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Abstract

In this paper, it is aimed to determine the radii of starlikeness and convexity of the
normalized generalized Struve functions for three different kinds of normalization and to
find tight lower and upper bounds for the radius of starlikeness and convexity of these
normalized Struve functions by making use of Euler-Rayleigh inequalities. The Laguerre-
Pélya class of entire functions has a crucial role in constructing our main results.
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1. Introduction and Prerequisites

As it is well known, special functions are one of the most powerful tools in the solution
of a wide variety of important problems. Because of the fruitful properties of special func-
tions, it is important to examine their properties in many aspects. In the recent years,
there has been a vivid interest on geometric properties of special functions from the point
of view of geometric function theory, like Bessel, Struve and Lommel functions of the first
kind; see the papers [1-4,6-8,10-12] and the references therein. However, it is possible to
say that the roots of special functions seen on geometric functions theory are based on the
studies of Brown [14], Kreyszig and Todd [18] and Wilf [21] which initiated investigation
on the univalence of Bessel functions and on the determination the radius of starlikeness
for different kinds of normalization. Recently, in 2014, Baricz et al. [7] came up with
a much simpler approach for determining the radius of starlikeness of normalized Bessel
functions of first kind. In the same year, Baricz and Szész [11] obtained the radius of
convexity of the same normalized Bessel functions. When scrutinized their studies (in
particular, [7] and [11]) the main facts pertaining to these studies can be stated as fol-
lows: the radii of univalence, starlikeness and convexity are obtained as solutions of some
transcendental equations and the obtained radii satisfy some interesting inequalities. In
addition, the other main fact is that the positive zeros of Bessel, Struve, Lommel functions
of the first kind and the Laguerre-Pélya class of entire functions have an important place in
these papers. Recent years, there has been extensive work on determining some geometric
properties of other special functions involving Bessel function of first kind such as univa-
lence, starlikeness, convexity and so forth. For instance, in [15], Deniz and Szdsz obtained

Email address: evrimtoklu@gmail.com
Received: 26.01.2019; Accepted: 30.08.2019


https://orcid.org/0000-0002-2332-0336

Radii of starlikeness and convezity of generalized Struve functions 1217

the radius of uniform convexity of the normalized Bessel functions. And also, Bohra and
Ravichandran in [13] investigated the radius of strong starlikeness and k uniform convexity
of order « of the normalized Bessel functions.

Motivated by the above series of papers on geometric properties of special functions
and using the method of Baricz et al. [7], our aim in this paper is to present some similar
results for the normalized forms of the generalized Struve functions, which is similar to
the generalized Bessel functions of Wright type (and of Galue type).

This paper is organized as follows: The rest of this section contains some basic definitions
needed for the proof of our main results. Section 2 is divided into three subsections:
The first subsection is devoted to the study on the radii of starlikeness of normalized
generalized Struve functions. The second subsection contains the study of the radii of
convexity of normalized generalized Struve functions. The last subsection is allocated to
the presentation of making some comparisons our main results given in this paper with
obtained results earlier.

Before starting to present our main results, we would like to draw attention to some
basic concepts needed for building our main results. For r > 0 we denote by D, =
{z € C:|z| < r} the open disk of radius r centered at the origin. Let f : D, — C be the
function defined by

f(z) =2+ Z anz", (1.1)

n>2
where 7 is less or equal than the radius of convergence of the above power series. Denote by
A the class of allanalytic functions of the form (1.1), that is, normalized by the conditions
f(0) = f/(0) =1 = 0. We say that the function f, defined by (1.1), is starlike function
in D, if f is univalent in D,, and the image domain f(D,) is a starlike domain in C with
respect to the origin (see [17] for more details). Analytically, the function f is starlike in

D, if and only if
!
Re (Zf (2)) >0 forall zeD,.
f(2)

For o € [0,1) we say that the function f is starlike of order « in D, if and only if

Re (?;éi?) >« forall z€D,.

The radius of starlikeness of order « of the function f is defined as the real number

/
ra(f) = sup {r > 0|Re (Zf (Z)> > o forall z € ]D)T}.
f(2)
Note that r*(f) = r5(f) is in fact the largest radius such that the image region f(ID,«(y))
is a starlike domain with respect to the origin. The function f, defined by (1.1), is convex
in the disk D, if f is univalent in D,, and the image domain f(ID,) is a convex domain in
C. Analytically, the function f is convex in D, if and only if

"
Re (1 L (z)> >0 forall z€D,.
f'(2)
For a € [0,1) we say that the function f is convex of order « in D, if and only if
zf”(z))
Re(1+ >« forall z€D,.
f'(2)

We shall denote the radius of convexity of order a of the function f by the real number
2f"(2)
o(f) = >0|Re (1
01 -mmofu1 £
Note that 7¢(f) = r§(f) is the largest radius such that the image region f(D,(s)) is a
convex domain.

>>af0rallz€DT}.
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We recall that a real entire function g belongs to the Laguerre-Pélya class LP if it can
be represented in the form

q(x) = cxMe 9z +be H (1 + x> efﬁ,

n>1 In
with ¢,b,z, € R,a > 0,m € Ny and Zx% < oo. We note that the class £LP is the

complement of the space of polynomials whose zeros are all real in the topology induced
by the uniform convergence on the compact sets of the complex plane of polynomials with
only real zeros. For more details on the class LP we refer to [16, p. 703] and to the
references therein.

Finally, let us take a look at some lemmas which are very useful in building our main
results.
Lemma 1.1 (see [15]). Ifa >b>r > |z|, and X € [0,1], then
z z

- A
b—=z a—z

T r
< - . 1.2
“b—r a—r (1.2)

The followings can be obtained as a natural consequence of this inequality:
I@(bz B W )g LN . (1.3)

—z a—z b—r a—r
T

z z
< < .
Re(b—z)_’b—z “b—r

The result of Runckel [19, Thm. 4], stated in Lemma 1.2, play a key role in proving the
reality of zeros of some special functions. For interesting applications of this lemma one
can refer to the study of Baricz and Sanjeev [9].

and

(1.4)

2

Lemma 1.2 (Runckel, 1969). If f(z) = 32,50 an2™ can be represented by f(z) = e** h(z),
where a < 0 and h is of form

h(z) = ce® H (1—Z) ewn b,cGR,Z\cn|72<oo,
n>1 Cn n>1
f has real zeros only (or no zeros at all), and G is of form
G(z):eBZH<1+z>e;n, an>0,ﬁER,Za;2<oo,
n>1 Qn n>1

then the function 3, - anG(n)z" has real zeros only.

2. The radii of starlikeness and convexity of generalized Struve functions

In this section we focus on the generalized Struve functions, which is similar to the
generalized Bessel functions of Wright type (and of Galue type), defined as

—1)en 2\ 2ntptl
qu,b,Cﬁ(Z) = Z =) < )

n>0 nl(gn +% + HTQ)

5 , (geN; pbceC)

where 0 > 0.
It is clear that we can derive a number of well-known special functions from generalized
Struve function for some values of the parameters. Some of them is as follows:

Wi—12,11(2) = Ju(2),
where J,(2) is Bessel function of first kind [20].
Wp-1,1,-11(2) = ¢Ip(2),
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where ,I,(z) is the Galue type generalization of modified Bessel function [5].
It is obvious that the function z — (W, . 5(2) does not belong to the class A, and thus
first we perform some natural normalization. We define three functions originating from

qu,b,Cﬁ(‘)

1
b+ 2 p+I
noes(®) =(270E 4 T2 W 0a(2))

b+2. _
)z qup,bﬂc,é(Z%

_ptl
)Zl >  Wpbes(Vz).

qu,b,C,é(Z) :2p+1r(§ +

p b+2
th,b,c,é(z) :27’+1F(5 + N

Observe that these functions belong to the class A. No doubt it is possible to write infinitely
many other normalizations; the main motivation to consider the above ones is the fact that
their particular cases in terms of Bessel functions appear in the literature or are similar
to the studied normalization in the literature. In this study, we are going to present some
intriguing results on these three functions by using some basic techniques of geometric
function theory.

The following lemma, which we believe is of independent interest, has a crucial role in
the proof of our main results.

Lemma 2.1. Let §,q,b,c > 0 and p+1 > 0. Then z — Wy 5(2) possesses infinitely
many zeros which are all real. Denoting by qwppcn the nth positive zero of Wy c5(2),
under the same conditions the Weierstrassian decomposition

b+ 2 22
2P+1F(§ + T)qu,b,c,g(z) = 2Pt1 11 (1 — 2) (2.1)

nZl quvbvcvavn

is fulfilled, and this product is uniformly convergent on compact subsets of the complex
plane. Moreover, if we denote by qw;/),b,c,é,n the nth positive zero ofqWI’)7b7C75(z), then positive
zeros of Wy cs are interlaced with those qung,b,c,(S' In other words, the zeros satisfy the

chain of inequalities

/ /
quvbvc7671 < qu7b767571 < qu,b,c,6,2 < qu,b7()7(5,2 <.. ..

Proof. Let us prove the reality of zeros of the function (W) . 5(2). Consider the entire
function

2 p+1 (_1)ncn > 2n
i 3 A
qWpbe 2 r;)nlr(qn+§+b;2) 2
The function ¢Gpps : [0,00) = R defined by

1
I'(gz+ 5§+ b+72)

qu,b,C,6(2> =

2\2
is entire function and of growth order 1, belongs to LP. If we choose f(z) = 6_6(5) , then
by making use of the Runckel’s above-mentioned result (that is, Lemma 1.2) we obtain
that the function (W), . 5(2) has real zeros only if ,¢,b,c > 0 and p 4+ 1 > 0. Moreover,
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the growth order of the generalized Struve function is calculated in the following:

nlogn nlogn
p(Wppes(2)) = limsup 8 lim sup &
n—oo —log ‘Cn‘ n—oo 1o (=)
& n!F(qn+§+l7'£—2)
1
= limsu
n%oop _ nlog|c| + log I'(n+1) + logF(qn—&-%—l—%)
nlogn nlogn nlogn
1
14+4q
It is evident that p(4Wppc5(2)) = 1+q < 1, for ¢ > 0. It is well known that if the finite

growth order p of an entire function is not an integer, then the function has infinitely
many zeros. In that case, by virtue of the Hadamard theorem on growth order of the
entire function, it follows that its infinite product representation is exactly what we have
in Lemma 2.1. Taking into account the infinite product representation we get

W;/,,bczs( z) p+1_ 2z

— (2.2)

2
P b,c,6\%Z ) z n>1 qu,b,c,é,n

(2
Diferentiating both sides of (2.2) we arrive at

d q pbc&(z) p+1 q pb06n+z
- ) — ) )
o (mread) =25t ey

2
b.c 5(2 z 2 .2
p n>1 qu,b,c,&n z

Since the expression on the right-hand side is real and negative for z real, the quotient

W,
% is a strictly decreasing function from 400 to —oo as z increases through real

values over the open interval (qwpp.consqWpbesnt1) 7 € N. That is to say that the
function qu’,b .s(%) vanishes just once between two consecutive zeros of the function
qu7b7C76 (Z) °

The lemma, is proved. [l

2.1. The radii of starlikeness of order « of the functions ,f, s, ¢9pbcs and
th,b,c,ﬁ .

Our first main result is related to the radii of starlikeness of these three normalized

generalized Struve functions. In other words, the aim of this section is to determine the

radii of starlikeness of order « of the normalized Struve functions and to give tight lower
and upper bounds for radii of starlikeness of the normalized Struve functions.

Theorem 2.2. Let 0,q,b,c >0, p+1>0 and a € [0,1). Then the following assertions
are true.
a. The radius of starlikeness of order a of the function qfppcs 5 75(qfpbes) =
aTpb.c,s,1, where ¢z, e 51 15 the smallest zero of the equation

Tqul),b,c,zS(T) —a(p+ 1)qu,b,c,5(T) =0.

b. The radius of starlikeness of order a of the function qgpp.cs 5 To(g9pbes) =
aYpbe,5,15 Where qypp 51 s the smallest zero of the equation

rqWy pes(r) = (@ + p)gWpp.es(r) = 0.
c. The radius of starlikeness of order a of the function ghppcs s Th(ghppes) =

aZpb.cs1, where gz, p 051 is the smallest zero of the equation
p+1

VW e s(Vr) —2(a + S D) gWpibeos(\/1) = 0.
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Proof. We shall show that the inequalities
zqf! z 249, z zqh! z
Re qf ,b,c,é( ) > a, Re qu,b,c,d( ) >~ a and Re q p,b,c,&( ) > a, (23)
qu,b,cﬁ(z) qu,b,c,ﬁ(z) th,b,c,é(z)

are Va’lid fOI' z € ]D)qxp,b,c,é,l (qu7b7c76)’ z € ]D)qyp,b,c,é,l(quvbzc:a) and zZ € ]D)qu,b,c,é,l (th7b7c76)’
respectively, and each of the above-mentioned inequalities does not hold in any larger
disk. Consider the functions

p b+2 P+
noesl®) =(ZHEG + 22 Wonesl2))
p b+2, _
qu,b,c,é(z) :2p+lr(5 + 9 )Z qup,b,c,(S(Z)a
b+2, |_pt1

th,b,cﬁ(z) :2p+1r(§ + 2 )Z 2 qu,b,C,J(\/;)'

As a result of the logarithmic differentiation we arrive at

Zafppes(z) 1 [2Whp5(2)) . 1 5 2,2
afppes(z)  PH1N\ Wppes(2) p+1.5 Wpbeon — 2
2q9p b.c.s(?) 2qWppes(2) 222

e = | Sl
qu,b,qé(z) qu,b,c,é(Z) oS14%pbesn 4
th;,b,c,é(z) —1_ p+1 } <\/EqWI/;,b,c,6(\/2)> 1 Z .z
ahpb.e.s(2) 2 2 aWphbes(VZ) n>1 qw:?),b,c,é,n -z

By making use of Eq. (1.4) given in Lemma 1.1 we have

zqf! z 1 2"
Re(‘M):l—Re Yo
qu,b,c,é(z) p+1 n>14“pbein 2

1 2|Z|2 - 2] 4 g/a,b,c,é(‘z‘)

pt+1 n>1 qw2,b,c,5,n - |Z|2 B afpbes(2])

240! z 952
Re ( qu,b,c,5( )) —1—_Re Z S z .
qu7b7075(z) n>1 a%“pbcsn T F

>1

2 P / >
>1-% . 2]z = 2] 49 p.c,5( |)’
n>1 qu,b,c,é,n - ’Z‘ qu7b7075(|z|)
zqh! z
Re [ ZeMopes®) | p o
alipbes(2) n>13%pbeon 2
>1— ‘Z‘ _ ’Z‘ qh;,b,c,éﬂ’z’)
B n>1 qw;g,b,c,é,n - ’Z‘ th7b7075(|z’)

It is important to mention that equalities in the above-mentioned inequalities are attained
only when z = |z| = r. In light of the later inequalities and the minimum principle for
harmonic functions we deduce that the inequalities stated in (2.3) hold if and only if
2] < aTp,b,c,3,15 2] < q¥Yp,b,c,6,1 and |z| < q*p,b,c,8,1) respectively, where qTp,b,c,6,15 qYp,b,c,d,1
and 42pp 51 are the smallest positive roots of the equations

T'q II),b,c,(S(T) B rqula,b,c,é(r) o
_47p.0e0% 7 ,  —oBheon ©

roh! r
and q p,b,c,é( )
qu7b7c76 (r)

= o. 2.4
9p,b,c6(T) g bcs(r) 24)
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As a natural result of these equalities we conclude that

TQW[/),b,C,5(T) —a(p+ 1)qu,b,c,5(r) =0, TqW;/;,b,c,é(T) — (a —l—p)qu,b,c,(s(T) =0

and
/ p+1
\/;’IWPJ’:C#;(W) o 2(0‘ + 2 1)qu,b,C,6(\/77) = 0.
In order to finish the proof we need to show that the roots xppc.515 ¢Upb,e,s,1 and ¢2ppes1
are, respectively, the smallest zeros of the above-mentioned transcendental equation. To
do this, in view of the above inequalities, consider the functions for r € (0, qwpp.c,5,1)

2, ! z rof! r
inf Re( K p’b’c’é( )> = of ’b’c’é( ) = qup,b,c,é(r)a

2€Dr afobes(2) ) afpbes(r)
/ /
_ Zq9 z 749 T
inf Re q p,b,c,&( ) _ q p,b,c,é( ) _ q'l)p,b,c,é(r),
2€Dr q9p,b,c6(%) q9p,b,c,6(T)
zoh! z roh! r
inf Re q p,b,c,S( ) _ q p,b,c,é( ) _ qu,b,c,é(r)-
zeD, qPpbc,s(2) qPpbe,s(T)
Taking into account facts that
1 dzgw? ) s Azqwp o5
qu;’b7c76(r) = _p _I_ 1 Z 2 . n2 2 < 0’ q’U;)}b,C,(s(r) = - Z 2 — ’n2 2 < O
n>1 <qu7b70757n -z ) nzl (qu,b,c,d,n - )
and
qw2 b,c,o,n
qWpbes(T) = — Z P2t 7 <0

2
nx1 (qw bedmn Z)
we deduce that the real functions qupp c.55 qUpb.c,65 ¢Wpbc,s : (05 qWpbeos1) — R are strictly
decreasing. In addition, by virtue of the limits determined as

},i{% qUp,b,cs(T) = }}{{% qUpb,es(r) = }1\% qWpb,es(r) =1
and

lim qUpbe,s(T) = lim qUpbes(r) = lim qWp.bes(r) = —00.
T,/ qWp,b,c,5,1 T,/ qWp,b,c,8,1 7,/ qWp,b,c,8,1

We say that the roots ¢@pp.c6.15 ¢Upb.c,s,1 and ¢2pp 51 are, respectively, the smallest zeros
of the transcendental equation given in (2.4). It is clear that these are desired results. [

The following theorems include some tight lower and upper bounds for the radii of
starlikeness of the functions considered in the above theorems.

Theorem 2.3. Let 6,q,b,c > 0 and p+ 1 > 0. The radius of starlikeness 7 (qfppc.s)
satisfies the inequalities

2(p+ 1) (g+ & + ¥2) < (™ (o Sopes))?

cp+3)T(% + 42)
4p+1)(p+3)T(qg+ 2+ 22 (2g + 2 + 1£2)
c{(p+3)°0(8 + )T (20 + 2+ 552) —2(p+5)(p+ DI2(q+ 2 + 552)}

Proof. When a = 0 in Theorem 2.2, we have r*(yfpp.c,s) is the smallest positive root of
the equation qWQQ bes(z) = 0. That is, the radius of starlikeness of the normalized gener-
alized Struve function 4 fp 4 cs(2) corresponds to the radius of starlikeness of the function
¢Zpbes(2) = ¢Wphyes(2). The infinite series representations of the function ¢Zppc6(2)
and its derivative are given as

qu,b,Cﬁ(Z) = Z

n>0

(=1)"c"(2n+p+1) L2n+p
22n+p D (gn + § + b+72)
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and

5= (CU'C @+ P 4D+ 1) iy
S5 P4+ 52)

Because of the facts that the function (W), s is of the Laguerre-Pélya class of entire
functions and that the class £P is closed under differentiation, we deduce that the function
¢Zpb.es is also in the class £LP. This means that the zeros of the functions ,=,; .5 are
all real. If we denote of the zeros of the function (E,4 .5 by ¢€pp.c6n, then the infinite
product representation of the function (=, .5 is given as follows:

p b+2 _ 22
QP—HF(S + ?)q:‘p,b,c,é(z) = (p + 1)Zp H <1 - 2) :

n>1 2€pb.c,én

QE‘;?,b,c,é(z) =

With the help of the logarithmic differentiation of the last equality, we obtain for
2] < gEppeo

‘151,07177076('2) 9 — 9 221 2 2k+1
e I ) D D) S
q=p;b,c, n>149 p,b XX n>1k>0 9€p,b,c,6,n k>0

where 7, = 37,54 qz-:;ikc? s On the other hand, by making use of the infinite sum repre-
sentation of the function ;=,; . s we arrive at

0Zpbes(®) _ ) (=D)"c"@n+p)2ntp+1) onipy Z "2t p 1) oy,
q=pb.e.s(2) : 22ntpHnll(gn + § + b+2 22n+p+1n[1“ (n+B+ b+2) .

By comparing the coefficients of the last two equahtles we have
c(p +3)0(5 + *42)
- b+2
Ap+1)I(g+ %+ 22)

and
A(p+3)°T%(5 + 52) Ap+5)T(5 +

2)
T 16(p+1)2M2(g + B + %) 16(p+1)I(2g + 2 %)

_1
Now, by using the Euler-Rayleigh inequalities 7, * < qu,b ol
get the following inequality:

2t DL E2 5D < (12 )
p,0,¢,

c(p+3)r(5 +*32)
- Ap+ D)@ +3)0(g+ 5 + 52T (20 + § + 452 _
c{p+32T (5 + 5220+ 5+ 242) - 20+ 5)(p+ DI (g + 2 + 22)}
No doubt we can find more tighter bounds for other values of k € N. O

Theorem 2.4. Let 6,q,b,c > 0 and p+ 1 > 0. The radius of starlikeness 7 (49pp,c.5)
satisfies the inequalities

A0(q + § + %5%)

< ) 120(q + § + 552)0(2¢ + § + *F2)
3CF(%+b+72) r (qu,b,c,ﬁ)) <

N5+ BN e+ § + ) — 50+ £+ )
Proof. Our aim is to give more tight bounds for the radius of starlikeness 1*(y49p b.c,5) by
making use of the Euler-Rayleigh inequalities. Let us recall that the radius of starlikeness

of the function ¢g,p.5(2) is the first positive zero of its derivative, according to [7,8]. We
can draw conclusion from Lemma 1.2 that the zeros of

241
aIpbies(2) = F(% + b%Q) Z (_1)::0” b+2 (2) ’
n>0 n!F(qn + 5 + T) 2

all are real when d,¢,b,c > 0 and p+ 1 > 0. Consequently, this function belongs to
the Laguerre-Pdlya class £LP of real entire functions (see [16] for more details), which are
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uniform limits of real polynomials whose all zeros are real. Now, since the Laguerre-Pdlya
class £LP is closed under differentiation, it follows that qulﬂ b.c.s belongs also to the Laguerre-
Polya class and hence all of its zeros are real. Now, we consider the entire function

_1)n(c)n(2” + 1)
%2 Z)= ! 2/z)=T(% + b2 E ( Z".

Therefore in light of Laguerre’s Lemma in [9, Lem. 1, p. 2208] we obtain that the entire

function
"(2n+1)2"

_ b+2
g Vpbie,s(2) = F(% +75) Z
=on'T(gn + B+ HTZ)

has real zeros. Further, it is evident that the function has negative zeros since the
coefficients of ¢ypp.c5 are all positive. Hence 4yppc5(—2) have real and positive ze-
ros. That is to say, the function 4ppp.5(2) has real and only positive zeros. Sup-
pose that qappc5,'s are the zeros of the function 4,5 5(2). Thus, since the function
2 ¢ Ppbes(2) = g9 .0.5(21/2) has growth order %-H] it can be represented by the product

z
Ppbeslz) = = —
#rbes(?) nl;[l< qap,b,c,&ﬂ)

where 4ap,pc6n > 0 for each n € N. Now, by using the Euler-Rayleigh sum £, =
—k .
don>1 4O c5m W€ obtain for |z| < qappes1

/
c 1
e D I UL

4Ppbes(?) n>1 4%b.edn 2 n>1k>0 1%.b,c,6m k>0

/ z 1 n+1 n+1 2 3 n (2 1
4P bes(?) _y (—1) n +b+2 / Z (2n i +3 . (2.6)
a¥pb,es(2) o T(gn+1)+ 5+ o Ml(gn + & + %52)
Equations (2.5) and (2.6) enable us to express the Euler—Rayle1gh sums in terms of p, b, ¢, §
1

and by using the Euler-Rayleigh inequalities E,;E Qs < 72— we get the inequalities
for §,q,b,c>0,p+1>0and ke N

1 A
24/ 4, * *(quﬂ),C 5) <2 7
k+1
Since
3cl(2 + 42) 9 T2(B + B2y 5T (2 + H2)
- b bry and b= Py b2y P bi2
Pla+5+%7) Ple+5+757) Tla+5+7%5)
in particular, for k = 1 from the above Euler-Rayleigh inequalities we have the next

inequality for 2,/,0 561, that is,

l‘ b+2
3C (BS + 72)

g 120'(q + 2 + S2)(2¢ + £ + b52) .
c(Or(§ + b“)F(?q + 5+ 52 -T2 (g + § + B2))

2
< ("™ (¢9p.b.es))

Of course, we can obtain more tighter bounds for other values of k € N. O
Theorem 2.5. The radius of starlikeness r*(qhpp.c5) satisfies the inequalities

2T (q+ & + 42)

; 8I(q+ 5+ ")I(2¢ + § + %52
cI'( +b72)

{0+ 0@+ §+ 550 — 30+ § + 557))

< T*(th7b7075) <

Selis]
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Proof. Consider the infinite sum representation of ¢h,p . 5(2) and its derivative

p b+2 (=1)"c” +1
hppes(z) =T (5 + ) EA
Tpoe ) 2 nz>:0 4nplT(gn + § + b+72)

, p b+2 (=D (n+1)
e Vpbes(2) = ghypes(42) F((; + B )E) nlT(qn + & + HTQ)Z :
Moreover, it is possible to prove the reality of the zeros of the function 4h,p s by using
a similar approaching to the proof of Lemma 2.1. This means that ;h, . s belongs to the
Laguerre-Pélya class LP. Therefore the function hp bes Delongs to the Laguerre-Polya
class £P and has only real zeros. No doubt this is also valid for the function ¢Ypp.cs. That
is to say, the function 41, . s is the element of the Laguerre-Pélya class £P. Therefore, we
can reach the conclusion from Laguerre’s Lemma stated in [9, Lem. 1, p. 2208] that the
function (Y, .5 has only positive zeros and has growth order ﬁq, and thus ¢Yppc5(2)
can be represented by the product

Tppes(z) = [1 (1 - Z) ; (2.7)

TLZI q§p7b,C76,TL
where 46, 5.c.6.n's are the zeros of the function (Y5 ¢ 5(2) and ¢Sppc.5n > 0 for each n € N.
Now, by using the Euler-Rayleigh sum r =}, > aSp, llf, o and the infinite sum represen-
tation of the generalized Struve function (W, .5 we get

qlz)bcé(z) 1 Zk k
19,6y — _ - _ — <
qLpbes(?) 2 > > 1 Dk 2l < qSpbests

n>14%pbedn 2 n>1k>0 4p,b,c,,n k>0

M:Z (—1)" et (n + 2) /Z nH*c™(n+1) o
¢Tpbes(z) Sonl(gn+1)+ 5+ b42) Zynil(gn+ 2 + 542
With the help of the above-mentioned last two equahty we can express the Euler-Rayleigh
1

sums in terms of p, b, c,d and by using the Euler-Rayleigh inequalities /1,;7 < ¢Sp.b,e,s1 <
we get the inequalities for 4,5, 51 for d,¢,b,¢c >0, p+1>0and k € N

Hk+1

1
Ak, ¥ <1 (ghppes) < 4

Rht1
Since
4°T2(B + M2y 3T (B + b2)
and g = b2y 12
Mg+ 5+52) T(2q+5+%2)
in particular, for k from the above Euler-Rayleigh inequalities we have the next
inequality for 44<,4.c6,1, that is,

P b+2

QF(Q 5 2 )
b+2
cl (25 + 72)

80(q+ 5+ *52)T(20 + § + %)
{A0(5 + H)0(2 + § + 252) — 302(g + & + 552)}

Of course, we can obtain more tighter bounds for other values of k£ € N. O

<1 (ghppes) <

2.2. The radii of convexity of order o of the functions ,f, .5, ¢Jpp.cs and
Mpb.e.se
In this section we aim to determine the radii of convexity of the normalized generalized

Struve functions and to find tight lower and upper bounds for the radius of convexity of
these normalized Struve functions with the help of Euler-Rayleigh inequalities.
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Theorem 2.6. Let §,q,b,c>0,p+1>0 and « €[0,1). Then the following assertions
hold true.

a. The radius of convexity of order o of the function 4f,pcs s the smallest root of

the equation
/

/ /
1+ ( S 1) Tqu’b’c"S(r) qu,b,c,é(T)

+r = .
p+1 gWhpbe,s(T) QWIIJ,b,Cﬁ(T)

b. The radius of converity of order o of the function 4gpp.cs s the smallest root of
the equation

1+ quz,b,c,é(r) .
qg;),b,c,é(r)
c. The radius of convexity of order o of the function ¢hyp 5 is the smallest root of
the equation
1+ rqhz,b,c,é(r) — o
M e, (7)

Proof. a. It is obvious that
afpbes?) _ <1 B 1> Wobeo®)  aWppes(?)
p+1 qu,b,c,é(z) qW;/;,b,c,zS(Z)

Now, by making use of Lemma 2.1 we can write the following infinite product representa-
tions

142
q ;/),b,c,é(z)

p b+2 22
2p+1F(5 + T)qu,b,c,é(z) = 2Pt H <1 - 2> ;

TLZl quvbvcvévn

p b+2 22
2p+1r(5 + T)qwgg,b,c,a(z) =(p+1)]] (1 T
n>1 9% p,b,c,0,n

/

where qwppcsn and qw stand for the nth positive roots of ;W .s and qW}Q,bﬂ,&,

p7b7c769n
respectively. Logarithmic differentiation of the above equalities leads to
/ "
qu,b,c,(S(Z) 222 qu,b,c,é(Z) 222
z :P“—Z 2 20 A :p—z 2 27
Wpbes(2) w —z (2) w —z
q'" p,0,c, n>1 4"p,b,c,0,n 9" pb,c,d n>1 47p,b,c,0,n

which implies that

i 9 )
afpp.es(?) ( 1 ) 2z 95
qf,,b,c,&(z) p+1 Z 2 ) Z 2 _ .2

n>1 9%“p.b,c,o,n n>1 a%“p.b,c,5,n

We will prove the theorem in two steps. First suppose p € (—1,0]. By using the inequality

(1.4), for all z € D(0, qw;,;,.,) it is easy to deduce the following inequality

o .o (2 1 22 212
Re<1+zq’,”b’c’5()>21—< _1)2 2 - A D - 2
qf ,b,c,zS(Z) p+1 n>1 qu,b,c,d,n -r n>1 qu,b,c,&n -r
where |z| = r. In the second step, it is easy to see that if we use the inequality (1.3) then
we conclude that the above inequality is also fulfilled when p > 0 . Here we used that the

/ . .
Zeros qWppcsn and aWp b con interlace according to Lemma 2.1. Now, the above deduced

inequality implies for r € (0, qwh be. 571)

inf {Re<1+zm>}_l+rtm

2€Dy qf/,b,c,é(z) qf/,b,c,é (T)
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Now we deal with the function (¥, 5 : (O, qwh 7b,c75,1> — R, defined by

q ;’f,b,c,a(T)

Uppes(r) =1+r——"—-.
e qféyb»cyé(r)

The function is strictly decreasing since

12

1 p,b,c,6,n

Wyes) == (57 -1) 2 S

2 2
2 _ 2 /2 _ 2
n>1 (qu,b,c,é,n r ) nzl (qu7b7c767n r )

< Z 4rqw;2),b,c,6,n . Z .

p,b,c,o,n
2 2
2 2 2 _ 2
nzl (qw ,b,c,0,n r ) nzl (qw ,b,c,0,n r )

2
4rqw bedm 4rqw

4r,w
g <0

forp+1>0andre (O, qw;),b,c,zi,l) . It is important to note that here we used again that

the zeros qwpp c5n and qW;;,b, edn interlace and with conditions of Lemma 2.1 we get that

2 2
2 ) 2 2 2 2
quvbvcvévn (qu7bzc7671 -r ) < qw 7b76767n (qu,b,c,5,1 -Tr )
Also, taking into consideration that lim,\ 0 ¢Upp.es(r) = 1—a > 0,lim, ~ 0\ 51 qUpbes(r) =
—oo that means that for z € D(0,r;) we have

1 z
Re <1 4 Xpbe0 7 I,)’b’c’é( )> > a,
qf 7b,c,(s(’z)

if and only if r; is the unique root of

/A1
)
afpbes(?)

situated in (O,qw’ 7b’c7571>. b. The definition of the function 49,4 implies that this
function is of the Laguerre-Pélya class of entire functions. That is, the function g, s is

entire function that has only real zeros. Suppose that ;8 .5n’s are the real zeros of the
function 4gpp 5. By making use of (2.1) we conclude

qg;)/,b,c,é(z) 222
1+ S = 1= 2 9
qu,lLC,(S(Z) TLZI qﬂ ,b,C,(S,TL —Z
By applying the inequality (1.4) we obtain
" 5 92
Re <1 + quf),b,c,é( )) >1— . T -,
qu,b,c,é(z) n>1 qﬂ b.edn r

where |z| = 7. Whence for r € (0, ¢8ppc,6,1) We have
" z 2 2 " r
inf {Re (1""3{%0’5())} :1—22;2:14_7”%'
€Dy qu,bﬁ,ts(z) n>1 aBppeon =T q9pb.c.6 )

The function 4¢ppcs: (0, 48pp.es1) — R defined by

1
49pb,c.5(T)
aDpbes(r) = 1+ 1=—P220
qu,b,c,6 T)
is strictly decreasing and
s beo(r) = =00,  lim ¢@ppes(r) = 1.
r/‘qu’b’c,é,lq%, ea(r) Mg Ppbe, (r)
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As a result, the equation
/!
Ipbes(T)
14+ rql,j’b’ic’a =«
qu,b,c,(s(r)

has a unique root 7 situated in (0,43, p,c5,1) - €. It is obvious that

th,b,c,a(Z) z
R :
th7b7c75(z) n>19"pb,ecdn z

Let r € (0, q9§7b7 c61) be a fixed number. Because of the minimum principle for harmonic
functions and inequality (1.3) for A = 0 we get

h” 4 h// r
Re<1+qup’b’c’5()>:1—Re Z% 21+,~qlpvbv7cv5().
aPpp.c,5(2) st Oppesn =% aPpc6(7)
Consequently, it follows that
h! 2 h! r
inf {Re (1 + zq/p’b’c’&()>} =14+ 7«‘1/1771’77‘375().
=cbr P es(2) P b5 (T)

The function 4O, s : (0, q9§7b7c7571) — R defined by

h// (’]")
q 7b7 76
(Opbes(r) =14 rE et s
4 p,bvc,é(r)
is strictly decreasing and
T/‘qez’bacyéqlq p’b7676( ) ’ T\Oq p,b,c,é( )

Consequently, the equation

h! z
1—|—Zq p,b,c,6( ):Oé

alpe.5(2)
has a unique root 73 in (0, qa}%,b,c,é,l)'
The proof is completed. O

The following theorems are related to some tight lower and upper bounds for the radii
of convexity of the normalized generalized Struve functions.

Theorem 2.7. Let §,q,b,c > 0 and p+1 > 0. Then the radius of convexity r°(49p.p,c.5)
of the function

p b+2. _
2 qGpbes() = 2p+1F(S + 2 )2 P Wbes(2),

/
is the smallest root of the (zqg;),b,cﬁ) = 0 and satisfies the following inequalities

I b+2
]‘ b+2

36L(q + 5 + "5*)T'(2g + § + *52)
c {81F(%’ + 520 (2g + § + B2) — 2512 (5 + HTQ)}

< (r(gpies))’ <

Proof. In order to prove our main result we will need the Alexanders duality theorem
which has a very simple proof based on the characterization of starlike and convex functions
in the unit disc. Owing to this theorem one can deduce that the function 4g,ps(2) is
convex if and only if 2 + (249ppes) is starlike. From the studies in [7,8] we know that

/
the smallest positive zero of z — (zqg]’%qu 5) is the radius of starlikeness of zqg;@ c 5(2).
That is why the radius of convexity r°(49p.p.c,5) is the smallest positive root of the equation
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/
(zqg;@ c 5) = 0. Now, by using the infinite series representations of the generalized Struve

fuction and its derivative
(_ l)ncn22n+p+1

Wpes(z) = , 2.8

Wobes(?) g% 2204p+InIT (gn + § + 252) 28)
—1)"c(2n + p + 1)22nFP

NUSIOEDS e ) (2.9)

>0 22+ +Inll(gn + § + b2y’

respectively, we arrive at

/
Bppes(2) = (240ppes(2)) =T(E +2) Z

(=D)""@2n+1)7 o,
¢ 22T (gn + & + 252)

Moreover, it is obvious that

—1)"c"(2n + 1)2
Appe = es(2 + bt2 ( ., 2.10
aMpbes(2) = ¢Dpbes(2vVz) = INCIEE )gnlf(qn—l—g—l—b‘f)z ( )

Taking into account facts that the function 4g, s belongs to the Laguerre-Pélya class of
entire functions and that the class £LP is closed under differentiation, it is easy to deduce
that the function ¢A, s belongs to the Laguerre-Pélya class. As a result, the function
¢M\pp.c,s 1s an entire function that has only real zeros. In this case, we can continue to
prove the theorem by emulating the steps taken in the proof of Theorem 2.4. Suppose
that 40pp.c5n’'s are the positive zeros of the function 4A,; . s. Then the function App .5
has the infinite product representation as follows:

z

Appes(z) = |1 (1 - ) : (2.11)
n>1 quvb»cvé7n

By taking the logarithmic derivative of the above equality, we obtain

qup b (;(z) Z
,0,C, k
P,6,¢, (z) n>1 q p,b,c,(s,n k> ’ »9,C,0,

where p = 37,51 40, ]Ii con- Furthermore, by making use of the function ;A, 4 . s we obtain

M B (—1)”6”(277,4—1)2 n/ (_1)n+lcn+1(2n+3)2 .
) .

- (2.13)
qAP,b,C,5(Z) n>0 n!F(qn + % + b+T2 n>0 n!F(Q(n + 1) + % + ZH-TZ)

It is evident that equations (2.12) and (2.13) enable us to express the Euler-Rayleigh sums
1

in terms of ¢, p, b, ¢, § and by considering the Euler-Rayleigh inequalities H;, qOpb,es1 <
qu we obtain the inequalities for 2, /g0, 5.c6.1 for 6,¢4,b,¢ >0, p+1>0and k € N
1
E k
" <r(qppes) <2 e
Hi41

2,uk

As a result of the comparison of the coefficients of (2.12) and (2.13), we arrive at

9cT' (2 + o52) BIT2(8 +52) 25T (% + 42)
Plg+§+52) Mg+ 5+52) Tq+5+52)
Obviously, for £ = 1 from the Euler-Rayleigh inequalities, It can be observed that the
following inequalities take place

Tq+5 + ) 2
< (r€ <
9er (2 + b+T2) (r(g9pb,co))

H1 = and ug =

36I(q + § + %)T'(2g + § + *52)
c{81D(8 + H2)0(2q + § + 52) — 251225 + H42)}

No doubt it can be presented more tighter bounds for other values k € N. g
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Theorem 2.8. Let §,q,b,c > 0 and p+ 1 > 0. Then the radius of convexity r°(qhpp.c.s)
of the function

b+2, _pt1
7)21 2 qu,b,C,ﬁ(\/g)

zr ghppes(z) = QPHP(% + 2

/!
is the smallest root of the (zqh;’b’c’(;(z)) = 0 and satisfies the following inequality

o0+ §+ B0 )
e {167 (5 + 52T (2 + 8 + B52) —0T2(q + § + 252))

I(q+5+%2)
cl'(§ —i—ﬁ)

<1ghppes) <

Proof. In light of explanations which have been presented in the proof of previous theorem
(that is, Theorem 2.7) one can deduce that the radius of convexity r°(4hppcs5) is the

!/
smallest positive root of the equation (zqh;7b7c75(z)> = 0. By taking /z instead of z in
(2.8) and (2.9), respectively we can draw a conclusion

—1)c"(n + 1)*
— / by b+2 E ( n

(2.14)

With the help of facts that the function 4h,p s belongs to the Laguerre-Pélya class of
entire functions £P and that the class £LP is closed under differentiation, it is not hard to
say that the function ¢\, . 5 is also in the Laguerre-Pélya class. This means that the zeros
of the function ¢\, .5 are all real. Furthermore, by means of approach used in the proof
of Theorem 2.4 we can say that all of its zeros are positive. Suppose that 47, .5n,’s are
the zeros of the function 4\, 5. Then the infinite product representation of the function
g \pb,c,s can be given as

z

Apbes(z) =] (1 - ) : (2.15)
nzl qu,b,C,(S,TL

By taking the logarithmic derivative of Eq. (2.15), we get

Aobc.s
L = > vk, L2l < gTppess (2.16)
Mpbes(z) 5

where vy = 37,5 qT;fc(;n. Also, by making use of the derivative of Eq. (2.14), which is
related to infinite sum representation of ;A4 . 5(2), we obtain

1 n+1 n+1 2 n o 1
Apbesl?) _ > +§ ‘ ) (n+2) - /Z G (n+ )b+2 o )
q)\p,b,c,é(z) n>0 24n nF(q(n + 1) —|— —+ "0 22np| I“ qn Ny 5 + T)

The outcomes found by comparing the coefficients of Eq. (2.16) and (2.17) can be given
as follows:

TG OTEehE) 0Tt
F(q+§+%2> g+ 5+ 5% 16D+ + 22)
_1
By considering the Euler-Rayleigh inequalities v, * < ¢7ppc51 < e for 6,q,b,c > 0,

p—+1>0and k=1 we have

Plg+5+"2)

<t ) < 16T(q + 2 + S0 (2¢ + £ + b52)
CP(%—i_ b“FJ) q'“p,0,c,

e {160(2 + BT (2g + & + B2) —OT2(g + & + 232)]

Obviously, it can be presented more tighter bounds for other values k£ € N. g
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2.3. Some particular cases of the main results

This section is devoted to the some intriguing results which are obtained by making some
comparisons with earlier results. It is possible to say that generalized Struve function is
actually a generalization of the suitible transformation of the Bessel function of the first
kind. That is, we have the relation

Wio—i1211(2) = Ju(2)

where J,, is the Bessel function of the first kind and order v. By considering this relation,
we see that our main results obtained in this paper coincide with the following listed
studies.

It is evident that our main results given in Theorem 2.2, in particular for ¢ = 2,p =
v—1,b=2,c=1and § =1, correspond to the results in [7, Theorem 1].

Corollary 2.9. Letv > —1 and a€[0,1).

a. The radius of starlikeness of order o of 1fu—121.1(2) = [2"T'(v + l)Jy(z)]% is the
smallest positive root of the equation

2J0(2) — avd,(z) = 0.

b. The radius of starlikeness of order o of 1g,—1211(2) = 2"T' (v +1)2'""J,(2) is the
smallest positive root of the equation

2J(2)+ (1 —a—v)J,(2) =0.

c. The radius of starlikeness of order o of 1hy—1911(2) = 2'T'(v + 1)2172.J,(/2) is
the smallest positive Toot of the equation

2J(2) + (2 — 2a —v)J,(2) = 0.

By choosing the values ¢ = 2,p = v —1,b = 2,c =1and é = 1 in Theorem 2.3 we
obtain the following corollary which is new.

Corollary 2.10. If v > —1, then the radius of starlikeness r*(1f,—1.21,1) satisfies

v(iv+1) N
V12 <r*(1fu-1,2,1,1)
v(v+1)
<2 20 ———-r—"—.
(v+2) v24+8v 48

It is obvious that our main results presented in Theorem 2.4 and Theorem 2.5 when we
take g =2,p=v—1,b=2,c=1and ¢ = 1, coincide with the inequalities in [3, Thm. 1]
and [3, Thm. 2], respectively.

Corollary 2.11. Let v > —1. The following assertions hold true:

a. The radius of starlikeness r*(19u—1,2,1,1) satisfies the following inequalities:

vt 1 3w+ Dl +2)
2\ —— <" (190- 2 '
\/j< m(190-12.1,1) < \/ dv+13

b. The radius of starlikeness r*(1hy,—121,1) satisfies the following inequalities:
8(v+1)(v+2)
v+5 ’

It is clear that our main results given in Theorem 2.6 when we choose ¢ = 2,p =
v—1,b=2c=1and 0 =1, correspond to the results given in [11, Thm. 1], [11, Thm.
2] and [11, Thm. 3].

2 +1) <r*(1thy—1211) <
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Corollary 2.12. Letv > —1 and a € [0,1). Then the following assertions hold true

a. The radius of convexity of order a of the function 1 f,—1,2,1,1 is the smallest positive
root of the equation

v

1+ rJ)(r) N (1 1) rJ.,(r)

J(r) Ju(r)

b. The radius of convezity of order o of the function 19,1211 is the smallest positive
root of the equation

rJyy2(r) — 3J,41(r) _
Ju(r) = rJyga(r)
Here we used the recurrence formula zJ),(z) = vJ,(2) — 2J,41(2).

c. The radius of convexity of order o of the function 1h,_121,1 is the smallest positive
root of the equation

1+

7“% T%Jy+2(r%) —4Jy41(r2)
o T 1 T
2J,(r2) —r2J,41(r2)
It is clear that our main results given in Theorem 2.7 and Theorem 2.8 when we choose
g=2,p=v—1,b=2c=1and ¢ = 1, coincide with the results given in [2, Thm. 6]
and [2, Thm. 7], respectively.

—_

Corollary 2.13. Let v > —1. The following assertions hold true:
a. The radius of convexity r°(1g,—1.2.1.1) satisfies the following inequalities:

2Vv+1 (v+1)(v+2)
3 56v + 137
b. The radius of convezity r°(1hy,—12,1,1) satisfies the following inequalities:

16(v + 1)(v + 2)
Tv + 23

<7(1gv—1,2,1,1) <6

v+1<r(ihy-1211) <

3. Conclusion

In the present investigation we deal with the radii of starlikeness and convexity of
generalized Struve functions for three different kinds of normalization by making use of
their Hadamard factorization in such a way that the resulting functions are analytic in
the unit disk of the complex plane. By applying Euler-Rayleigh inequalities for the first
positive zeros of these functions tight lower and upper bounds for the radii of starlikeness
of these functions are obtained. The Laguerre-Pélya class of real entire functions plays a
pivotal role in this investigation. In addition, we show that our main results generalize
the various results which can be found in the literature.
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