZnO-Bi₂O₃ varistor ceramics. *Ceramics International*, *42*(13), 14350–14354. https://doi.org/10.1016/j.ceramint.2016.05.175
- [8] Bai, H., Li, S., Zhao, Y., Xu, Z., Chu, R., Hao, J., Li, G. (2016). Influence of Cr₂O₃ on highly nonlinear properties and low leakage current of ZnO-Bi₂O₃ varistor ceramics. *Ceramics International*, 42(9), 10547– 10550. https://doi.org/10.1016/j.ceramint.2016.03.042
- [9] Ma, S., Xu, Z., Chu, R., Hao, J., Liu, M., Cheng, L., Li, G. (2014). Influence of Cr₂O₃ on ZnO-Bi₂O₃-MnO₂-based varistor ceramics. *Ceramics International*, 40 (7 PART A), 10149–10152. https://doi.org/10.1016/j.ceramint.2014.02.035
- [10] Kato, T., & Takada, Y. (2013). Correlation between electrical properties and crystalline phases for ZnO-Bi₂O₃ based varistor ceramics with rare earth additives. *Journal of Electroceramics*, 31(1–2), 138–142. https://doi.org/10.1007/s10832-013-9816-x
- [11] Senda, T., & Bradt, R. C. (1990). Grain Growth in Sintered ZnO and ZnO-Bi₂O₃ Ceramics. *Journal of the American Ceramic Society*, 73(1), 106–114. https://doi.org/10.1111/j.1151-2916.1990.tb05099.x

- [12] Bernik, S., Daneu, N., Rečnik, A. (2004). Inversion boundary induced grain growth in TiO₂ or Sb₂O₃ doped ZnO-based varistor ceramics. *Journal of the European Ceramic Society*, 24(15–16), 3703–3708. https://doi.org/10.1016/j.jeurceramsoc.2004.03.004
- [13] Bernik, S., Maček, S., Ai, B. (2001). Microstructural and electrical characteristics of Y₂O₃-doped ZnO-Bi₂O₃-based varistor ceramics. Journal of Europen Ceramic Society 21, 1875-1878
- [14] Wang, M. H., Li, G., Yao, C. (2011). Microstructure and electrical properties of Pr₆O₁₁-Co₃O₄-MnCO₃-Y₂O₃-doped ZnO varistors. *Ceramics International*, 37(7), 2901–2905. https://doi.org/10.1016/j.ceramint.2011.03.076
- [15] Nahm, C.-W. (2011). Microstructure, electrical properties, and aging behavior of ZnO–Pr₆O₁₁–CoO–Cr₂O₃–Y₂O₃–Er₂O₃ varistor ceramics. *Ceramics International*, *37*(8), 3049–3054. https://doi.org/10.1016/j.ceramint.2011.05.032
- [16] Hongyu, L., Hui, K., Dongmei, J., Wangzhou, S., Xueming, M. (2007). Microstructure and Electrical Properties of Er₂O₃-Doped ZnO-Based Varistor Ceramics Prepared by High-Energy Ball Milling. *Journal* of Rare Earths, 25(1), 120–123. https://doi.org/10.1016/S1002-0721(07)60057-X
- [17] Ashraf, M. A., Bhuiyan, A. H., Hakim, M. A., & Hossain, M. T. (2011). Microstructure and electrical properties of Sm₂O₃ doped Bi₂O₃-based ZnO varistor ceramics. *Materials Science and Engineering B: Solid-State Materials for Advanced Technology*, 176(11), 855–860. https://doi.org/10.1016/j.mseb.2011.04.009
- [18] Zang, G. Z., Wang, X. F., Li, L. Ben, Wang, D. D. (2017). The effect of Sm₂O₃on the microstructure and electrical properties of SiO₂-doped SnO₂-Zn₂SnO₄ceramic variators. *Ceramics International*, 43(11), 8018– 8022. https://doi.org/10.1016/j.ceramint.2017.03.100
- [19] Xu, D., Cheng, X. N., Wang, M. S., Shi, L. Y. (2009). Microstructure and Electrical Properties of La₂O₃; Doped ZnO-Bi₂O₃ Based Varistor Ceramics. *Advanced Materials Research*, 79–82, 2007–2010. https://doi.org/10.4028/www.scientific.net/AMR.79-82.2007
- [20] Apaydin, F., Toplan, H.Ö., Yildiz, K. (2005), The effect of CuO on the grain growth of ZnO. Journal of Materials Science, 40, 677 – 682. https://doi.org/10.1007/s10853-005-6306-9