

RESEARCH ARTICLE

Ulam-Hyers stability for a nonlinear Volterra integro-differential equation

Ho Vu¹, Ngo Van Hoa^{2,3}*

¹Faculty of Mathematical Economics, Banking University of Ho Chi Minh City, Vietnam

²Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

³Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

In this work, the Ulam-Hyers stability and the Ulam-Hyers-Rassias stability for the nonlinear Volterra integro-differential equations are established by employing the method of successive approximation. Some simple examples are given to illustrate the main results.

Mathematics Subject Classification (2010). 34K05, 37C75, 45D05

Keywords. Ulam stability, successive approximation, nonlinear Volterra integro-differential equation

1. Introduction

Integro-differential equations are a significant research topic from the theoretical point of view as well as of their applications. The reader is referred to the monograph of Volterra [16], Lakshmikantham [11], Medlock [12], the papers [4, 6, 7] and the references therein. Especially, studying the stability of Ulam-Hyers and Ulam-Hyers-Rassias for differential equations and integro-differential equations has been of great interest (see [5, 8, 14, 15, 17]) in recent years. In [5, 15], by utilizing method of the fixed point theorem, authors presented some kinds of the Hyers-Ulam-Rassias stability to the Volterra integro-differential equations.

In [1,2], M. Gachpazan and O. Baghani have established the Ulam-Hyers stability for nonlinear integral equation and linear integral equation of the second kind by using successive approximation method. After that with the above idea, Huang et al. [3] proved the Ulam-Hyers stability for delay differential equations of the first order by using successive approximation method. Kucche et al. [9, 10] also applied to prove the Ulam-Hyers stability and E_{α} -Ulam-Hyers stability results for nonlinear implicit fractional differential equations.

Motivatived by M. Gachpazan and O. Baghani [1,2], and Huang et al. [3], we investigate the Ulam-Hyers stability and Ulam-Hyers-Rassias stability for nonlinear Volterra integrodifferential equations (NVIDE) of the form

^{*}Corresponding Author.

Email addresses: ngovanhoa@tdtu.edu.vn (N.V. Hoa), vuh@buh.edu.vn (H. Vu)

Received: 16.11.2018; Accepted: 02.09.2019

$$\begin{cases} u'(t) = f(t, u(t)) + \int_{a}^{t} g(t, s, u(s)) ds, & t \in J \\ u(a) = u_{0}, \end{cases}$$
(1.1)

where J = [a, b], f and g are continuous functions.

The rest of this paper is presented as follows: the Ulam-Hyers stability of (1.1) is presented in Section 2, and the Ulam-Hyers-Rassias stability of (1.1) is given in Section 3.

Now, we present the definition of some types of the Ulam-Hyers stability which will be used throughout this paper. First of all, let $\varepsilon > 0$ and $\psi \in C(J, \mathbb{R}_+)$. We consider the following inequalities:

$$\left| v'(t) - \mathcal{P}(t) \right| \le \varepsilon, \quad t \in J,$$
 (1.2)

and

$$\left|v'(t) - \mathcal{P}(t)\right| \le \varepsilon \psi(t), \quad t \in J,$$
(1.3)

where

$$\mathcal{P}(t) := f(t, v(t)) + \int_a^t g(t, s, v(s)) ds.$$

Definition 1.1. The problem (1.1) is Ulam-Hyers stable if there is a constant $K_f > 0$ such that for each $\varepsilon > 0$ and for each solution $v \in C^1(J, \mathbb{R})$ of (1.2) there is a solution uof (1.1) satisfying

$$|v(t) - u(t)| \le K_f \varepsilon.$$

Definition 1.2. The problem (1.1) is Ulam-Hyers-Rassias stable concerning $\psi \in C(J, \mathbb{R}_+)$ if there is a constant $C_f > 0$ such that for each $\varepsilon > 0$ and for each solution $v \in C^1(J, \mathbb{R})$ of (1.3) there is a solution u of (1.1) satisfying

$$|v(t) - u(t)| \le C_f \varepsilon \psi(t).$$

2. Ulam-Hyers stability for NVIDE (1.1)

In this section, by employing the successive approximation method, we shall present the Ulam-Hyers stability for NVIDE (1.1).

Remark 2.1. We observe that if the function v is a solution of (1.2), then there is a continuous function $\delta(t)$ on J such that $|\delta(t)| \leq \varepsilon$ and

$$v'(t) = \mathcal{P}(t) + \delta(t).$$

Let $f: J \times \mathbb{R} \to \mathbb{R}$ and $g: J \times J \times \mathbb{R} \to \mathbb{R}$ are continuous functions. We consider the following hypotheses:

(H1) There exist positive constants L_1, L_2 such that for each $(t, s) \in J \times J$ and $w_1, w_2 \in \mathbb{R}$ one has

$$|f(t, w_1) - f(t, w_2)| \le L_1 |w_1 - w_2|,$$

$$|g(t, s, w_1) - g(t, s, w_2)| \le L_2 |w_1 - w_2|.$$

(H2) Let $\psi \in C(J, \mathbb{R}_+)$ in the inequality (1.3). Assume that there exists a constant C > 0 such that $kC^k \leq (b-a)C^{k-1}$, $\forall k \geq 1$, and 0 < CL < 1, and the following hypothesis is satisfied, for $t \in J$,

$$\int_{a}^{t} \psi(s) ds \le C \psi(t).$$

1262

Theorem 2.2. Assume that f and g satisfy the hypothesis (H1). Then, for each $\varepsilon > 0$ if the function v satisfies (1.2), there exists a unique solution u of (1.1) provided $u_0 = v_0$ and u satisfies the following estimate

$$|u(t) - v(t)| \le \varepsilon b \exp((b - a)(1 + L)).$$
(2.1)

Proof. For each $\varepsilon > 0$ and let the function v satisfy (1.2), then basing on Remark 2.1 one has that then there is a continuous function $\delta(t)$ on J such that $|\delta(t)| \leq \varepsilon$ and $v'(t) = \mathcal{P}(t) + \delta(t)$. This yields that the function v satisfies the integral equation

$$v(t) = v_0 + \int_a^t \mathcal{P}(s)ds + \int_a^t \delta(s)ds, \qquad (2.2)$$

where

$$\int_{a}^{t} \mathcal{P}(s) ds = \int_{a}^{t} \left[f(s, v(s)) + \int_{a}^{s} g(s, \tau, v(\tau)) d\tau \right] ds.$$

We consider the sequence $(u_n)_{n\geq 0}$ defined as follows: $u_0(t) = v(t)$ and for n = 1, 2, ...

$$u_n(t) = v_0 + \int_a^t \mathcal{P}_{n-1}(s) ds,$$
 (2.3)

where

$$\int_{a}^{t} \mathcal{P}_{n-1}(s) ds = \int_{a}^{t} \left[f(s, u_{n-1}(s)) + \int_{a}^{s} g(s, \tau, u_{n-1}(\tau)) d\tau \right] ds.$$

By (2.2) and (2.3), for n = 1 one has

$$\left|u_{1}(t) - u_{0}(t)\right| = \left|v_{0} + \int_{a}^{t} \mathcal{P}_{0}(s)ds - v(t)\right| = \left|\int_{a}^{t} \delta(s)ds\right| \le \varepsilon(t-a), \ \forall t \in J.$$
(2.4)

For $n = 1, 2, \ldots$, from the hypothesis (H1) one has

$$\begin{aligned} |u_{n+1}(t) - u_n(t)| &= \left| \int_a^t \mathcal{P}_n(s) ds - \int_a^t \mathcal{P}_{n-1}(s) ds \right| \\ &\leq L \int_a^t |u_n(s) - u_{n-1}(s)| ds + L \int_a^t \int_a^s |u_n(r) - u_{n-1}(r)| dr ds, \end{aligned}$$

where $L = \max\{L_1, L_2\}$. In particular, for n = 1 and by (2.4) one gets

$$\begin{aligned} \left| u_2(t) - u_1(t) \right| &\leq \varepsilon L \int_a^t (s-a) ds + \varepsilon L \int_a^t \int_a^s (r-a) dr ds \\ &= \varepsilon L \left(\frac{(t-a)^2}{2!} + \frac{(t-a)^3}{3!} \right) \end{aligned}$$

and so, for n = 2, one also obtains

$$\begin{aligned} |u_3(t) - u_2(t)| &\leq \varepsilon L^2 \int_a^t \left(\frac{(s-a)^2}{2!} + \frac{(s-a)^3}{3!} \right) ds + \varepsilon L^2 \int_a^t \int_a^s \left(\frac{(r-a)^2}{2!} + \frac{(r-a)^3}{3!} \right) dr ds \\ &= \varepsilon L^2 \left(\frac{(t-a)^3}{3!} + 2\frac{(t-a)^4}{4!} + \frac{(t-a)^5}{5!} \right) \\ &\leq 3\varepsilon L^2 \left(\frac{(t-a)^3}{3!} + \frac{(t-a)^4}{4!} + \frac{(t-a)^5}{5!} \right) \end{aligned}$$

and for $n \ge 4$ we have

$$\left|u_{n}(t) - u_{n-1}(t)\right| \leq \varepsilon n L^{n-1} \left(\frac{(t-a)^{n}}{n!} + \frac{(t-a)^{n+1}}{(n+1)!} + \dots + \frac{(t-a)^{2n}}{(2n)!} + \frac{(t-a)^{2n+1}}{(2n+1)!}\right).$$
(2.5)

Then, the estimation (2.5) can be rewritten by:

$$\begin{aligned} |u_n(t) - u_{n-1}(t)| &\leq \frac{\varepsilon(t-a)(L(t-a))^{n-1}}{(n-1)!} \left(1 + \frac{(t-a)}{n+1} + \frac{(t-a)^2}{(n+1)(n+2)} + \dots \right. \\ &+ \frac{(t-a)^n}{(n+1)(n+2)\dots 2n} + \frac{(t-a)^{n+1}}{(n+1)(n+2)\dots 2n(2n+1)} \right) \\ &\leq \varepsilon b \frac{(L(t-a))^{n-1}}{(n-1)!} \left(1 + \frac{(t-a)}{1!} + \frac{(t-a)^2}{2!} + \dots + \frac{(t-a)^n}{n!} + \frac{(t-a)^{n+1}}{(n+1)!} \right) \\ &\leq \varepsilon b \frac{(L(t-a))^{n-1}}{(n-1)!} \exp(t-a). \end{aligned}$$

Furthermore, if we assume that

$$|u_n(t) - u_{n-1}(t)| \le \varepsilon b \frac{(L(t-a))^{n-1}}{(n-1)!} \exp(t-a),$$
(2.6)

then one also gets

$$|u_{n+1}(t) - u_n(t)| \le \varepsilon b \frac{(L(t-a))^n}{n!} \exp(t-a), \quad \forall t \in J.$$

This yields that

$$\sum_{n=0}^{\infty} |u_{n+1}(t) - u_n(t)| \le \varepsilon b \exp(b-a) \sum_{n=0}^{\infty} \frac{(L(t-a))^n}{n!}.$$
(2.7)

Since the right-hand series is convergent to the function $\exp(L(t-a))$, for each $\varepsilon > 0$ we deduce the series $u_0(t) + \sum_{n=0}^{\infty} [u_{n+1}(t) - u_n(t)]$ is uniformly convergent concerning the norm $|\cdot|$ and

$$\sum_{n=0}^{\infty} |u_{n+1}(t) - u_n(t)| \le \varepsilon b \exp((b-a)(1+L)).$$
(2.8)

Assume that

$$\tilde{u}(t) = u_0(t) + \sum_{n=0}^{\infty} [u_{n+1}(t) - u_n(t)].$$
(2.9)

Then,

$$u_j(t) = u_0(t) + \sum_{n=0}^{j} [u_{n+1}(t) - u_n(t)]$$
(2.10)

is the j^{th} partial of the series (2.9). From (2.9) and (2.10), we obtain

$$\lim_{j \to \infty} \left| \tilde{u}(t) - u_j(t) \right| = 0, \quad \forall t \in J.$$

Define $u(t) = \tilde{u}(t), \forall t \in J$. We observe that the limit of the above sequence is a solution to the following equation:

$$u(t) = v_0 + \int_a^t \mathcal{P}(s)ds, \quad \forall t \in J,$$
(2.11)

where

$$\mathcal{P}(t) := f(t, u(t)) + \int_a^t g(t, s, u(s)) ds.$$

By (2.3), (2.11) and the hypothesis (H1), one has that

$$\begin{aligned} \left| u(t) - v_0 - \int_a^t \mathcal{P}(s) ds \right| &= \left| \tilde{u}(t) - \left(u_j(t) - \int_a^t \mathcal{P}_{j-1}(s) ds \right) - \int_a^t \mathcal{P}(s) ds \right| \\ &\leq \left| \tilde{u}(t) - u_j(t) \right| + \int_a^t |\mathcal{P}_{j-1}(s) - \mathcal{P}(s)| ds \\ &\leq \left| \tilde{u}(t) - u_j(t) \right| + L \int_a^t |u_{j-1}(s) - u(s)| ds \\ &+ L \int_a^t \int_a^s |u_{j-1}(r) - u(r)| dr ds. \end{aligned}$$
(2.12)

Combining (2.9) and (2.10), we get

$$|\tilde{u}(t) - u_j(t)| \le \sum_{n=j+1}^{\infty} |u_{n+1}(t) - u_n(t)|$$

and by the estimation (2.7), one has

$$|u(t) - u_j(t)| \le \varepsilon b \exp(b - a) \sum_{n=j+1}^{\infty} \frac{\left(L(t-a)\right)^n}{n!}, \quad \forall t \in J.$$
(2.13)

Hence, it follows from the inequalities (2.12) and (2.13) that

$$\begin{aligned} \left| u(t) - v_0 - \int_a^t \mathcal{P}(s) ds \right| &\leq \varepsilon b e^{b-a} \sum_{n=j+1}^\infty \frac{(L(t-a))^n}{n!} \\ &+ \varepsilon L b e^{b-a} \bigg(\int_a^t \sum_{n=j+1}^\infty \frac{(L(s-a))^n}{n!} ds + \int_a^t \int_a^s \sum_{n=j+1}^\infty \frac{(L(r-a))^n}{n!} dr ds \bigg) \\ &\leq \varepsilon b e^{b-a} \left[\sum_{n=j+1}^\infty \frac{(L(t-a))^n}{n!} + \sum_{n=j+1}^\infty L^{n+1} \bigg(\frac{(t-a)^{n+1}}{(n+1)!} + \frac{(t-a)^{n+2}}{(n+2)!} \bigg) \right]. \tag{2.14}$$

Taking limit as $n \to \infty$, we see that the right-hand series of (2.14) is convergent. Therefore, one deduces that

$$u(t) - v_0 - \int_a^t \mathcal{P}(s)ds \bigg| \le 0, \quad \forall t \in J.$$

This means that

$$u(t) = v_0 + \int_a^t \mathcal{P}(s)ds, \quad \forall t \in J,$$
(2.15)

which is a solution of (1.1). In addition, from the estimation (2.8), we have the estimate as follows:

$$|u(t) - v(t)| \le \varepsilon b \exp((b - a)(1 + L)).$$

To show the uniqueness of solution to the problem (1.1), we assume that $\hat{u}(t)$ is another solution of (1.1), which has the form

$$\widehat{u}(t) = v_0 + \int_a^t \widehat{\mathcal{P}}(s) ds, \quad \forall t \in J,$$
(2.16)

where

$$\widehat{\mathcal{P}}(t) := f(t, \widehat{u}(t)) + \int_{a}^{t} g(t, s, \widehat{u}(s)) ds.$$

By using the hypothesis (H1), one obtains

$$\gamma(t) \le L \int_a^t \gamma(s) ds + L \int_a^t \int_a^t \gamma(r) dr ds, \quad \forall t \in J.$$

where $\gamma(t) := |u(t) - \hat{u}(t)|$. Then by applying Gronwall's lemma (see Theorem 2.1 in [13]), we infer that $\gamma(t) = 0$ on J. So, $u(t) = \hat{u}(t)$. This completes the proof.

3. Ulam-Hyers-Rassias stability for NVIDE (1.1)

In this section, with the same manner as in Section 2, by using the successive approximation method, we also present the Ulam-Hyers-Rassias stability for NVIDE (1.1).

Remark 3.1. We observe that if the function v is a solution of (1.3), then there is a continuous function $\xi(t)$ on J such that $|\xi(t)| \leq \varepsilon \psi(t)$ and

$$v'(t) = \mathcal{P}(t) + \xi(t).$$

Theorem 3.2. Assume that the hypotheses (H1) and (H2) are held. Then, for each $\varepsilon > 0$, if the function v satisfies (1.3), there is a unique solution u of (1.1) with $u_0 = v_0$, and u satisfies the following estimate, for $t \in J$,

$$|v(t) - u(t)| \le \varepsilon \frac{(b-a)}{(1-C)(1-CL)} \psi(t).$$
 (3.1)

Proof. For each $\varepsilon > 0$ let the function v satisfy (1.3), then by basing on Remark 3.1, one has that there is a continuous function $\xi(t)$ on J such that $|\xi(t)| \leq \varepsilon \psi(t)$ and $v'(t) = \mathcal{P}(t) + \xi(t)$. This yields that the function v satisfies the integral equation as follows:

$$v(t) = v_0 + \int_a^t \mathcal{P}(s)ds + \int_a^t \xi(s)ds, \qquad (3.2)$$

where

$$\int_{a}^{t} \mathcal{P}(s) ds = \int_{a}^{t} \left[f(s, v(s)) + \int_{a}^{s} g(s, \tau, v(\tau)) d\tau \right] ds.$$

Similar to the proof of Theorem 2.2, we also reconsider the sequence $(u_n)_{n\geq 0}$ defined as in (2.3) with $u_0(t) = v(t)$, $\forall t \in J$. Now, by (2.3), the hypothesis (H3) and (3.2), for n = 1one has

$$\left|u_{1}(t)-u_{0}(t)\right|=\left|v_{0}+\int_{a}^{t}\mathcal{P}_{0}(s)ds-v(t)\right|\leq\varepsilon\int_{a}^{t}\psi(s)ds\leq\varepsilon C\psi(t),\;\forall t\in J.$$

For n = 1, 2, ... and from the hypothesis (H1), one has

$$|u_{n+1}(t) - u_n(t)| \le L \int_a^t \left(|u_n(s) - u_{n-1}(s)| ds + \int_a^s |u_n(r) - u_{n-1}(r)| dr \right) ds,$$

where $L = \max\{L_1, L_2\}$. In particular, for n = 1 one has

$$\left|u_{2}(t)-u_{1}(t)\right| \leq \varepsilon LC \int_{a}^{t} \psi(s)ds + \varepsilon LC \int_{a}^{t} \int_{a}^{s} \psi(r)drds = \varepsilon L(C^{2}+C^{3})\psi(t), \quad \forall t \in J$$

and so, for n = 2, we also obtain

$$|u_3(t) - u_2(t)| \le L \int_a^t |u_2(s) - u_1(s)| ds + L \int_a^t \int_a^s |u_2(r) - u_1(r)| dr ds$$

$$\le 3\varepsilon L^2 (C^3 + C^4 + C^5) \psi(t).$$

and for $n \ge 4$ we have

$$|u_n(t) - u_{n-1}(t)| \le n\varepsilon (C^n + C^{n+1} + \dots + C^{2n} + C^{2n+1})L^{n-1}\psi(t).$$
(3.3)

Then, by the hypothesis (H3), the estimation (2.5) is rewritten by:

$$|u_n(t) - u_{n-1}(t)| \le \varepsilon (b-a) (CL)^{n-1} (1 + C^1 + \dots + C^{n+1}) \psi(t)$$

$$\le \varepsilon (b-a) \left(\frac{1 - C^{n+1}}{1 - C} \right) (CL)^{n-1} \psi(t), \quad \forall t \in J.$$

In addition, if the assumption

$$|u_n(t) - u_{n-1}(t)| \le \varepsilon (b-a) \left(\frac{1 - C^{m+1}}{1 - C}\right) (CL)^{n-1} \psi(t), \quad \forall t \in J,$$
 (3.4)

is satisfied, then by using the mathematical induction we also get

$$\left|u_{n+1}(t) - u_n(t)\right| \le \varepsilon (b-a) \left(\frac{1-C^{n+2}}{1-C}\right) (CL)^n \psi(t), \quad \forall t \in J.$$

This yields that

$$\sum_{n=0}^{\infty} \left| u_{n+1}(t) - u_n(t) \right| \le \varepsilon (b-a) \left(\frac{1}{1-C} \right) \sum_{n=0}^{\infty} \left(CL \right)^n \psi(t).$$
(3.5)

By the hypothesis (H3), we observe that $\sum_{n=0}^{\infty} (CL)^n \to \frac{1}{1-CL}$ as $n \to \infty$. Hence, for every $\varepsilon > 0$ we infer that the series $u_0(t) + \sum_{n=0}^{\infty} [u_{n+1}(t) - u_n(t)]$ is uniformly convergent on J and

$$\sum_{n=0}^{\infty} |u_{n+1}(t) - u_n(t)| \le \varepsilon \frac{(b-a)}{(1-C)(1-CL)} \psi(t), \quad \forall t \in J.$$
(3.6)

With the same manner as in the proof of Theorem 2.2, we also can show that u(t) is a solution of (1.1) which has form

$$u(t) = v_0 + \int_a^t \mathcal{P}(s)ds, \quad \forall t \in J,$$

where

$$\mathcal{P}(t):=f(t,u(t))+\int_a^t g(t,s,u(s))ds$$

In addition, the following estimate is also satisfied

$$|u(t) - v(t)| \le \varepsilon \frac{(b-a)}{(1-C)(1-CL)} \psi(t), \quad \forall t \in J.$$

Therefore, (1.1) is Ulam-Hyers-Rassias stable.

4. Examples

In this section, two simple examples are presented to illustrate our results.

Example 4.1. Consider the following problem

$$\begin{cases} u'(t) = 1 + \int_0^t u(s)ds, \quad \forall t \in [0,1], \\ u(0) = 1, \end{cases}$$
(4.1)

We see that $v(t) = 1, \forall t \in [0, 1]$ complies with the following inequality

$$\left|v'(t) - 1 - \int_0^t v(s)ds\right| \le 2.$$

1267

Now, we can choose $v_0(t) = u(0) = 1$. By using the successive approximation method as in Theorem 2.2, we obtain the following successive solution to (4.1) as

$$v_0(t) = 1,$$

$$u_1(t) = v(0) + \int_0^t \left(1 + \int_0^s u(r)dr\right) ds = 1 + t + \frac{t^2}{2!}.$$

Then it is no difficult to see that $u(t) = 1 + t + \frac{t^2}{2!}$ forms a solution (4.1) and one gets the estimate

$$|v(t) - u(t)| = \left|1 - \left(1 + t + \frac{t^2}{2!}\right)\right| \le \frac{3}{2}.$$

Next, we define the function $u^*(t) = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!}$ is also a solution of (4.1) and we also have

$$\left|v(t) - u^{*}(t)\right| = \left|1 - \left(1 + t + \frac{t^{2}}{2!} + \frac{t^{3}}{3!} + \frac{t^{4}}{4!}\right)\right| \le \frac{17}{24}$$

Therefore, it shows the function $u^*(t)$ is better approximate solution than the function u(t).

Example 4.2. Consider the following problem

$$u'(t) = u(t) + \int_0^t \frac{u(s)}{1 + u(s)} ds, \qquad (4.2)$$

where $t \in [0, 1]$. We set

$$f(t, u(t)) = u(t)$$
 and $g(t, s, u(s)) = \frac{u(s)}{1 + u(s)}$.

Then, we see that

$$|f(t, w_1) - f(t, w_2)| = |w_1 - w_2|$$

and

$$|g(t, s, w_1(s)) - g(t, s, w_2(s))| = \left| \frac{w_1(s)}{1 + w_1(s)} - \frac{w_2(s)}{1 + w_2(s)} \right|$$
$$\leq \frac{|w_1 - w_2|}{(1 + w_1)(1 + w_2)}$$
$$\leq |w_1 - w_2|.$$

This yields that the hypotheses of Theorem (2.2) is satisfied. That means Eq. (4.2) has unique solution on [0, 1]. Furthermore, if the function v satisfies

$$\left|v'(t) - v(t) - \int_0^t \frac{v(s)}{1 + v(s)} ds\right| \le \varepsilon$$

then by basing on the result of Theorem 2.2, there exists a solution u of Eq. (4.2) satisfying

$$|u(t) - v(t)| \le \varepsilon \exp(2), \quad \forall t \in [0, 1].$$

This means that the problem (4.2) is Ulam-Hyers stable.

5. Conclusion

The results of Ulam-Hyers stability to the nonlinear Volterra integro-differential equation have been investigated by Janfada et al. [5] and Sevgin et al. [15] by employing the fixed point theorem. In our paper, we present the Ulam-Hyers stability and the Ulam-Hyers-Rassias stability to NVIDE (1.1) by employing the method of successive approximation.

1268

References

- M. Gachpazan and O. Baghani, Hyers-Ulam stability of nonlinear integral equation, Fixed Point Theory Appl. 2010, 6 pages, 2010.
- [2] M. Gachpazan and O. Baghani, Hyers-Ulam stability of volterra integral equation, Inter. J. Nonlinear Anal. Appl. 1 (2), 19–25, 2010.
- [3] J. Huang and Y. Li, Hyers-Ulam stability of delay differential equations of first order, Math. Nachr. 289 (1), 60–66, 2016.
- [4] H.V. Jain and H.M. Byrne, Qualitative analysis of an integro-differential equation model of periodic chemotherapy, Appl. Math. Lett. 25 (12), 2132–2136, 2012.
- [5] M. Janfada and G. Sadeghi, Stability of the Volterra integrodifferential equation, Folia Math. 18 (1), 11–20, 2013.
- [6] C. Jin and J. Luo, Stability of an integro-differential equation, Comput. Math. Appl. 57 (7), 1080–1088, 2009.
- [7] M. Joshi, An existence theorem for an integro-differential equation, J. Math. Anal. Appl. 62 (1), 114–124, 1978.
- [8] S.-M. Jung and J. Brzdek, Hyers–Ulam stability of the delay equation $y'(t) = \lambda y(t-\tau)$, Abstr. Appl. Anal. **2010**, Art. Id. 372176, 2010.
- [9] K.D. Kucche and S.T. Sutar, Stability via successive approximation for nonlinear implicit fractional differential equations, Moroccan J. Pure Appl. Anal. 3 (1), 36–55, 2017.
- [10] K.D. Kucche and S.T. Sutar, On existence and stability results for nonlinear fractional delay differential equations, Bol. Soc. Parana. Mat. 36 (4), 55–75, 2018.
- [11] V. Lakshmikantham, Theory of Integro-Differential Equations, CRC Press, Boca Raton, Florida, NY, 1995.
- [12] J.P. Medlock, Integro-differential equation models in ecology and epidemiology, University of Washington, PhD Thesis, 2004.
- [13] J.A. Oguntuase, On an inequality of Gronwall, J. Inequal. Pure Appl. Math. 2 (1), Art. No. 9, 2001.
- [14] A.Z. Rahim Shah, A fixed point approach to the stability of a nonlinear volterra integrodifferential equation with delay, Hacet. J. Math. Stat. 47 (3), 615–623, 2018.
- [15] S. Sevgin and H. Sevli, Stability of a nonlinear volterra integro-differential equation via a fixed point approach, J. Nonlinear Sci. Appl. 9, 200–207, 2016.
- [16] V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Dover, New York, NY, 1959.
- [17] A. Zada and S.O. Shah, Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat. 47 (5), 1196–1205, 2018.