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Bu galismada, Lorentzian 3-uzayinda ekseni Killing vektor alani olan null Cartan helisler arastirilmistir. Bu
uzayda sabit Killing ekseninin spacelike, timelike ve null (lightlike) olma durumlari g6z éniinde bulundurularak
helis egrileri tiiretilmistir. Daha sonra, bu egrilerin Bishop egrilikleri ve parametrik denklemleri elde edilmistir.
Son olarak, ¢esitli drnekler verilmis ve bu 6rnekler Mathematica programi yardimiyla gorsellestirilmistir.
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Null Cartan Helices in Lorentzian 3-Space: An Approximation
ABSTRACT

In this work, we investigate the null Cartan helices in Lorentzian 3-space. We derive the helices with the
constant timelike, spacelike and lightlike Killing axis in Lorentzian 3-space. Then, we calculate the Bishop
curvatures of the null Cartan helix and obtain the explicit parametric equations of these curves by using the
Bishop curvatures. Finally, we present various examples and draw their images using the Mathematica.
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I.INTRODUCTION

In Lorentzian 3-space, we have three types of curves, namely spacelike, timelike and lightlike(null)
curve. Since the induced metric on a null curve is degenerate, the null curves different from the timelike and
spacelike curves. Therefore, null curves are usually more appropriate to explain some physical phenomena.
For instance, the solution of the 2-dimensional wave equation showed that strings are equal to a single null
curve or pairs of null curves (see for details [16-19, 24]). Besides, the solution of the variational problem of
a null curve is a null elastic curve evolving by rigid motions in the rotational Killing vector field direction
(see [12-14]).

On the other hand, a helix defined as a curve whose tangent vector makes a constant angle with a
fixed direction. The helix has various applications to natural scientists, mathematics, fractal geometry,
computer-aided design, computer graphics, physics, etc. Moreover, DNA, carbon nanotube, screws, springs,
etc. have the helical shapes. The authors, in [1-3], described the helical structures in nature using the
variational approach and characterized by the constancy of the ratio between torsion and curvature. On the
other hand, null curves have been studied by various researchers:

In[4, 6,7, 9, 10, 22], the authors give various basic characterizations of null curves. Ferrandez et
al. examined the Lancret-type theorem for null generalized helices in a Lorentzian 3-manifold and gave
various characterizations for these curves [11]. In [8], Coken et al. reproduced the Cartan frame equations of

the null curves in 4- dimensional Minkowski space E'f and characterized some special curves by using
these equations. In [21], the authors introduced various characterizations of null helices and illustrated some

examples in EZ .

In the present paper, we introduce three types of null Cartan helices in the Lorentzian 3-space. The
helices defined in one of the following equivalent ways:

i. T; makes a constant angle with a unit fixed constant Killing vector field ;
ii. N, makes a constant angle with a unit fixed constant Killing vector field ;

iii. N5 makes an angle with a unit fixed constant Killing vector field ;
iv. The ratio of the curvature ¥ and torsion T is constant, that is,

z = const.

K

Similar characterizations are given by Yampolsky et.al. [25].
Il. PRELIMINARIES

Let M be a three-dimensional Lorentzian manifold then the non-degenerate metric tensor g on M
has the form

gx,y) = —x1¥1 + %Y, + X33

forall x = (xy,x,,%3), v = 1,Y2,¥3) € x(M). Then we denote (M, g) of the Lorentzian
manifold M with the metric g . We say that g is positive (negative) definiteon M if g(x,x) >0
(g(x,x) < 0) for any non-zero x € y(M). Moreover, if g(x,x) =0 (g(x,x) <0) forany x € y(M)
and there exist a non-zero x € y(M) with g(x,x) =0, we say that g is positive (negative) semi-definite
on M. Then (M, g) is called as Lorentzian manifold. The Lorentzian curvature tensor R of M isa (1,3)
tensor and denoted by the following equation

R(X, Y)Z = _VXVYZ + VyVXZ + V[X,Y]Z-
Let  be a non-degenerate tangent plane to M at p then the sectional curvature, denoted by K, of
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If the sectional curvature of the Lorentzian manifold (M, g) is a constant, then it is called a
Lorentzian space form. Then, the curvature tensor R on the Lorentzian space form satisfies

R(X,Y)Z = C{g(Z,X)Y — g(Z,Y)X},

where C is the constant sectional curvature.

A non-zero vector x € y(M) is said to be space-like if g(x,x) > 0, time-like if g(x,x) <0 and
lightlike (null) if g(x,x) = 0. Any two vectors x,y € y(M) are called orthogonal if g(x,y) = 0. Two

null vectors are orthogonal if and only if they are linearly dependent.

Let y : I > M; t— y(t) beasmooth curve in Lorentzian manifold (M, g) . Then, the smooth
curve y is said to be a null (light-like or isotropic) curve if the tangent vector T =y’ of y at any point is
a null vector. If a null curve parameterized by the pseudo-arc function s then y is called a null Cartan curve,
namely,

s@) = f, 9", y"(®)adt.

The null Cartan frame {T, N, B} along a non-geodesic null Cartan curve y satisfies

T' = kN,
N' = —kT + 1B,
B' = —1B,

where the first Cartan curvature x(s) = 1 and the torsion t(s) is an arbitrary function. If z(s) =
0, the null Cartan curve is said to be a null Cartan cubic. A null Cartan frame {T, N, B} along the curve y
satisfies

9(T,T) =g(B,B) =0,g(N,N) =1,
g9(T,N) = g(N,B) = 0,9(T,B) = -1,
and
TXN=-T,NXB=-BBXT =N. [9].

The Frenet frame does not define when the second derivative of the curve vanishes at some points.
Therefore, we need an alternative frame at these points. In [5], the Bishop frame in 3-Euclidean space is
derived by Bishop. It consists of the velocity vector field T, and two normal vector fields N; and N, .
This frame is obtained by rotating the normal and the binormal Frenet vectors N and B in the normal plane.
Besides, it is well defined at points that the curve has zero second derivative. The Bishop frame is
established of non-null Frenet vector fields in Minkowski space by Ozdemir et al. [23]. Then, the Bishop
frames of pseudo null and null Cartan curves are presented and practiced by Grbovi¢ et al. [15].

Theorem 2.1. Let y be a null Cartan curve in 3-dimensional Lorentzian space parameterized by
pseudo-arc s with the Cartan curvatures k(s) = 1 and the torsion z(s). Then the Bishop frame
{T;, N1, N,} and the Cartan frame {T, N, B} of y have the following relation:
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and the null Cartan frame equations are given as follows

Tl 1k, ky O [Ty
N| = [o 0 Kk ||M]
N; 0 0 —klln,

here the first Bishop curvature k,(s) = 1, the second Bishop curvature satisfies the following first
order non-linear differential equation

k3 (s) = =2 k3(s) = 7(s).

The Bishop frame {T;, N;, N,} satisfies the conditions

g(Ty, Ty) = g(Ny, Np) = 0,g(Ny, Ny) =1,

9(T1, Ny) = g(Ny, N) = 0,9(Ty, N,) = —1, [15]

By using the Theorem 2.1. it is obtained that among all null Cartan curves in Lorentzian 3-space
only the null Cartan cubics have two Bishop frames, which are given in the following corollary [15].

Corollary 2.2. Let y be a null Cartan cubic in Lorentzian 3-space parameterized by pseudo-arc s .
Then the Bishop frame {T;, N;, N,} and the Cartan frame {T, N, B} have the following relation:

(i)
T, 1 0 0 T
N1 — _kz 1 O N
2 )
N2 k_z _kz 1 B

and the null Cartan frame equations are given by

1 thy, k, 0 [T,
Nll = [0 0 kl Nl .
Nz’ 0 0 _kz N2

2-
_)

where the Bishop curvatures satisfy k,(s) =1 and k,(s) = R

(i)

i) 1 0 O0y[T
Ni[=[o 1 o||N]|
NJ lo o 1llB

and the null Cartan frame equations are given by

T/l thkr ki 0 [Ty
N, = [0 0k ||N],
N Lo o —klln,
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here the Bishop frame curvatures satisfy k,(s) =1 and k,(s) =0 [15].
The cross products of the Bishop frame vectors satisfy
Ty X N; = =Ty, N; x N, = —=N,, N, x Ty = Nj. [15].

Lemma2.3.Let y : 1< R — M beanull Cartan curve in Lorentzian space form (M(C),g) and
V be a vector field along the curve y then the variation of y definedby T' : IX (—g,€) - M(C) with
v(s,0) the initial null Cartan curve satisfy T'(s,0) = y(s) . The variational vector field has the notion

V(s) = %. In this setting, the variations of the speed function v(s,t) = ”ar(:'t) | and the Bishop
curvature functions k,(s,t) and k,(s,t)at t = 0 are calculated as follows:
(@)
V() = (‘;—'; (s, t))| = —vp,
t=0

dk
Vi) = (560)| = gROTIT: + PRV — ke V, M) + 20k,

t=
dk
Vi) = (520)| =90~ DROTIT + (L= k)PRY — kP,
+k1k2VT1V, Nz) - Zp’ - 2pk2 - klké + Zpklkz,
where p = g(Vr,V,T;) [20].

Proposition 2.4. Let V(s) be the restriction to y(s) of a Killing vector field VV of M then the
variations of the Bishop curvature functions and speed function of y satisfy:

V() =V(ky) =V(kz) =0, [20].

Corollary 2.5. V' is a Killing vector field along the null Cartan curve y if and only if it satisfies the
following conditions:

i. g(VTlv, TI) = 0,
ii. g(V72‘1V' Nl) - kZQ(VTlv' Nl) =0,
iii. g(Uey — DVEV — kyVp,V + kyky Vi V,Ny) + C(ky — 1) = 0 [20].

The helix called degenerate if the Killing vector field V is a null vector field. The helix is said to
be non-degenerate if the Killing vector field V' is a non-null vector field [1].

Let V(s) be an axis then its causal characters can be of three families of vectors, namely,
spacelike, timelike and lightlike(null). Therefore, we can define the following representations for null Cartan
helices in Lorentzian 3-space.

1. NULL CARTAN HELICES IN LORANTZIAN 3-SPACE

Definition 3.1. Let y be a curve with the Bishop frame {T;, N;, N,} in Lorentzian 3-space. If there
exist a constant Killing vector field V along the curve y such that g(V, T;) = const., g(V,N;) = const,,
or g(V,N,) = const., respectively, then the curve y is called the first kind of null Cartan helix, second
kind of null Cartan helix, or third kind of null Cartan helix with the Killing axis V.

Theorem 3.1. Let ¥y be a null Cartan curve and V be a Killing vector field on a Lorentzian space

form (M(C), g). The curve y is afirst kind of null Cartan helix of (M(C), g;V) ifandonly if y has the
following curvatures
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k1=1, kzzs Ork2=0
and axis

V =

Azz‘g T, + AN, + aN,,

where A = const., and € = g(V,V).

Proof. Let y be an arc-length parameterized first kind of null Cartan helix with the Killing vector
field in a Lorentzian space form (M(C), g) then we have g(V,T,;) = —a = const. Therefore, V can be
written as follows

(1) V=T, +nN; +aN,

Calculating the derivative of eq. (1), we have the following equation

(2 VpV=("+3k)Ty + ({+n)Ny + (n — akz)N,,

Then using the first equation in the Corollary 2.5. we obtain

k, = g

If we differentiate the eq. (2), we get

@) VAV = (" +2{k; + (kg + CRDTy + (28" + (ky +1")Ny + (41N,

On the other hand, we have the following equation for simply connected space form (M (C), g)

4) RV, T)T, = C(g(T,, V)T, — g(Ty, T)V).

Since y isanull Cartan curve we have g(T;,T;) = 0 and we calculate g(T;,V) = —a. So, we
obtain the Lorentzian curvature tensor of M(C) equal to the following equation

(5) R(V, Tl)Tl = _aCTl.

Considering the egs. (1)-(6) with the second equation in Corollary 2.5. we reach the following
second order linear differential equation

(6) 20" —kyn'+n" =0.

In these cases, the last equation in Corollary 2.5. is provided automatically.
Furthermore, if we use the equation g(V,V) = &, we get

n? —{a=c¢.

By combining the eq. (7) and eg. (8) we obtain the following second order non-linear differential
equation

(7) 3nn' +an" =0.

Then the solution of the eq. (9) calculated as follows

9 n=Aorn= ’2a3c1 tanh(\/%(s +c,)).

This gives the second curvature of the helix as
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A 2 3
(10) k, = ~or k, = /% tanh( /%(s + ).

However, the torsion of the curve y is constant on the condition that k, =£ or ¢; = 0, that
is,kz = 0.

As a consequently, we determine the Killing axis of the helix satisfy

2_
“T, + AN, + aly.

11) v =

Conversely, if y satisfy the eq. (10) and eq. (11) then we can easily show that y is a first kind of
null Cartan helix with the Killing axis V.

Theorem 3.2. Let y be a null Cartan curve and V be a Killing vector field on a Lorentzian space
form (M(C), g). The curve y isa second kind of null Cartan helix of (M(C), g;V) ifand onlyif y satisfy
the following constant curvatures

_b

kl = 1, k2 = ;,
and axis
2_
V =2"5T, + bN, + vN,,

v

where ¢ = g(V,V),and b, v are some constants.

Proof. Let y be an arc-length parameterized second kind of null Cartan helix with the Killing
vector field in the Lorentzian space form (M(C), g) then we have g(V,N;) = b = const . Therefore, V
may be written as follows

(12) V = &T, + bN; + uN,.

By differentiating of the eq. (12) and the Bishop frame formulas we get
(13) VpV = (& + Ek)Ty + ENy + (b + V' — vky)N,.

Then the first equation in the Corollary 2.5. yields

_ b+’

(14) k, =

By differentiating of the eq. (13), we obtain

(15) V%lV = (8" + 28k, + &k + EKDT, + (28" + Eky)N; + EN,.

On the other hand, we have the following equation for simply connected space form (M(C), g)
(16) R(V,T))T, = C(g(T,, V)T, — g(Ty, T)V).

Since y is a null Cartan curve we have g(T;,T;) =0 and we calculate g(T;,V) = —v.
Therefore we obtain the Lorentzian curvature tensor of M(C) equal to the following equation

(17) R(V, Tl)Tl = UCTl.
In combination with the egs. (12)-(17) and the second equation in Corollary 2.5., we get
(18) & = const.
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In these cases, the last equation in Corollary 2.5. is provided automatically.
Moreover, if we use the equation g(V,V) = &, we get

(19) b2 —-&v =-=«.

If we combine with the eq. (18) and eq. (19) we obtain

(20) v = const.

This yield

(21) k, =7,

As a consequently, we determine the Killing axis of the helix satisfy

2_
Y227 + bN, + vN,.

v

(2) V=

Conversely, if y satisfy the eq. (21) and eq. (22) then we can easily show then y is a second kind
of null Cartan helix with the Killing axis V.

Theorem 3.3. Let y be a null Cartan curve and V be a Killing vector field on a Lorentzian space
form (M(C), g). The curve y is a third kind of null Cartan helix of (M(C), g;V) if and only if the Bishop
curvatures of y satisfy

k, = —J2c¢,(2ec, + ¢) tanh —VZQ(ZECI;C)(SH“), —c;(2ec; +¢) > 0,0r

ky, = —/—2c,(2¢ec; + ¢) tan “_261(28(:21”)(5”4),—c1(2£c1 +¢) <0,

2_
V =cT, +¢N, + %NZ,

Where for spacelike Killing vector field ¢ = 1, for timelike Killing vector field ¢ = —1 and a, c;,
c, are some constants.

Proof. Let y be an arc-length parameterized third kind of null Cartan helix with the Killing vector
field in Lorentzian space form (M(C), g) then we have g(V,N,) = —c = const. Therefore, V is written

(23) V= CTl + ch + O-Nz,
Using the derivative of the eq. (23) and the Bishop frame formulas in the Corollary 2.5 we obtain

_¢+a’

(24) k, =&,

If we use the second derivation of the eq. (23) and combine the eq. (24) with the second equation in
Corollary 2.5. we get

(25) ¢" = ky¢" =0,
In these cases, the last equation in Corollary 2.5. is provided automatically.

On the other hand, if we use the equation g(V,V) = &, we get
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(26) o=

If the eq. (24) and eq. (26) are fulfilled in the eq. (25) we obtain a second order non-linear
differential equation

27) (e=¢)¢" +cgg’ + 266" = 0.

The solution of the eq. (27) is obtained as

C(S) - _ (2520C1+c) tanh‘/201(c+2£c1)(s+02),—01(2201+c)>0
\I 1

2

or

C(S) — _ —(2ec1+c) tan,/—261(0+22801)(s+02), —C1(2€C1 + C) <0.

2cq

Then the curvatures and the axis of the third kind null Cartan helices have the following second
Bishop curvature

(28) k, = —/2¢,(2ec; + ¢) tanh —W, —c;(2ecy +¢) > 0,

or

ky, = —\/—2¢;(2&c; + ¢) tan? _ch(zsczlJrc)(SH"),—61(2£c1 +¢) <0,

and the axis

¢2-¢

(29) V = CT]_ + CN]_ + c Nz.

Conversely, if y satisfy the eq. (28) and eq. (29) then we can easily show that y is a third kind of
null Cartan helix with the Killing axis V.

Corollary 3.4. (Main result) Let y be a null Cartan helix and V be a Killing vector field
on a Lorentzian space form (M(C),g). Then y has one of the following equivalent
characterizations:

i. T, makes a constant angle with a unit fixed constant Killing vector field ;

ii. N; makes a constant angle with a unit fixed constant Killing vector field ;

iii. N, makes an angle with a unit fixed constant Killing vector field ;

iv. The ratio of the curvature k and torsion t is constant, that is,

= const.

K
3.1. Parametric representations of null Cartan helices

From the above theorem we obtain that the null Cartan helices have the constant torsion and the
position vector of the helices satisfy the following higher-order linear ordinary differential equation:

y® 4+ 21y" = 0.
The solution of the differential equation gives the parametric representation of all null Cartan
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helices following three cases:
IfT=—-1<0,theny(s) =¥, + ¥,s + %exp(\/ﬂs) + %exp( —21s),
If T > 0, then y(s) = ®; + ®,5 + gsin(\/ﬁs) + @, cos(V27s),

ift =0, theny(s) = Q; + 2,5 + 352 + 2,53,

where ¥, @;, 0, € E3, i=1,23,4. Namely, the solution for first kind null Cartan helix can be
given following two cases:

Case 1. Provided that y is a first kind of null Cartan helix then we obtain following two
characterizations:

2
i.if k, =2 then t = —2—2 < 0. We deduce that

242
y(s) = A s,

ii. if k, =0 then =0 then we have
y(s) = By + B,s + B3s? + B,s3,
where 4;, B; € E}, i=1234.

Case 2. Suppose that y is a second kind of null Cartan helix then the curve y has the curvature

k, From here we obtain following characterization:

SHES

2
If = —21’7 then 7 < 0 along the curve y . Thus, the solution of the second kind null Cartan
helix

b2 b2
Y(s) =C; +Cgs 725) 25
where C; € E3, i=1,234.

Case 3. Suppose that y is a third kind of null Cartan helix then the curve y has the curvature

k, = —J2¢;(2ec; + ¢) tanh YREATORTAY ch(ml“ *¢4) - Erom here we obtain following two

characterizations:

i.if T =—c(2ec, +¢) < 0 then we have

y(s) =D; + D,s +
V2(—¢; (2ecy + ©))s),

ii. if T =—c;(2ec;y +¢) > 0 then we have

2(— c1(2£c1+c)) p(\/Z( Cl(zecl + C))S) + 2(— c1(2£c1+c)) xp( -

y(s) = E;{ + E;s + m(\/Z(—cl(Zésc1 +c))s) +

2(—cq (28C1+C))

cos(y/2(—c1(2e¢; + ¢))s),

2(—cq (25c1+c))
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where D, E; € E3, i=1234.

Example 3.1 If we take A= 0, a=—1, ¢; =0, B, =(0,00), B, =(,0,—3), By =(0,5,0)

and B, = (%, 0, —%), we get following first kind of null Cartan helix

N

N S3

3
rO=GroT7 79

The curve has the following Bishop curvatures:
ky(s) = 1,ky(s) = 0.

“The axis of the helix calculated as

V=T, +aN,.

The image of the first kind of null Cartan helix illustrated in Figure 1.

Figure 1. A first kind of null Cartan helix

1

1 1
E,O), C3 = (E'O’E) , and
C,=(— § 0, i) we obtain second kind of null Cartan helix parameterized as follows:

Example 3.2. If we choose b =+2, v=1, C; =(0,0,0), C,= (0,

eV2

2s e—ﬁs s eﬁs e—ﬁs
4

4 27 4 4

y(s) = (
The curve has the following Bishop curvatures:

ki(s) = 1,k,(s) = V2.

Then the axis of the second kind of null Cartan helix given as

V =(2-¢&)T, +V2N; + N,.
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The image of the helix plotted in Figure 2.

Figure 2. A second kind of null Cartan helix

Example 3.3. If we take E; = (0,0,0), E, = (v/2,0,1), E; = (0,1,0), E, = (1,0,v/2), ¢; = —1,
c= —% and e = 0, Then we obtain third kind of null Cartan helix parameterizaed as

¥(s) = (cos s +V2s,sins,v2cos s + s).
The curve has the following Bishop curvatures:
ki(s) =1,k,(s) = —itani.
The axis of the helix

1 1 s 1 s
V= ETl —Etanle — ZtanZNz.

The image of the helix illustrated in Figure 3.

Figure 3. A third kind of null Cartan helix
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