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Abstract
In this work, the Ulam-Hyers stability and the Ulam-Hyers-Rassias stability for the non-
linear Volterra integro-differential equations are established by employing the method of
successive approximation. Some simple examples are given to illustrate the main results.
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1. Introduction
Integro-differential equations are a significant research topic from the theoretical point

of view as well as of their applications. The reader is referred to the monograph of
Volterra [16], Lakshmikantham [11], Medlock [12], the papers [4, 6, 7] and the references
therein. Especially, studying the stability of Ulam-Hyers and Ulam-Hyers-Rassias for
differential equations and integro-differential equations has been of great interest (see
[5, 8, 14,15,17]) in recent years. In [5, 15], by utilizing method of the fixed point theorem,
authors presented some kinds of the Hyers-Ulam-Rassias stability to the Volterra integro-
differential equations.

In [1, 2], M. Gachpazan and O. Baghani have established the Ulam-Hyers stability for
nonlinear integral equation and linear integral equation of the second kind by using suc-
cessive approximation method. After that with the above idea, Huang et al. [3] proved
the Ulam-Hyers stability for delay differential equations of the first order by using succes-
sive approximation method. Kucche et al. [9, 10] also applied to prove the Ulam-Hyers
stability and Eα–Ulam-Hyers stability results for nonlinear implicit fractional differential
equations.

Motivatived by M. Gachpazan and O. Baghani [1,2], and Huang et al. [3], we investigate
the Ulam-Hyers stability and Ulam-Hyers-Rassias stability for nonlinear Volterra integro-
differential equations (NVIDE) of the form
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u
′(t) = f(t, u(t)) +

∫ t

a
g(t, s, u(s))ds, t ∈ J

u(a) = u0,
(1.1)

where J = [a, b], f and g are continuous functions.
The rest of this paper is presented as follows: the Ulam-Hyers stability of (1.1) is

presented in Section 2, and the Ulam-Hyers-Rassias stability of (1.1) is given in Section 3.
Now, we present the definition of some types of the Ulam-Hyers stability which will be

used throughout this paper. First of all, let ε > 0 and ψ ∈ C(J,R+). We consider the
following inequalities: ∣∣∣∣v′(t) − P(t)

∣∣∣∣ ≤ ε, t ∈ J, (1.2)

and ∣∣∣∣v′(t) − P(t)
∣∣∣∣ ≤ εψ(t), t ∈ J, (1.3)

where

P(t) := f(t, v(t)) +
∫ t

a
g(t, s, v(s))ds.

Definition 1.1. The problem (1.1) is Ulam-Hyers stable if there is a constant Kf > 0
such that for each ε > 0 and for each solution v ∈ C1(J,R) of (1.2) there is a solution u
of (1.1) satisfying ∣∣v(t) − u(t)

∣∣ ≤ Kfε.

Definition 1.2. The problem (1.1) is Ulam-Hyers-Rassias stable concerning ψ ∈ C(J,R+)
if there is a constant Cf > 0 such that for each ε > 0 and for each solution v ∈ C1(J,R)
of (1.3) there is a solution u of (1.1) satisfying∣∣v(t) − u(t)

∣∣ ≤ Cfεψ(t).

2. Ulam-Hyers stability for NVIDE (1.1)
In this section, by employing the successive approximation method, we shall present the
Ulam-Hyers stability for NVIDE (1.1).

Remark 2.1. We observe that if the function v is a solution of (1.2), then there is a
continuous function δ(t) on J such that

∣∣δ(t)∣∣ ≤ ε and

v′(t) = P(t) + δ(t).

Let f : J × R → R and g : J × J × R → R are continuous functions. We consider the
following hypotheses:

(H1) There exist positive constants L1, L2 such that for each (t, s) ∈ J×J and w1, w2 ∈
R one has

|f(t, w1) − f(t, w2)| ≤ L1|w1 − w2|,
|g(t, s, w1) − g(t, s, w2)| ≤ L2|w1 − w2|.

(H2) Let ψ ∈ C(J,R+) in the inequality (1.3). Assume that there exists a constant
C > 0 such that kCk ≤ (b − a)Ck−1, ∀k ≥ 1, and 0 < CL < 1, and the following
hypothesis is satisfied, for t ∈ J ,

t∫
a

ψ(s)ds ≤ Cψ(t).
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Theorem 2.2. Assume that f and g satisfy the hypothesis (H1). Then, for each ε > 0
if the function v satisfies (1.2), there exists a unique solution u of (1.1) provided u0 = v0
and u satisfies the following estimate∣∣u(t) − v(t)

∣∣ ≤ εb exp((b− a)(1 + L)). (2.1)

Proof. For each ε > 0 and let the function v satisfy (1.2), then basing on Remark 2.1
one has that then there is a continuous function δ(t) on J such that

∣∣δ(t)∣∣ ≤ ε and
v′(t) = P(t) + δ(t). This yields that the function v satisfies the integral equation

v(t) = v0 +
∫ t

a
P(s)ds+

∫ t

a
δ(s)ds, (2.2)

where ∫ t

a
P(s)ds =

t∫
a

[
f(s, v(s)) +

s∫
a

g(s, τ, v(τ))dτ
]
ds.

We consider the sequence (un)n≥0 defined as follows: u0(t) = v(t) and for n = 1, 2, . . .

un(t) = v0 +
∫ t

a
Pn−1(s)ds, (2.3)

where ∫ t

a
Pn−1(s)ds =

t∫
a

[
f(s, un−1(s)) +

s∫
a

g(s, τ, un−1(τ))dτ
]
ds.

By (2.2) and (2.3), for n = 1 one has∣∣u1(t) − u0(t)
∣∣ =

∣∣∣∣v0 +
∫ t

a
P0(s)ds− v(t)

∣∣∣∣ =
∣∣∣∣ ∫ t

a
δ(s)ds

∣∣∣∣ ≤ ε(t− a), ∀t ∈ J. (2.4)

For n = 1, 2, . . ., from the hypothesis (H1) one has∣∣un+1(t) − un(t)
∣∣ =

∣∣∣∣ ∫ t

a
Pn(s)ds−

∫ t

a
Pn−1(s)ds

∣∣∣∣
≤ L

∫ t

a

∣∣un(s) − un−1(s)
∣∣ds+ L

∫ t

a

∫ s

a

∣∣un(r) − un−1(r)
∣∣drds,

where L = max{L1, L2}. In particular, for n = 1 and by (2.4) one gets∣∣u2(t) − u1(t)
∣∣ ≤ εL

∫ t

a
(s− a)ds+ εL

∫ t

a

∫ s

a
(r − a)drds

= εL

((t− a)2

2!
+ (t− a)3

3!

)
and so, for n = 2, one also obtains∣∣u3(t) − u2(t)

∣∣ ≤ εL2
∫ t

a

((s− a)2

2!
+ (s− a)3

3!

)
ds+ εL2

∫ t

a

∫ s

a

((r − a)2

2!
+ (r − a)3

3!

)
drds

= εL2
((t− a)3

3!
+ 2(t− a)4

4!
+ (t− a)5

5!

)
≤ 3εL2

((t− a)3

3!
+ (t− a)4

4!
+ (t− a)5

5!

)
and for n ≥ 4 we have∣∣un(t) − un−1(t)

∣∣ ≤ εnLn−1
((t− a)n

n!
+ (t− a)n+1

(n+ 1)!
+ . . .+ (t− a)2n

(2n)!
+ (t− a)2n+1

(2n+ 1)!

)
.

(2.5)
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Then, the estimation (2.5) can be rewritten by:

∣∣un(t) − un−1(t)
∣∣ ≤

ε(t− a)
(
L(t− a)

)n−1

(n− 1)!

(
1 + (t− a)

n+ 1
+ (t− a)2

(n+ 1)(n+ 2)
+ . . .

+ (t− a)n

(n+ 1)(n+ 2) . . . 2n
+ (t− a)n+1

(n+ 1)(n+ 2) . . . 2n(2n+ 1)

)

≤ εb

(
L(t− a)

)n−1

(n− 1)!

(
1 + (t− a)

1!
+ (t− a)2

2!
+ . . .+ (t− a)n

n!
+ (t− a)n+1

(n+ 1)!

)

≤ εb

(
L(t− a)

)n−1

(n− 1)!
exp(t− a).

Furthermore, if we assume that

∣∣un(t) − un−1(t)
∣∣ ≤ εb

(
L(t− a)

)n−1

(n− 1)!
exp(t− a), (2.6)

then one also gets

∣∣un+1(t) − un(t)
∣∣ ≤ εb

(
L(t− a)

)n

n!
exp(t− a), ∀t ∈ J.

This yields that
∞∑

n=0

∣∣un+1(t) − un(t)
∣∣ ≤ εb exp(b− a)

∞∑
n=0

(
L(t− a)

)n

n!
. (2.7)

Since the right-hand series is convergent to the function exp(L(t− a)), for each ε > 0 we
deduce the series u0(t) +

∑∞
n=0[un+1(t) − un(t)] is uniformly convergent concerning the

norm | · | and
∞∑

n=0

∣∣un+1(t) − un(t)
∣∣ ≤ εb exp((b− a)(1 + L)). (2.8)

Assume that

ũ(t) = u0(t) +
∞∑

n=0
[un+1(t) − un(t)]. (2.9)

Then,

uj(t) = u0(t) +
j∑

n=0
[un+1(t) − un(t)] (2.10)

is the jth partial of the series (2.9). From (2.9) and (2.10), we obtain

lim
j→∞

∣∣ũ(t) − uj(t)
∣∣ = 0, ∀t ∈ J.

Define u(t) = ũ(t), ∀t ∈ J. We observe that the limit of the above sequence is a solution
to the following equation:

u(t) = v0 +
∫ t

a
P(s)ds, ∀t ∈ J, (2.11)

where

P(t) := f(t, u(t)) +
∫ t

a
g(t, s, u(s))ds.
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By (2.3), (2.11) and the hypothesis (H1), one has that∣∣∣∣u(t) − v0 −
∫ t

a
P(s)ds

∣∣∣∣ =
∣∣∣∣ũ(t) −

(
uj(t) −

∫ t

a
Pj−1(s)ds

)
−

∫ t

a
P(s)ds

∣∣∣∣
≤

∣∣ũ(t) − uj(t)
∣∣ +

∫ t

a
|Pj−1(s) − P(s)|ds

≤
∣∣ũ(t) − uj(t)

∣∣ + L

∫ t

a

∣∣uj−1(s) − u(s)
∣∣ds

+ L

∫ t

a

∫ s

a

∣∣uj−1(r) − u(r)
∣∣drds. (2.12)

Combining (2.9) and (2.10), we get∣∣ũ(t) − uj(t)
∣∣ ≤

∞∑
n=j+1

∣∣un+1(t) − un(t)
∣∣

and by the estimation (2.7), one has∣∣u(t) − uj(t)
∣∣ ≤ εb exp(b− a)

∞∑
n=j+1

(
L(t− a)

)n

n!
, ∀t ∈ J. (2.13)

Hence, it follows from the inequalities (2.12) and (2.13) that∣∣∣∣u(t) − v0 −
∫ t

a
P(s)ds

∣∣∣∣ ≤ εbeb−a
∞∑

n=j+1

(
L(t− a)

)n

n!

+ εLbeb−a
( ∫ t

a

∞∑
n=j+1

(
L(s− a)

)n

n!
ds+

∫ t

a

∫ s

a

∞∑
n=j+1

(
L(r − a)

)n

n!
drds

)

≤ εbeb−a

 ∞∑
n=j+1

(
L(t− a)

)n

n!
+

∞∑
n=j+1

Ln+1
((t− a)n+1

(n+ 1)!
+ (t− a)n+2

(n+ 2)!

) . (2.14)

Taking limit as n → ∞, we see that the right-hand series of (2.14) is convergent. Therefore,
one deduces that ∣∣∣∣u(t) − v0 −

∫ t

a
P(s)ds

∣∣∣∣ ≤ 0, ∀t ∈ J.

This means that

u(t) = v0 +
∫ t

a
P(s)ds, ∀t ∈ J, (2.15)

which is a solution of (1.1). In addition, from the estimation (2.8), we have the estimate
as follows: ∣∣u(t) − v(t)

∣∣ ≤ εb exp((b− a)(1 + L)).
To show the uniqueness of solution to the problem (1.1), we assume that û(t) is another
solution of (1.1), which has the form

û(t) = v0 +
∫ t

a
P̂(s)ds, ∀t ∈ J, (2.16)

where

P̂(t) := f(t, û(t)) +
∫ t

a
g(t, s, û(s))ds.

By using the hypothesis (H1), one obtains

γ(t) ≤ L

∫ t

a
γ(s)ds+ L

∫ t

a

∫ t

a
γ(r)drds, ∀t ∈ J.
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where γ(t) :=
∣∣u(t) − û(t)

∣∣. Then by applying Gronwall’s lemma (see Theorem 2.1 in [13]),
we infer that γ(t) = 0 on J . So, u(t) = û(t). This completes the proof. �

3. Ulam-Hyers-Rassias stability for NVIDE (1.1)
In this section, with the same manner as in Section 2, by using the successive approxima-
tion method, we also present the Ulam-Hyers-Rassias stability for NVIDE (1.1).

Remark 3.1. We observe that if the function v is a solution of (1.3), then there is a
continuous function ξ(t) on J such that |ξ(t)| ≤ εψ(t) and

v′(t) = P(t) + ξ(t).

Theorem 3.2. Assume that the hypotheses (H1) and (H2) are held. Then, for each ε > 0,
if the function v satisfies (1.3), there is a unique solution u of (1.1) with u0 = v0, and u
satisfies the following estimate, for t ∈ J,∣∣v(t) − u(t)

∣∣ ≤ ε
(b− a)

(1 − C)(1 − CL)
ψ(t). (3.1)

Proof. For each ε > 0 let the function v satisfy (1.3), then by basing on Remark 3.1,
one has that there is a continuous function ξ(t) on J such that |ξ(t)| ≤ εψ(t) and v′(t) =
P(t) + ξ(t). This yields that the function v satisfies the integral equation as follows:

v(t) = v0 +
t∫

a

P(s)ds+
t∫

a

ξ(s)ds, (3.2)

where ∫ t

a
P(s)ds =

t∫
a

[
f(s, v(s)) +

s∫
a

g(s, τ, v(τ))dτ
]
ds.

Similar to the proof of Theorem 2.2, we also reconsider the sequence (un)n≥0 defined as
in (2.3) with u0(t) = v(t), ∀t ∈ J . Now, by (2.3), the hypothesis (H3) and (3.2), for n = 1
one has

∣∣u1(t) − u0(t)
∣∣ =

∣∣∣∣v0 +
t∫

a

P0(s)ds− v(t)
∣∣∣∣ ≤ ε

∫ t

a
ψ(s)ds ≤ εCψ(t), ∀t ∈ J.

For n = 1, 2, . . . and from the hypothesis (H1), one has∣∣un+1(t) − un(t)
∣∣ ≤ L

∫ t

a

(∣∣un(s) − un−1(s)
∣∣ds+

∫ s

a

∣∣un(r) − un−1(r)
∣∣dr) ds,

where L = max{L1, L2}. In particular, for n = 1 one has∣∣u2(t) − u1(t)
∣∣ ≤ εLC

∫ t

a
ψ(s)ds+ εLC

∫ t

a

∫ s

a
ψ(r)drds = εL

(
C2 + C3)

ψ(t), ∀t ∈ J

and so, for n = 2, we also obtain∣∣u3(t) − u2(t)
∣∣ ≤ L

∫ t

a

∣∣u2(s) − u1(s)
∣∣ds+ L

∫ t

a

∫ s

a

∣∣u2(r) − u1(r)
∣∣drds

≤ 3εL2(
C3 + C4 + C5)

ψ(t).

and for n ≥ 4 we have∣∣un(t) − un−1(t)
∣∣ ≤ nε

(
Cn + Cn+1 + . . .+ C2n + C2n+1)

Ln−1ψ(t). (3.3)
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Then, by the hypothesis (H3), the estimation (2.5) is rewritten by:∣∣un(t) − un−1(t)
∣∣ ≤ ε(b− a)

(
CL

)n−1(
1 + C1 + . . .+ Cn+1)

ψ(t)

≤ ε(b− a)
(1 − Cn+1

1 − C

)(
CL

)n−1
ψ(t), ∀t ∈ J.

In addition, if the assumption∣∣un(t) − un−1(t)
∣∣ ≤ ε(b− a)

(1 − Cn+1

1 − C

)(
CL

)n−1
ψ(t), ∀t ∈ J, (3.4)

is satisfied, then by using the mathematical induction we also get∣∣un+1(t) − un(t)
∣∣ ≤ ε(b− a)

(1 − Cn+2

1 − C

)(
CL

)n
ψ(t), ∀t ∈ J.

This yields that
∞∑

n=0

∣∣un+1(t) − un(t)
∣∣ ≤ ε(b− a)

( 1
1 − C

) ∞∑
n=0

(
CL

)n
ψ(t). (3.5)

By the hypothesis (H3), we observe that
∑∞

n=0
(
CL

)n → 1
1−CL as n → ∞. Hence, for

every ε > 0 we infer that the series u0(t) +
∑∞

n=0[un+1(t) − un(t)] is uniformly convergent
on J and

∞∑
n=0

∣∣un+1(t) − un(t)
∣∣ ≤ ε

(b− a)
(1 − C)(1 − CL)

ψ(t), ∀t ∈ J. (3.6)

With the same manner as in the proof of Theorem 2.2, we also can show that u(t) is a
solution of (1.1) which has form

u(t) = v0 +
∫ t

a
P(s)ds, ∀t ∈ J,

where

P(t) := f(t, u(t)) +
∫ t

a
g(t, s, u(s))ds.

In addition, the following estimate is also satisfied∣∣u(t) − v(t)
∣∣ ≤ ε

(b− a)
(1 − C)(1 − CL)

ψ(t), ∀t ∈ J.

Therefore, (1.1) is Ulam-Hyers-Rassias stable. �

4. Examples
In this section, two simple examples are presented to illustrate our results.

Example 4.1. Consider the following problemu
′(t) = 1 +

∫ t

0
u(s)ds, ∀t ∈ [0, 1],

u(0) = 1,
(4.1)

We see that v(t) = 1, ∀t ∈ [0, 1] complies with the following inequality∣∣∣∣v′(t) − 1 −
∫ t

0
v(s)ds

∣∣∣∣ ≤ 2.
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Now, we can choose v0(t) = u(0) = 1. By using the successive approximation method as
in Theorem 2.2, we obtain the following successive solution to (4.1) as

v0(t) = 1,

u1(t) = v(0) +
∫ t

0

(
1 +

∫ s

0
u(r)dr

)
ds = 1 + t+ t2

2!
.

Then it is no difficult to see that u(t) = 1 + t+ t2

2!
forms a solution (4.1) and one gets the

estimate ∣∣v(t) − u(t)
∣∣ =

∣∣∣∣1 −
(
1 + t+ t2

2!

)∣∣∣∣ ≤ 3
2
.

Next, we define the function u∗(t) = 1 + t+ t2

2!
+ t3

3!
+ t4

4!
is also a solution of (4.1) and we

also have ∣∣v(t) − u∗(t)
∣∣ =

∣∣∣∣1 −
(
1 + t+ t2

2!
+ t3

3!
+ t4

4!

)∣∣∣∣ ≤ 17
24
.

Therefore, it shows the function u∗(t) is better approximate solution than the function
u(t).

Example 4.2. Consider the following problem

u′(t) = u(t) +
∫ t

0

u(s)
1 + u(s)

ds, (4.2)

where t ∈ [0, 1]. We set

f(t, u(t)) = u(t) and g(t, s, u(s)) = u(s)
1 + u(s)

.

Then, we see that ∣∣f(t, w1) − f(t, w2)
∣∣ = |w1 − w2|

and ∣∣g(t, s, w1(s)) − g(t, s, w2(s))
∣∣ =

∣∣∣∣ w1(s)
1 + w1(s)

− w2(s)
1 + w2(s)

∣∣∣∣
≤ |w1 − w2|

(1 + w1)(1 + w2)
≤ |w1 − w2|.

This yields that the hypotheses of Theorem (2.2) is satisfied. That means Eq. (4.2) has
unique solution on [0, 1]. Furthermore, if the function v satisfies∣∣∣∣v′(t) − v(t) −

∫ t

0

v(s)
1 + v(s)

ds

∣∣∣∣ ≤ ε

then by basing on the result of Theorem 2.2, there exists a solution u of Eq. (4.2) satisfying∣∣u(t) − v(t)
∣∣ ≤ ε exp(2), ∀t ∈ [0, 1].

This means that the problem (4.2) is Ulam-Hyers stable.

5. Conclusion
The results of Ulam-Hyers stability to the nonlinear Volterra integro-differential equation
have been investigated by Janfada et al. [5] and Sevgin et al. [15] by employing the fixed
point theorem. In our paper, we present the Ulam-Hyers stability and the Ulam-Hyers-
Rassias stability to NVIDE (1.1) by employing the method of successive approximation.
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