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ÖZ 

Bu çalışmada, Lorentzian 3-uzayında ekseni Killing vektör alanı olan null Cartan helisler araştırılmıştır. Bu 

uzayda sabit Killing ekseninin spacelike, timelike ve null (lightlike) olma durumları göz önünde bulundurularak 

helis eğrileri türetilmiştir. Daha sonra, bu eğrilerin Bishop eğrilikleri ve parametrik denklemleri elde edilmiştir. 

Son olarak, çeşitli örnekler verilmiş ve bu örnekler Mathematica programı yardımıyla görselleştirilmiştir. 
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Null Cartan Helices in Lorentzian 3-Space: An Approximation 

ABSTRACT 

In this work, we investigate the null Cartan helices in Lorentzian 3-space. We derive the helices with the 

constant timelike, spacelike and lightlike Killing axis in Lorentzian 3-space. Then, we calculate the Bishop 

curvatures of the null Cartan helix and obtain the explicit parametric equations of these curves by using the 

Bishop curvatures. Finally, we present various examples and draw their images using the Mathematica. 

Keywords- Minkowski Space, Ligthtlike Curves And Surfaces, Cartan Curvatures, Frame Fields. 
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I.INTRODUCTION 

 In Lorentzian 3-space, we have three types of curves, namely spacelike, timelike and lightlike(null) 

curve. Since the induced metric on a null curve is degenerate, the null curves different from the timelike and 

spacelike curves. Therefore, null curves are usually more appropriate to explain some physical phenomena. 

For instance, the solution of the 2-dimensional wave equation showed that strings are equal to a single null 

curve or pairs of null curves (see for details [16-19, 24]). Besides, the solution of the variational problem of 

a null curve is a null elastic curve evolving by rigid motions in the rotational Killing vector field direction 

(see [12-14]). 

 On the other hand, a helix defined as a curve whose tangent vector makes a constant angle with a 

fixed direction. The helix has various applications to natural scientists, mathematics, fractal geometry, 

computer-aided design, computer graphics, physics, etc. Moreover, DNA, carbon nanotube, screws, springs, 

etc. have the helical shapes. The authors, in [1-3], described the helical structures in nature using the 

variational approach and characterized by the constancy of the ratio between torsion and curvature. On the 

other hand, null curves have been studied by various researchers:  

 In [4, 6, 7, 9, 10, 22], the authors give various basic characterizations of null curves. Ferrandez et 

al. examined the Lancret-type theorem for null generalized helices in a Lorentzian 3-manifold and gave 

various characterizations for these curves [11]. In [8], Çöken et al. reproduced the Cartan frame equations of 

the null curves in 4- dimensional Minkowski space    and characterized some special curves by using 

these equations. In [21], the authors introduced various characterizations of null helices and illustrated some 

examples in   . 

 In the present paper, we introduce three types of null Cartan helices in the Lorentzian 3-space. The 

helices defined in one of the following equivalent ways: 

i.    makes a constant angle with a unit fixed constant Killing vector field   

ii.    makes a constant angle with a unit fixed constant Killing vector field   

iii.    makes an angle with a unit fixed constant Killing vector field   

iv. The ratio of the curvature    and torsion    is constant, that is, 

 
𝜏

𝜅
= 𝑐𝑜𝑛𝑠𝑡.  

 Similar characterizations are given by Yampolsky et.al. [25].  

II. PRELIMINARIES 

 Let  𝑀  be a three-dimensional Lorentzian manifold then the non-degenerate metric tensor 𝑔 on 𝑀 

has the form 

 𝑔(𝑥, 𝑦) = −𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3                            

 for all  𝑥 = (𝑥1, 𝑥2, 𝑥3),   𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝜒(𝑀).  Then we denote  (𝑀, 𝑔)  of the Lorentzian 

manifold  𝑀  with the metric  𝑔 . We say that  𝑔  is positive (negative) definite on  𝑀  if  𝑔(𝑥, 𝑥) > 0   

(𝑔(𝑥, 𝑥) < 0)  for any non-zero  𝑥 ∈ 𝜒(𝑀).  Moreover, if  𝑔(𝑥, 𝑥) ≥ 0   (𝑔(𝑥, 𝑥) ≤ 0)  for any  𝑥 ∈ 𝜒(𝑀)  

and there exist a non-zero  𝑥 ∈ 𝜒(𝑀)  with  𝑔(𝑥, 𝑥) = 0,  we say that  𝑔  is positive (negative) semi-definite 

on  𝑀.  Then  (𝑀, 𝑔)  is called as Lorentzian manifold. The Lorentzian curvature tensor 𝑅 of  𝑀  is a  (1,3)  

tensor and denoted by the following equation 

 𝑅(𝑋, 𝑌)𝑍 = −𝛻𝑋𝛻𝑌𝑍 + 𝛻𝑌𝛻𝑋𝑍 + 𝛻[𝑋,𝑌]𝑍. 

 Let 𝜋 be a non-degenerate tangent plane to 𝑀 at 𝑝  then the sectional curvature, denoted by  𝐾,  of  
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𝜋  presented as 

 𝐾(𝑢, 𝑣) =
𝑔(𝑅(𝑢,𝑣)𝑢,𝑣)

𝑔(𝑢,𝑢)𝑔(𝑣,𝑣)−𝑔(𝑢,𝑣)2. 

 If the sectional curvature of the Lorentzian manifold (𝑀, 𝑔) is a constant, then it is called a 

Lorentzian space form. Then, the curvature tensor  𝑅  on the Lorentzian space form satisfies 

 𝑅(𝑋, 𝑌)𝑍 = 𝐶{𝑔(𝑍, 𝑋)𝑌 − 𝑔(𝑍, 𝑌)𝑋}, 

 where 𝐶 is the constant sectional curvature. 

 A non-zero vector  𝑥 ∈ 𝜒(𝑀)  is said to be space-like if  𝑔(𝑥, 𝑥) > 0,  time-like if  𝑔(𝑥, 𝑥) < 0  and 

lightlike (null) if  𝑔(𝑥, 𝑥) = 0 . Any two vectors  𝑥, 𝑦 ∈ 𝜒(𝑀)  are called orthogonal if  𝑔(𝑥, 𝑦) = 0. Two 

null vectors are orthogonal if and only if they are linearly dependent. 

 Let  𝛾  :   𝐼 → 𝑀;   𝑡 → 𝛾(𝑡)  be a smooth curve in Lorentzian manifold  (𝑀, 𝑔) . Then, the smooth 

curve  𝛾  is said to be a null (light-like or isotropic) curve if the tangent vector  𝑇 = 𝛾′  of  𝛾  at any point is 

a null vector. If a null curve parameterized by the pseudo-arc function 𝑠 then  𝛾  is called a null Cartan curve, 

namely, 

 𝑠(𝑡) = ∫  
𝑡

0
𝑔(𝛾″(𝑡), 𝛾″(𝑡))𝑑𝑡. 

The null Cartan frame  {𝑇, 𝑁, 𝐵}  along a non-geodesic null Cartan curve  𝛾  satisfies  

 𝑇′ = 𝜅𝑁, 

 𝑁′ = −𝜅𝑇 + 𝜏𝐵, 

 𝐵′ = −𝜏𝐵, 

 where the first Cartan curvature  𝜅(𝑠) = 1  and the torsion  𝜏(𝑠)  is an arbitrary function. If  𝜏(𝑠) =
0 , the null Cartan curve is said to be a null Cartan cubic. A null Cartan frame {𝑇, 𝑁, 𝐵}  along the curve 𝛾 

satisfies  

 𝑔(𝑇, 𝑇) = 𝑔(𝐵, 𝐵) = 0, 𝑔(𝑁, 𝑁) = 1, 

 𝑔(𝑇, 𝑁) = 𝑔(𝑁, 𝐵) = 0, 𝑔(𝑇, 𝐵) = −1, 

and 

𝑇 × 𝑁 = −𝑇, 𝑁 × 𝐵 = −𝐵, 𝐵 × 𝑇 = 𝑁.  [9]. 

 The Frenet frame does not define when the second derivative of the curve vanishes at some points. 

Therefore, we need an alternative frame at these points. In [5], the Bishop frame in 3-Euclidean space is 

derived by Bishop. It consists of the velocity vector field  𝑇1  and two normal vector fields  𝑁1  and  𝑁2 .  

This frame is obtained by rotating the normal and the binormal Frenet vectors N and B in the normal plane. 

Besides, it is well defined at points that the curve has zero second derivative. The Bishop frame is 

established of non-null Frenet vector fields in Minkowski space by Özdemir et al. [23]. Then, the Bishop 

frames of pseudo null and null Cartan curves are presented and practiced by Grbović et al. [15]. 

 Theorem 2.1. Let  𝛾  be a null Cartan curve in 3-dimensional Lorentzian space parameterized by 

pseudo-arc  𝑠  with the Cartan curvatures  𝜅(𝑠) = 1  and the torsion  𝜏(𝑠). Then the Bishop frame  

{𝑇1, 𝑁1, 𝑁2}  and the Cartan frame  {𝑇, 𝑁, 𝐵}  of  𝛾  have the following relation: 
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 [

𝑇1

𝑁1

𝑁2

] = [

1 0 0
−𝑘2 1 0

𝑘2
2

2
−𝑘2 1

] [
𝑇
𝑁
𝐵

], 

 

and the null Cartan frame equations are given as follows 

 [

𝑇1
′

𝑁1
′

𝑁2
′

] = [

𝑘2 𝑘1 0
0 0 𝑘1

0 0 −𝑘2

] [

𝑇1

𝑁1

𝑁2

], 

 here the first Bishop curvature  𝑘1(𝑠) = 1 , the second Bishop curvature satisfies the following first 

order non-linear differential equation 

 𝑘2
′ (𝑠) = −

1

2
𝑘2

2(𝑠) − 𝜏(𝑠). 

 The Bishop frame  {𝑇1, 𝑁1, 𝑁2}  satisfies the conditions  

 𝑔(𝑇1, 𝑇1) = 𝑔(𝑁2, 𝑁2) = 0, 𝑔(𝑁1, 𝑁1) = 1, 

𝑔(𝑇1, 𝑁1) = 𝑔(𝑁1, 𝑁2) = 0, 𝑔(𝑇1, 𝑁2) = −1,     [15] 

 By using the Theorem 2.1. it is obtained that among all null Cartan curves in Lorentzian 3-space 

only the null Cartan cubics have two Bishop frames, which are given in the following corollary [15]. 

 Corollary 2.2. Let  𝛾  be a null Cartan cubic in Lorentzian 3-space parameterized by pseudo-arc  𝑠 . 

Then the Bishop frame  {𝑇1, 𝑁1, 𝑁2}  and the Cartan frame  {𝑇, 𝑁, 𝐵}  have the following relation:  

 (i) 

 [

𝑇1

𝑁1

𝑁2

] = [

1 0 0
−𝑘2 1 0

𝑘2
2

2
−𝑘2 1

] [
𝑇
𝑁
𝐵

], 

 and the null Cartan frame equations are given by 

 [

𝑇1
′

𝑁1
′

𝑁2
′

] = [

𝑘2 𝑘1 0
0 0 𝑘1

0 0 −𝑘2

] [

𝑇1

𝑁1

𝑁2

]. 

 where the Bishop curvatures satisfy  𝑘1(𝑠) = 1  and  𝑘2(𝑠) =
2

𝑠
;   

 (ii) 

 [

𝑇1

𝑁1

𝑁2

] = [
1 0 0
0 1 0
0 0 1

] [
𝑇
𝑁
𝐵

], 

 and the null Cartan frame equations are given by 

 [

𝑇1
′

𝑁1
′

𝑁2
′

] = [

𝑘2 𝑘1 0
0 0 𝑘1

0 0 −𝑘2

] [

𝑇1

𝑁1

𝑁2

], 
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 here the Bishop frame curvatures satisfy  𝑘1(𝑠) = 1  and  𝑘2(𝑠) = 0  [15] . 

 The cross products of the Bishop frame vectors satisfy 

𝑇1 × 𝑁1 = −𝑇1, 𝑁1 × 𝑁2 = −𝑁2, 𝑁2 × 𝑇1 = 𝑁1.  [15]. 

 Lemma 2.3. Let  γ  :   I ⊂ R → M  be a null Cartan curve in Lorentzian space form  (M(C), g)  and  

V  be a vector field along the curve  γ  then the variation of  γ  defined by  Γ  :   I × (−ε, ε) → M(C)  with  

γ(s, 0)  the initial null Cartan curve satisfy  Γ(s, 0) = γ(s) . The variational vector field has the notion  

V(s) =
∂Γ(s,t)

∂s
.  In this setting, the variations of the speed function  v(s, t) = ‖

∂Γ(s,t)

∂s
‖, and the  Bishop 

curvature functions  k1(s, t)  and  k2(s, t) at  t = 0  are calculated as follows: 

 (a)  

 𝑉(𝑣) = (
𝜕𝑣

𝜕𝑡
(𝑠, 𝑡))|

𝑡=0
= −𝑣𝜌, 

 𝑉(𝑘1) = (
𝜕𝑘1

𝜕𝑡
(𝑠, 𝑡))|

𝑡=0
= 𝑔(𝑅(𝑉, 𝑇1)𝑇1 + 𝛻𝑇1

2 𝑉 − 𝑘2𝛻𝑇1
𝑉, 𝑁1) + 2𝜌𝑘1, 

 𝑉(𝑘2) = (
𝜕𝑘2

𝜕𝑡
(𝑠, 𝑡))|

𝑡=0
= 𝑔((𝑘1 − 1)𝑅(𝑉, 𝑇1)𝑇1 + (1 − 𝑘1)𝛻𝑇1

2 𝑉 − 𝑘2𝛻𝑇1
𝑉, 

 +𝑘1𝑘2𝛻𝑇1
𝑉, 𝑁2) − 2𝜌′ − 2𝜌𝑘2 − 𝑘1𝑘2

′ + 2𝜌𝑘1𝑘2, 

 where  𝜌 = 𝑔(𝛻𝑇1
𝑉, 𝑇1)  [20] .  

 Proposition 2.4. Let  𝑉(𝑠)  be the restriction to  𝛾(𝑠)  of a Killing vector field  𝑉  of  𝑀  then the 

variations of the Bishop curvature functions and speed function of  𝛾  satisfy: 

𝑉(𝑣) = 𝑉(𝑘1) = 𝑉(𝑘2) = 0,  [20].  

 Corollary 2.5. 𝑉  is a Killing vector field along the null Cartan curve  𝛾  if and only if it satisfies the 

following conditions: 

i.  𝑔(𝛻𝑇1
𝑉, 𝑇1) = 0,  

ii.  𝑔(𝛻𝑇1
2 𝑉, 𝑁1) − 𝑘2𝑔(𝛻𝑇1

𝑉, 𝑁1) = 0,  

iii.  𝑔((𝑘1 − 1)𝛻𝑇1
2 𝑉 − 𝑘2𝛻𝑇1

𝑉 + 𝑘1𝑘2𝛻𝑇1
𝑉, 𝑁2) + 𝐶(𝑘1 − 1) = 0  [20]. 

 The helix called degenerate if the Killing vector field  𝑉  is a null vector field. The helix is said to 

be non-degenerate if the Killing vector field  𝑉  is a non-null vector field [1]. 

 Let  𝑉(𝑠)  be an axis then its causal characters can be of three families of vectors, namely, 

spacelike, timelike and lightlike(null). Therefore, we can define the following representations for null Cartan 

helices in Lorentzian 3-space. 

III. NULL CARTAN HELICES IN LORANTZIAN 3-SPACE 

 Definition 3.1. Let  𝛾  be a curve with the Bishop frame  {𝑇1, 𝑁1, 𝑁2}  in Lorentzian 3-space. If there 

exist a constant Killing vector field  𝑉  along the curve 𝛾 such that 𝑔(𝑉, 𝑇1) = 𝑐𝑜𝑛𝑠𝑡.,   𝑔(𝑉, 𝑁1) = 𝑐𝑜𝑛𝑠𝑡.,  
or  𝑔(𝑉, 𝑁2) = 𝑐𝑜𝑛𝑠𝑡., respectively, then the curve  𝛾  is called the first kind of  null Cartan helix, second 

kind of null Cartan helix, or third kind of null Cartan helix with the Killing axis  𝑉. 

 Theorem 3.1. Let  𝛾  be a null Cartan curve and  𝑉  be a Killing vector field on a Lorentzian space 

form  (𝑀(𝐶), 𝑔).  The curve  𝛾  is a first kind of null Cartan helix of  (𝑀(𝐶), 𝑔; 𝑉)  if and only if  𝛾  has the 

following curvatures  
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 𝑘1 = 1,  𝑘2 =
𝐴

𝑎
  or 𝑘2 = 0 

 and axis 

 𝑉 =
𝐴2−𝜀

2
𝑇1 + 𝐴𝑁1 + 𝑎𝑁2, 

 where  𝐴 = 𝑐𝑜𝑛𝑠𝑡.,  and  𝜀 = 𝑔(𝑉, 𝑉) .  

 Proof. Let  𝛾  be an arc-length parameterized first kind of null Cartan helix with the Killing vector 

field in a Lorentzian space form  (𝑀(𝐶), 𝑔)  then we have  𝑔(𝑉, T1) = −𝑎 = 𝑐𝑜𝑛𝑠𝑡. Therefore,  𝑉  can be 

written as follows 

(1) V = ζT1 + ηN1 + 𝑎N2 

 Calculating the derivative of eq. (1), we have the following equation 

(2)  𝛻𝑇1
𝑉 = (𝜁′ + 𝜁𝑘2)𝑇1 + (𝜁 + 𝜂′)𝑁1 + (𝜂 − 𝑎𝑘2)𝑁2, 

 Then using the first equation in the Corollary 2.5. we obtain      

 𝑘2 =
𝜂

𝑎
. 

 If we differentiate the eq. (2), we get 

(3) 𝛻𝑇1
2 𝑉 = (𝜁″ + 2𝜁′𝑘2 + 𝜁𝑘2

′ + 𝜁𝑘2
2)𝑇1 + (2𝜁′ + 𝜁𝑘2 + 𝜂″)𝑁1 + (𝜁 + 𝜂′)𝑁2,                                                  

 On the other hand, we have the following equation for simply connected space form  (𝑀(𝐶), 𝑔)   

(4) 𝑅(𝑉, 𝑇1)𝑇1 = 𝐶(𝑔(𝑇1, 𝑉)𝑇1 − 𝑔(𝑇1, 𝑇1)𝑉). 

Since  𝛾  is a null Cartan curve we have  𝑔(𝑇1, 𝑇1) = 0  and we calculate  𝑔(𝑇1, 𝑉) = −𝑎.  So, we 

obtain the Lorentzian curvature tensor of  𝑀(𝐶)  equal to the following equation 

(5) 𝑅(𝑉, 𝑇1)𝑇1 = −𝑎𝐶𝑇1. 

Considering the eqs. (1)-(6) with the second equation in Corollary 2.5. we reach the following 

second order linear differential equation 

(6) 2𝜁′ − 𝑘2𝜂′ + 𝜂″ = 0.                                                       

In these cases, the last equation in Corollary 2.5. is provided automatically. 

 Furthermore, if we use the equation  𝑔(𝑉, 𝑉) = 𝜀,  we get 

 𝜂2 − 𝜁𝑎 = 𝜀. 

 By combining the eq. (7) and eq. (8) we obtain the following second order non-linear differential 

equation                                                            

(7) 3𝜂𝜂′ + 𝑎𝜂″ = 0. 

Then the solution of the eq. (9) calculated as follows 

(9) 𝜂 = 𝐴 or 𝜂 = √
2𝑎𝑐1

3
𝑡𝑎𝑛ℎ( √

3𝑐1

2𝑎
(𝑠 + 𝑐2)).                                 

 This gives the second curvature of the helix as 
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(10) 𝑘2 =
𝐴

𝑎
 or 𝑘2 = √

2𝑐1

3𝑎
𝑡𝑎𝑛ℎ( √

3𝑐1

2𝑎
(𝑠 + 𝑐2)).       

 However, the torsion of the curve  𝛾  is constant on the condition that  𝑘2 =
𝑐

𝑎
 𝑜𝑟 𝑐1 = 0, that 

is,𝑘2 = 0. 

 As a consequently, we determine the Killing axis of the helix satisfy  

 (11)  𝑉 =
𝐴2−𝜀

2
𝑇1 + 𝐴𝑁1 + 𝑎𝑁2.                                               

 Conversely, if  𝛾  satisfy the eq. (10) and eq. (11) then we can easily show that  𝛾  is a first kind of 

null Cartan helix with the Killing axis  𝑉.  

 Theorem 3.2. Let  𝛾  be a null Cartan curve and  𝑉  be a Killing vector field on a Lorentzian space 

form  (𝑀(𝐶), 𝑔). The curve  𝛾  is a second kind of null Cartan helix of  (𝑀(𝐶), 𝑔; 𝑉)  if and only if  𝛾  satisfy 

the following constant curvatures 

 𝑘1 = 1, 𝑘2 =
𝑏

𝜐
, 

 and axis 

 𝑉 =
𝑏2−𝜀

𝜐
𝑇1 + 𝑏𝑁1 + 𝜐𝑁2, 

 where  𝜀 = 𝑔(𝑉, 𝑉) , and  𝑏,   𝜐  are some constants. 

 Proof. Let  𝛾  be an arc-length parameterized second kind of null Cartan helix with the Killing 

vector field in the Lorentzian space form  (𝑀(𝐶), 𝑔)  then we have  𝑔(𝑉, 𝑁1) = 𝑏 = 𝑐𝑜𝑛𝑠𝑡 . Therefore,  𝑉  

may be written as follows 

(12)  𝑉 = 𝜉𝑇1 + 𝑏𝑁1 + 𝜐𝑁2. 

By differentiating of the eq. (12) and the Bishop frame formulas we get 

(13)   𝛻𝑇1
𝑉 = (𝜉′ + 𝜉𝑘2)𝑇1 + 𝜉𝑁1 + (𝑏 + 𝜐′ − 𝜐𝑘2)𝑁2. 

Then the first equation in the Corollary 2.5. yields  

(14) 𝑘2 =
𝑏+𝜐′

𝜐
. 

By differentiating of the eq. (13), we obtain 

(15)  𝛻𝑇1
2 𝑉 = (𝜉″ + 2𝜉′𝑘2 + 𝜉𝑘2

′ + 𝜉𝑘2
2)𝑇1 + (2𝜉′ + 𝜉𝑘2)𝑁1 + 𝜉𝑁2. 

On the other hand, we have the following equation for simply connected space form  (𝑀(𝐶), 𝑔)  

(16) 𝑅(𝑉, 𝑇1)𝑇1 = 𝐶(𝑔(𝑇1, 𝑉)𝑇1 − 𝑔(𝑇1, 𝑇1)𝑉). 

Since  𝛾  is a null Cartan curve we have  𝑔(𝑇1, 𝑇1) = 0  and we calculate  𝑔(𝑇1, 𝑉) = −𝜐.  
Therefore we obtain the Lorentzian curvature tensor of  𝑀(𝐶)  equal to the following equation 

(17) 𝑅(𝑉, 𝑇1)𝑇1 = 𝜐𝐶𝑇1. 

In combination with the eqs. (12)-(17) and the second equation in Corollary 2.5., we get  

(18) 𝜉 = 𝑐𝑜𝑛𝑠𝑡. 
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In these cases, the last equation in Corollary 2.5. is provided automatically. 

Moreover, if we use the equation  𝑔(𝑉, 𝑉) = 𝜀,  we get 

(19)  𝑏2 − 𝜉𝜐 = 𝜀. 

If we combine with the eq. (18) and eq. (19) we obtain 

(20) 𝜐 = 𝑐𝑜𝑛𝑠𝑡. 

This yield  

(21) 𝑘2 =
𝑏

𝜐
, 

As a consequently, we determine the Killing axis of the helix satisfy  

(22)  𝑉 =
𝑏2−𝜀

𝜐
𝑇1 + 𝑏𝑁1 + 𝜐𝑁2. 

Conversely, if  𝛾  satisfy the eq. (21) and eq. (22) then we can easily show then  𝛾  is a second kind 

of null Cartan helix with the Killing axis  𝑉.  

Theorem 3.3. Let  𝛾  be a null Cartan curve and  𝑉  be a Killing vector field on a Lorentzian space 

form  (𝑀(𝐶), 𝑔). The curve  𝛾  is a third kind of null Cartan helix of  (𝑀(𝐶), 𝑔; 𝑉)  if and only if the Bishop 

curvatures of  𝛾  satisfy 

 𝑘1 = 1,  

 𝑘2 = −√2𝑐1(2𝜀𝑐1 + 𝑐) 𝑡𝑎𝑛ℎ
√2𝑐1(2𝜀𝑐1+𝑐)(𝑠+𝑐4)

2
, −𝑐1(2𝜀𝑐1 + 𝑐) > 0,or 

 𝑘2 = −√−2𝑐1(2𝜀𝑐1 + 𝑐) 𝑡𝑎𝑛
√−2𝑐1(2𝜀𝑐1+𝑐)(𝑠+𝑐4)

2
, −𝑐1(2𝜀𝑐1 + 𝑐) < 0, 

𝑉 = 𝑐𝑇1 + 𝜍𝑁1 +
𝜍2−𝜀

𝑐
𝑁2, 

Where for spacelike Killing vector field  𝜀 = 1,  for timelike Killing vector field  𝜀 = −1  and  𝑎, 𝑐1, 
𝑐2  are some constants. 

Proof. Let  𝛾  be an arc-length parameterized third kind of null Cartan helix with the Killing vector 

field in Lorentzian space form  (𝑀(𝐶), 𝑔)  then we have 𝑔(𝑉, 𝑁2) = −𝑐 = 𝑐𝑜𝑛𝑠𝑡. Therefore,  𝑉  is written 

(23) 𝑉 = 𝑐𝑇1 + 𝜍𝑁1 + 𝜎𝑁2, 

Using the derivative of the eq. (23) and the Bishop frame formulas in the Corollary 2.5 we obtain  

(24) 𝑘2 =
𝜍+𝜎′

𝜎
. 

If we use the second derivation of the eq. (23) and combine the eq. (24) with the second equation in 

Corollary 2.5. we get  

(25)  𝜍″ − 𝑘2𝜍′ = 0, 

In these cases, the last equation in Corollary 2.5. is provided automatically. 

On the other hand, if we use the equation  𝑔(𝑉, 𝑉) = 𝜀,  we get 
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(26)   𝜎 =
𝜍2−𝜀

𝑐
. 

If the eq. (24) and eq. (26) are fulfilled in the eq. (25) we obtain a second order non-linear 

differential equation 

(27)   (𝜀 − 𝜍3)𝜍″ + 𝑐𝜍𝜍′ + 2𝜍𝜍′2 = 0. 

The solution of the eq. (27) is obtained as 

 𝜍(𝑠) = −√
(2𝜀𝑐1+𝑐)

2𝑐1
𝑡𝑎𝑛ℎ

√2𝑐1(𝑐+2𝜀𝑐1)(𝑠+𝑐2),−𝑐1(2𝜀𝑐1+𝑐)>0

2
 

or 

 𝜍(𝑠) = −√
−(2𝜀𝑐1+𝑐)

2𝑐1
𝑡𝑎𝑛

√−2𝑐1(𝑐+2𝜀𝑐1)(𝑠+𝑐2)

2
, −𝑐1(2𝜀𝑐1 + 𝑐) < 0. 

Then the curvatures and the axis of the third kind null Cartan helices have the following second 

Bishop curvature 

(28) 𝑘2 = −√2𝑐1(2𝜀𝑐1 + 𝑐) 𝑡𝑎𝑛ℎ
√2𝑐1(2𝜀𝑐1+𝑐)(𝑠+𝑐4)

2
, −𝑐1(2𝜀𝑐1 + 𝑐) > 0,  

 or 

𝑘2 = −√−2𝑐1(2𝜀𝑐1 + 𝑐) 𝑡𝑎𝑛
√−2𝑐1(2𝜀𝑐1+𝑐)(𝑠+𝑐4)

2
, −𝑐1(2𝜀𝑐1 + 𝑐) < 0, 

and the axis 

(29)                                                          𝑉 = 𝑐𝑇1 + 𝜍𝑁1 +
𝜍2−𝜀

𝑐
𝑁2. 

 Conversely, if  𝛾  satisfy the eq. (28) and eq. (29) then we can easily show that  𝛾  is a third kind of 

null Cartan helix with the Killing axis  𝑉.  

 Corollary 3.4. (Main result) Let  γ  be a null Cartan helix and  V  be a Killing vector field 
on a Lorentzian space form  (M(C), g).  Then  γ  has one of the following equivalent 
characterizations: 

i.  T1  makes a constant angle with a unit fixed constant Killing vector field ;  

ii.  N1  makes a constant angle with a unit fixed constant Killing vector field ;  

iii.  N2  makes an angle with a unit fixed constant Killing vector field ;  

iv. The ratio of the curvature  κ  and torsion  τ  is constant, that is, 

 
𝜏

𝜅
= 𝑐𝑜𝑛𝑠𝑡. 

3.1. Parametric representations of null Cartan helices 

 From the above theorem we obtain that the null Cartan helices have the constant torsion and the 

position vector of the helices satisfy the following higher-order linear ordinary differential equation:  

𝛾(4) + 2𝜏𝛾″ = 0. 

 The solution of the differential equation gives the parametric representation of all null Cartan 
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helices following three cases: 

 If 𝜏 = −𝜆 < 0, then 𝛾(𝑠) = Ψ1 + 𝛹2𝑠 +
𝛹3

2𝜆
𝑒𝑥𝑝( √2𝜆𝑠) +

𝛹4

2𝜆
𝑒𝑥𝑝( − √2𝜆𝑠), 

 If 𝜏 > 0, then 𝛾(𝑠) = Φ1 + 𝛷2𝑠 +
𝛷3

2𝜏
𝑠𝑖𝑛( √2𝜏𝑠) + 𝛷4 𝑐𝑜𝑠( √2𝜏𝑠), 

 if 𝜏 = 0, then 𝛾(𝑠) = Ω1 + 𝛺2𝑠 + 𝛺3𝑠2 + 𝛺4𝑠3, 

 

where  𝛹𝑖 ,   𝛷𝑖 ,   𝛺𝑖 ∈ 𝐸1
3,   𝑖 = 1,2,3,4.  Namely, the solution for first kind null Cartan helix can be 

given following two cases: 

Case 1. Provided that  𝛾  is a first kind of null Cartan helix then we obtain following two 

characterizations: 

i. if  𝑘2 =
𝐴

𝑎
  then  𝜏 = −

𝐴2

𝑎2 < 0 . We deduce that 

 𝛾(𝑠) = 𝐴1 + 𝐴2𝑠 +
𝑎2𝐴3

2𝐴2 𝑒𝑥𝑝( √
2𝐴2

𝑎2 𝑠) +
𝑎2𝐴4

2𝐴2 𝑒𝑥𝑝( − √
2𝐴2

𝑎2 𝑠), 

ii. if  𝑘2 = 0  then  𝜏 = 0  then we have 

𝛾(𝑠) = 𝐵1 + 𝐵2𝑠 + 𝐵3𝑠2 + 𝐵4𝑠3, 

where  𝐴𝑖,   𝐵𝑖 ∈ 𝐸1
3,   𝑖 = 1,2,3,4. 

Case 2. Suppose that  𝛾  is a second kind of null Cartan helix then the curve  𝛾  has the curvature  

𝑘2 =
𝑏

𝜐
.  From here we obtain following characterization: 

If  𝜏 = −
𝑏2

2𝜈2  then  𝜏 < 0  along the curve  𝛾 . Thus, the solution of the second kind null Cartan 

helix 

 𝛾(𝑠) = 𝐶1 + 𝐶2𝑠 +
𝜈2𝐶3

𝑏2 𝑒𝑥𝑝( √
𝑏2

𝜈2 𝑠) +
𝜈2𝐶4

𝑏2 𝑒𝑥𝑝( − √
𝑏2

𝜈2 𝑠), 

where  𝐶𝑖 ∈ 𝐸1
3,   𝑖 = 1,2,3,4.  

Case 3. Suppose that  𝛾  is a third kind of null Cartan helix then the curve  𝛾  has the curvature   

𝑘2 = −√2𝑐1(2𝜀𝑐1 + 𝑐) 𝑡𝑎𝑛ℎ
√2𝑐1(2𝜀𝑐1+𝑐)(𝑠+𝑐4)

2
.  From here we obtain following two 

characterizations: 

i. if  𝜏 = −𝑐1(2𝜀𝑐1 + 𝑐) < 0  then we have 

 𝛾(𝑠) = 𝐷1 + 𝐷2𝑠 +
𝐷3

2(−𝑐1(2𝜀𝑐1+𝑐))
𝑒𝑥𝑝( √2(−𝑐1(2𝜀𝑐1 + 𝑐))𝑠) +

𝐷4

2(−𝑐1(2𝜀𝑐1+𝑐))
𝑒𝑥𝑝( −

√2(−𝑐1(2𝜀𝑐1 + 𝑐))𝑠), 

 ii. if  𝜏 = −𝑐1(2𝜀𝑐1 + 𝑐) > 0  then we have 

 𝛾(𝑠) = 𝐸1 + 𝐸2𝑠 +
𝐸3

2(−𝑐1(2𝜀𝑐1+𝑐))
𝑠𝑖𝑛( √2(−𝑐1(2𝜀𝑐1 + 𝑐))𝑠) +

𝐸4

2(−𝑐1(2𝜀𝑐1+𝑐))
𝑐𝑜𝑠( √2(−𝑐1(2𝜀𝑐1 + 𝑐))𝑠), 
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 where  𝐷𝑖 , 𝐸𝑖 ∈ 𝐸1
3,   𝑖 = 1,2,3,4.  

 Example 3.1. If we take  A= 0,   𝑎 = −1,   𝑐2 = 0,   𝐵1 = (0,0,0),   𝐵2 = (
1

6
, 0, −

1

6
),   𝐵3 = (0,

1

2
, 0)  

and  𝐵4 = (
1

2
, 0, −

1

2
),  we get following first kind of null Cartan helix  

 𝛾(𝑠) = (
𝑠3

2
+

𝑠

6
,

𝑠2

2
,

𝑠3

2
−

𝑠

6
). 

 

The curve has the following Bishop curvatures: 

 𝑘1(𝑠) = 1, 𝑘2(𝑠) = 0. 

“The axis of the helix calculated as 

 𝑉 =
−𝜀

2
𝑇1 + 𝑎𝑁2. 

 The image of the first kind of null Cartan helix illustrated in Figure 1. 

 

Figure 1.  A first kind of null Cartan helix 

Example 3.2. If we choose  𝑏 = √2,   𝜐 = 1,   𝐶1 = (0,0,0),   𝐶2 = (0,
1

√2
, 0),   𝐶3 = (

1

2
, 0,

1

2
) , and  

𝐶4 = (−
1

2
, 0,

1

2
)  we obtain second kind of null Cartan helix parameterized as follows: 

 𝛾(𝑠) = (
𝑒√2𝑠

4
−

𝑒−√2𝑠

4
,

𝑠

√2
,

𝑒√2𝑠

4
+

𝑒−√2𝑠

4
). 

The curve has the following Bishop curvatures: 

 𝑘1(𝑠) = 1, 𝑘2(𝑠) = √2. 

Then the axis of the second kind of null Cartan helix given as 

 𝑉 = (2 − 𝜀)𝑇1 + √2𝑁1 + 𝑁2. 
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The image of the helix plotted in Figure 2. 

 

Figure 2.  A second kind of null Cartan helix 

Example 3.3. If we take  𝐸1 = (0,0,0),   𝐸2 = (√2, 0,1),   𝐸3 = (0,1,0),   𝐸4 = (1,0, √2),   𝑐1 = −1,   

𝑐 = −
1

2
  and  𝜀 = 0,  Then we obtain third kind of null Cartan helix parameterizaed as  

 𝛾(𝑠) = (𝑐𝑜𝑠 𝑠 + √2𝑠, 𝑠𝑖𝑛 𝑠 , √2 𝑐𝑜𝑠 𝑠 + 𝑠). 

The curve has the following Bishop curvatures: 

𝑘1(𝑠) = 1, 𝑘2(𝑠) = −
1

2
𝑡𝑎𝑛

𝑠

4
. 

The axis of the helix 

𝑉 =
1

2
𝑇1 −

1

2
𝑡𝑎𝑛

𝑠

4
𝑁1 −

1

4
𝑡𝑎𝑛

𝑠

4
𝑁2. 

The image of the helix illustrated in Figure 3. 

 

Figure 3.  A third kind of null Cartan helix 
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