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Abstract

Many physical phenomena in nature can be described or modeled via a differential equation
or a system of differential equations. In this work, we restrict our attention to research a
solution of fractional nonlinear generalized Burgers’ differential equations. Thereby we
find some exact solutions for the nonlinear generalized Burgers’ differential equation with a
fractional derivative, which has domain as R2×R+. Here we use the Lie groups method.
After applying the Lie groups to the boundary value problem we get the partial differential
equations on the domain R2 with reduced boundary and initial conditions. Also, we find
conservation laws for the nonlinear generalized Burgers’ differential equation.

1. Introduction

The research of exact solutions plays an important role in the study of nonlinear systems. Many methods as the inverse scattering method [1],
Hirota bilinear method [2], Lie symmetry analysis [3, 4], CK (Clarkson-Kruskal) method [5, 6], etc. have been developed to find these
exact physically significant solutions of the partial differential equation, although this is rather difficult. Our work in this area is to use Lie
transformation methods and its analysis to search exact solutions to fractional nonlinear partial differential equations. It is known that the Lie
group method is a powerful and direct approach to the construction of exact solutions of nonlinear differential equations. Essentially, the
symmetry analysis is aimed at using the symmetry of the equation. The process thus obtained reduces the complexity of the given equation.
Even though physical phenomena are mostly based on searching the solution of the underlying nonlinear model equations, it is too difficult
to find a general solution of the fractional nonlinear partial differential equation. There is no existing general theory for nonlinear partial
differential equations. While there is no existing general theory for nonlinear partial differential equations, many special cases have
yielded to appropriate changes of variable [7–11]. In fact, transformations are perhaps the most powerful tool currently available in this
area [12–14]. Ivanova, Sophocleous and Tracin in [15] investigated the Lie symmetry analysis of (2+1) - dimensional variable coefficient
Burgers differential equation of the form

ut = A(t)uxx +B(t)uyy +uux.

They obtained the symmetries, according them conservation laws and some analytical solutions for above equation. Later Abd-el-Malek and
Amin in [16] studied the symmetry analysis of the generalized (1+1)-dimensional Burgers differential equation in the form

ut +α(un)x = βg(t)(un)xx,

with boundary and initial conditions u(0,x)−→ ∞, for x > 0, u(t,0) = γr(t), for t > 0,γ 6= 0, and lim
x→∞

u(t,x)−→ ∞, for t > 0.

Some recent studies of Burgers differential equation the reader can see in [17, 18].
In this research, we show the applying of Lie group analysis to study (2+1)-dimensional time-fractional generalized Burgers’ differential
equation with boundary and initially conditions:
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∂ α u
∂ tα

+P∇(un) = Rg(t)4(un), (1.1)

u(0,x,y)−→ ∞, (x,y) ∈ R2

u(t,0,0) = Φ(t), t ∈ [0,∞),
lim

(x,y)→(∞,∞)
u(t,x,y)−→ ∞, t ∈ [0,∞).

(1.2)

Here(x,y) ∈ R2, t ∈ R+, 0 < α ≤ 1, n > 1, P,R 6= 0 and ∂ α u
∂ tα is a fractional derivative which is considered in the Riemann–Liouville terms

as [19]

∂ α f (t)
∂ tα

=


1

Γ(n−α)
dn

dtn

∫ t
0

f (τ)
(t−τ)α+1−n dτ, i f α /∈ N, n−1 < α < n, n ∈ N,

dn

dtn f (t), i f α,n ∈ N.

Moreover we investigate the conservation laws for above equation by using Ibragimov’s theorem for fractional derivative equations [7, 20].
The Lie group or Lie symmetry analysis allows us to see that the underlying symmetry algebra of the equation reduce the dimension, it is
since each of the time-fractional equations is invariant under time translation symmetry. So, by using the Lie symmetry, we show that the
fractional partial differential equation with the domain R2×R+ can be transformed into a nonlinear fractional partial differential equation
with the domain R2.

2. Symmetry analysis for time fractional partial differential equation

Consider a time-fractional partial differential equations with three independent variables x > 0, y > 0, and t > 0 as following:

F(x,y, t,u,∂ α
t u,ux,uy,uxx,uyy) = 0, 0 < α ≤ 1, (2.1)

where ∂ α
t u is Riemann–Liouville fractional derivative of u.

A one parameter Lie symmetry transformations acting on a space of three independent variables (t,x,y) and depended variable u are
determined as

t̄ = t + ετ(t,x,y,u)+O(ε2),

x̄ = x+ εξ1(t,x,y,u)+O(ε2),

ȳ = y+ εξ2(t,x,y,u)+O(ε2),

ū = u+ εη(t,x,y,u)+O(ε2),

(2.2)

where ε > 0 is an infinitesimal group parameter. The infinitesimal generator associated with the above transformations can be written as:

X = ξ1(t,x,y,u)
∂

∂x
+ξ2(t,x,y,u)

∂

∂y
+ τ(t,x,y,u)

∂

∂ t
+η(t,x,y,u)

∂

∂u

with ξ1 =
dx̄
dε
|ε=0, ξ2 =

dȳ
dε
|ε=0, τ = dt̄

dε
|ε=0 and η = dū

dε
|ε=0. According to the infinitesimal invariant criterion (2.2), prolongation pr(α,2)X

to equation (2.1) has the form

pr(α,2)X(E) |E=0= 0, E = F(t,x,y,u,∂ α
t u,ux,uxx) = 0,

here the operator pr(α,2)X takes the following form

pr(α,2)X = X +η
t
α ∂∂ α

t u +η
x
1∂ux +η

x
2∂uxx +η

y
1∂uy +η

y
2∂uyy ,

where

η t
α = Dα

t (η)+ξ1Dα
t (ux)−Dα

t (ξ1ux)+ξ2Dα
t (uy)−Dα

t (ξ2uy)+Dα
t (uDt(τ))−Dα+1

t (τu)+ τDα+1
t (u),

ηx
1 = Dxη−uxDxξ1−uyDxξ2−utDxτ,

ηx
2 = Dxηx

1 −uxxDxξ1−uxyDxξ2−uxtDxτ,

η
y
1 = Dyη−uxDyξ1−uyDyξ2−utDyτ,

η
y
2 = Dyη

y
1 −uyxDyξ1−uyyDyξ2−uytDyτ,

(2.3)

with Di is the total derivative
Di = ∂i +ui∂u +uit∂ut +u jt∂ut +uii∂ui +u j j∂u j + ....

and Dα
t is a fractional derivative operator with respect to t.
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The expression for ηx
1 , η

y
1 , ηx

2 , and η
y
2 in (2.3) can be easily obtained [4, 21], here we concentrate our attention on η t

α . Using the generalized
Leibnitz rule, that was given in [22]

Dα
t ( f (t)g(t)) =

∞

∑
n=0

(
α

n

)
Dα−n

t f (t)Dn
t g(t),

(
α

n

)
=

(−1)n−1αΓ(n−α)

Γ(1−α)Γ(n+1)
.

So we get

ξ1Dα
t (ux)−Dα

t (ξ1ux) =−
∞

∑
n=1

(
α

n

)
Dα−n

t (ux)Dn
t (ξ1),

ξ2Dα
t (uy)−Dα

t (ξ2uy) =−
∞

∑
n=1

(
α

n

)
Dα−n

t (uy)Dn
t (ξ2),

and

Dα
t (uDt(τ))−Dα+1

t (τu)+ τDα+1
t (u) =−αDt(τ)Dα

t (u)−
∞

∑
n=1

(
α

n+1

)
Dα−n

t (u)Dn+1
t (τ).

Thereby we get the expression

η
t
α = Dα

t (η)−
∞

∑
n=1

(
α

n

)
Dα−n

t (ux)Dn
t (ξ1)−

∞

∑
n=1

(
α

n

)
Dα−n

t (uy)Dn
t (ξ2)−αDt(τ)Dα

t (u)−
∞

∑
n=1

(
α

n+1

)
Dα−n

t (u)Dn+1
t (τ).

According to the compound function of the chain rule [23] we get

dm f (g(t))
dtm =

m

∑
k=0

k

∑
r=0

(
k
r

)
1
k!

(−g(t))r dm

dtm

(
g(t)k−r

) dk f (g)
dgk .

Thus infinitesimal η t
α takes a form

η t
α = ∂ α η

∂ tα +(ηu−α(τt +utτu))
∂ α u
∂ tα −u ∂ α ηu

∂ tα +µ

+
∞

∑
n=1

[(
α

n

)
∂ nηu
∂ tn −

(
α

n+1

)
Dn+1

t τ

]
Dα−n

t u−
∞

∑
n=1

(
α

n

)
Dn

t (ξ1)Dα−n
t (ux)−

∞

∑
n=1

(
α

n

)
Dα−n

t (uy)Dn
t (ξ2),

where

µ =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!

tn−α (−u)r

Γ(n+1−α)

∂ m

∂ tm

(
uk−r

)
∂ n−m+kη

∂ tn−m∂uk .

3. Symmetry analysis for time-fractional nonlinear generalized Burgers’ differential equation

After some easy mathematical transformations our equation (1.1) can be written in the form

∂ α u
∂ tα

+nPun−1(ux +uy) = nRg(t)((n−1)un−2(u2
x +u2

y)+un−1(uxx +uyy)). (3.1)

By substitution of transformations (2.2) and (2.3) into (3.1) and equating the multiplier of ε to zero we get that, for the fractional nonlinear
generalized Burgers’ differential equation (3.1) the invariance criterion takes the form

η t
α +n(n−1)Pun−2η(ux +uy)+nPun−1(ηx

1 +η
y
1)−n(n−1)(n−2)Rg(t)un−3η(u2

x +u2
y)

−2n(n−1)Rg(t)un−2(ηx
1 +η

y
1)−n(n−1)Rg′(t)un−2(u2

x +u2
y)τ

−n(n−1)Rg(t)un−2(uxx +uyy)η−nRg′(t)un−1(uxx +uyy)τ−nRg(t)un−1(ηx
2 +η

y
2) = 0.

(3.2)

Substituting the extended infinitesimals (2.3) into the equation (3.2) we get following system of differential equations:

∂uξ1 = ∂uξ2 = ∂tξ1 = ∂tξ2 = ∂uτ = ∂xτ = ∂yτ = ηuu = 0,

Pη(n2−n)+Rg(t)∂xη(2n−2n2)+u(nPα∂tτ−nP(∂yξ1 +∂xξ1)+nRg(t)(∂yyξ1 +∂xxξ1)+2nRg(t)∂xuη) = 0,

Pη(n2−n)+Rg(t)∂yη(2n−2n2)+u(nPα∂tτ−nP(∂yξ2 +∂xξ2)+nRg(t)(∂yyξ2 +∂xxξ2)+2nRg(t)∂yuη) = 0,

Rg(t)η(n−n2)+u(−nRg′(t)τ−nRαg(t)∂tτ +2nRg(t)∂xξ1) = 0,

Rg(t)η(n−n2)+u(−nRg′(t)τ−nRαg(t)∂tτ +2nRg(t)∂xξ2) = 0,

∂utη− α−1
2 ∂ttτ = 0,

∂ α η

∂ tα −u ∂ α ηu
∂ tα +nPun−1(∂xη +∂yη)−nRg(t)un−1(∂xxη +∂yyη) = 0.
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In below we study some cases and obtain generating infinitesimal operators for classification of solutions of the equation.
Case 1: For arbitrary g(t) and 0 < α ≤ 1 we get infinitesimals as

ξ1 = c1,
ξ2 = c2,
τ = 0,
η = 0,

here c1 and c2 are arbitrary constants and there are two infinitesimal operators

X1 =
∂

∂x
X2 =

∂

∂y
.

Case 2: For g(t) = 1 we get following infinitesimals
ξ1 = c1,
ξ2 = c2,

τ = c3t + c4,
η =− αc3

n−1 u,

here c1,c2,c3, and c4 are arbitrary constants and thus we obtain two additional infinitesimal operators

X3 =
∂

∂ t
, X4 = t

∂

∂ t
+

α

1−n
u

∂

∂u
.

Case 3: For g(t) = tb with b 6= 0 we have infinitesimals as

ξ1 = c5x+ c6,
ξ2 = c5x+ c7,

τ = c5
t
b ,

η = b−α

b(n−1)c5u,

here c5,c6, and c7 are arbitrary constants and there is one additional infinitesimal operator

X3 = x
∂

∂x
+ y

∂

∂y
+

t
b

∂

∂ t
+

b−α

b(n−1)
u

∂

∂u
.

Case 4: For g(t) = et we obtain following infinitesimals in a form

ξ1 = c6x+ c7,
ξ2 = c6y+ c8,

τ = c6,
η = c6

n−1 u,

here c6,c7 and c8 are arbitrary constants and we have one additional infinitesimal operator

X3 = x
∂

∂x
+ y

∂

∂y
+

∂

∂ t
+

1
n−1

u
∂

∂u
.

4. Symmetry reductions of the time fractional nonlinear generalized Burgers’ differential equation

Now, we obtain similarity reductions and present the reduced nonlinear fractional ordinary differential equations. Also we classify the
corresponding group invariant solutions of the fractional nonlinear generalized Burgers’ equation.
Case 2: For g(t) = 1 we have four infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂ t
, X4 = t

∂

∂ t
+

α

1−n
u

∂

∂u
.

The similarity variables for infinitesimal operator X1 and X2 can be found by solving the corresponding characteristic equation

dx
1

=
dy
0

=
dt
0

=
du
0

dx
0

=
dy
1

=
dt
0

=
du
0
.

Thus we obtain the similarity reduction u = φ(t), by substituting which into (1.1) we get

Dα
t φ(t) = 0.

Thereby the exact solution of time fractional nonlinear generalized Burgers’ differential equation (1.1) with X1 and X2 is

u(t,x,y) = ctα−1,

where c is arbitrary constant.
For infinitesimal operator X3 the corresponding characteristic equation is in a form

dx
0

=
dy
0

=
dt
1

=
du
0
.
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This equation gives us a similarity reduction u = φ(x,y), by substituting which into (1.1) we have

u(t,x,y) = 0.

And the similarity variables for infinitesimal operator X4 can be found by solving the corresponding characteristic equation

dx
0

=
dy
0

=
dt
t
=

du
αu

1−n
.

Here we have u = t
α

1−n φ(x,y) similarity reduction, by substituting it into (1.1) we get

1
Γ(1−α)

d
dt

t∫
0

(t− s)−α s
α

1−n φ(x,y)ds+nPt
αn

1−n (φ(x,y))n−1(∂xφ(x,y)+∂yφ(x,y))

−Rt
αn

1−n (n(φ(x,y))n−1(∂xxφ(x,y)+∂yyφ(x,y))+n(n−1)(φ(x,y))n−2((∂xφ(x,y))2 +∂yφ(x,y))2)) = 0.

After some easy transformations we obtain following nonlinear ordinary differential equation

Γ

(
1+ α

(1−n)

)
Γ

(
1−α+ α

(1−n)

)φ(x,y)+nP(φ(x,y))n−1(∂xφ(x,y)+∂yφ(x,y))−Rn(φ(x,y))n−1(∂xxφ(x,y)+∂yyφ(x,y))

−Rn(n−1)(φ(x,y))n−2((∂xφ(x,y))2 +∂yφ(x,y))2) = 0.

Case 3: For g(t) = tb with b 6= 0 we have three infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
+

t
b

∂

∂ t
+

b−α

b(n−1)
u

∂

∂u
.

The third infinitesimal operator by solving the corresponding characteristic equations

dx
x

=
dy
y

=
bdt

t
=

bdu
b−α

n−1 u
,

gives us the similarity reduction
u(x,y, t) = t

b−α

n−1 ω(p1, p2),

where p1 = xt−b and p2 = yt−b.
Case 4: And lastly for g(t) = et we have three infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
+

∂

∂ t
+

1
(n−1)

u
∂

∂u
.

The third infinitesimal operator gives us the corresponding characteristic equations

dx
x

=
dy
y

=
dt
1

=
du
1

n−1 u
,

and a similarity reduction
u(x,y, t) = e

1
n−1 t

ν(q1,q2),

here q1 = xe−t , and q2 = ye−t .

5. Conservation laws

In this section we will construct the conservation laws of time-fractional nonlinear generalized Burgers’ differential equation (2.1) by using
Ibragimov’s theorem [24, 25]. Ibragimov proved this theorem for differential equations with integer order. And it was applied to fractional
differential equations [26, 27].
We will search a vector field C = (Ct ,Cx,Cx), where Ct =Ct(t,x,y,u,ux,uy, ...), Cx =Cx(t,x,y,u,ux,uy, ...), and Cy =Cy(t,x,y,u,ux,uy, ...)
is conserved vector for (3.1) on all its solution if it satisfies the following conservation equation Dt(Ct)+Dx(Cx)+Dy(Cy) = 0, where Ct ,
Cx, and Cy are conservation laws for equation (2.1). A formal Lagrangian function for (2.1) is given by

L = v(t,x,y)E. (5.1)

Here v(t,x,y) is a new dependent variable and

E =
∂ α u
∂ tα

+nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy).

The Euler–Lagrange operator with respect to u is defined by [27, 28]

δ

δu
=

∂

∂u
+(Dα

t )
∗ ∂

∂Dα
t u
−Dx

∂

∂ux
−Dy

∂

∂uy
+D2

x
∂

∂uxx
+D2

y
∂

∂uyy
− ...,

where (Dα
t )
∗ is adjoint operator of Dα

t that has a form

(Dα
t )
∗ = (−1)n

t In−α

T (Dn
t ).
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By using Euler–Lagrange operator we can define an adjoint equation of equation (3.1) as

δL
δu

= 0. (5.2)

After calculations, the equation (5.2) takes a form

δL
δu

= (Dα
t )
∗v−nPun−1(vx + vy)−nRg(t)un−1(vxx + vyy).

So, we say that generalized Burgers’ equation is nonlinearly self-adjoint if the adjoint equation (5.2) is satisfied for all solution u of equation
(3.1) upon a substitution v = ϕ(t,x,y,u) and ϕ(t,x,y,u) 6= 0. This substitution allows us use formal Lagrangian as usual classical Lagrangian
and construct the conservation laws.
Thus, x-component conservation laws for the equation (3.1) have the form [28]

Cx
i = ξ1L+Wi

(
∂L
∂ux
−Dx

∂L
∂uxx

)
+Dx(Wi)

(
∂L

∂uxx

)
,

here Wi = η i−ξ i
1ux−ξ i

2uy− τ iut . y-component conservation laws for the equation (3.1) have the form [28]

Cy
i = ξ2L+Wi

(
∂L
∂uy
−Dy

∂L
∂uyy

)
+Dy(Wi)

(
∂L

∂uyy

)
.

And t-component conservation laws for the equation (3.1) have the form

Ct
i =

m−1

∑
k=0

(−1)kDα−1−k
t (Wi)Dk

t (
∂L

∂Dα
t u

)− (−1)mJ(Wi,Dm
t

∂L
∂Dα

t u
),

for m−1 < α < m and J is a integral

J( f ,g) =
1

Γ(m−α)

t∫
0

T∫
t

f (x,y,s)g(x,y, p)
(p− s)α+1−m d pds.

Thus, by using (5.1) and above formulas we can find Cx, Cy, and Ct for our problem.
Case 1: For arbitrary g(t) we have W1 = ux and W2 = uy that gives us

Ct
1 = vDα−1

t (ux)+ J(ux,vt),

Ct
2 = vDα−1

t (uy)+ J(uy,vt),

Cx
1 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

nRg(t)un−1uxxv−3n(n−1)Rg(t)un−2v(ux)
2 +nPun−1uxv−nRg(t)un−1ux(uxvu + vx),

Cx
2 = nRg(t)un−1uxyv−3n(n−1)Rg(t)un−2vuxuy +nPun−1uyv−nRg(t)un−1uy(uxvu + vx),

Cy
1 = nRg(t)un−1uxyv−3n(n−1)Rg(t)un−2vuxuy +nPun−1uxv−nRg(t)un−1ux(uyvu + vy),

Cy
2 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

nRg(t)un−1uyyv−3n(n−1)Rg(t)un−2v(uy)
2 +nPun−1uyv−nRg(t)un−1uy(uyvu + vy).

Case 2: For g(t) = tb we get W1 = ux, W2 = uy, and W3 = xux + yuy +
t
b ut +

α−b
b(1−n)u, thus the corresponding conservation laws are like:

Ct
1 and Ct

2 are the same.

Ct
3 = tv( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

vDα−1
t (xux + yuy +

t
b ut +

α−b
b(1−n)u)+ J(xux + yuy +

t
b ut +

α−b
b(1−n)u,vt),

Cx
1 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rtbun−2(u2
x +u2

y)+nRtbun−1(uxx +uyy))+

nRtbun−1uxxv−3n(n−1)Rtbun−2v(ux)
2 +nPun−1uxv−nRtbun−1ux(uxvu + vx),

Cx
2 = nRtbun−1uxyv−3n(n−1)Rtbun−2vuxuy +nPun−1uyv−nRtbun−1uy(uxvu + vx),

Cx
3 = xv( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rtbun−2(u2
x +u2

y)+nRtbun−1(uxx +uyy))+

nRtbun−1v(ux +
α−b

b(1−n)ux +
t
b uxt + yuxy + xuxx)+

(
α−b

b(1−n)u+ t
b ut + yuy + xux

)
(−3n(n−1)Rtbun−2vux +nPun−1v−nRtbun−1(uxvu + vx)),

Cy
1 = nRtbun−1uxyv−3n(n−1)Rtbun−2vuxuy +nPun−1uxv−nRtbun−1ux(uyvu + vy),

Cy
2 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rtbun−2(u2
x +u2

y)+nRtbun−1(uxx +uyy))+

nRtbun−1uyyv−3n(n−1)Rtbun−2v(uy)
2 +nPun−1uyv−nRtbun−1uy(uyvu + vy),

Cy
3 = yv( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rtbun−2(u2
x +u2

y)+nRtbun−1(uxx +uyy))+

nRtbun−1v(uy +
α−b

b(1−n)uy +
t
b uyt + yuyy + xuxy)+

(
α−b

b(1−n)u+ t
b ut + yuy + xux

)
(−3n(n−1)Rtbun−2vuy +nPun−1v−nRtbun−1(uyvu + vy)).

Case 3: For g(t) = 1 we obtain W1 = ux, W2 = uy, W3 = ut , and W4 = tut +
α

1−n u, thus the corresponding conservation laws are in the
following form:
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Ct
1 and Ct

2 is the same.

Ct
3 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+ vDα−1
t (ut)+ J(ut ,vt),

Ct
4 = tv( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

vDα−1
t (tut +

α

1−n u)+ J(tut +
α

1−n u,vt),

Cx
1 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

nRun−1uxxv−3n(n−1)Run−2(ux)
2v+nPun−1uxv−nRun−1ux(uxvu + vx),

Cx
2 = nRun−1vuxy−3n(n−1)Run−2uxuyv+nPun−1uyv−nRun−1uy(uxvu + vx)),

Cx
3 = nRun−1vuxt −3n(n−1)Run−2uxutv+nPun−1utv−nRun−1ut(uxvu + vx)),

Cx
4 = nRun−1v(tuxt +

α

n−1 ux)+(tut +
α

n−1 u)(−3n(n−1)Run−2uxv+nPun−1v−nRun−1(uxvu + vx)),

Cy
1 = nRun−1vuxy−3n(n−1)Run−2uxuyv+nPun−1uxv−nRun−1ux(uyvu + vy)),

Cy
2 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

nRun−1uyyv−3n(n−1)Run−2(uy)
2v+nPun−1uyv−nRun−1uy(uyvu + vy)),

Cy
3 = nRun−1vuyt −3n(n−1)Run−2uyutv+nPun−1utv−nRun−1ut(uyvu + vy))),

Cy
4 = nRun−1v(tuyt +

α

n−1 uy)+(tut +
α

n−1 u(−3n(n−1)Run−2uyv+nPun−1v−nRun−1(uyvu + vy))).

Case 4: For g(t) = et we have W1 = ux, W2 = uy, and W2 = xux + yuy +ut +
1

1−n u, and thus the corresponding conservation laws are:

Ct
1 and Ct

2 is the same.

Ct
3 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

vDα−1
t (xux + yuy +ut +

1
1−n u)+ J(xux + yuy +ut +

1
1−n u,vt),

Cx
1 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

nRetun−1uxxv−3n(n−1)Retun−2(ux)
2v+nPun−1uxv−nRetun−1ux(uxvu + vx),

Cx
2 = nRetun−1uxyv−3n(n−1)Retun−2uxuyv+nPun−1uyv−nRetun−1uy(uxvu + vx),

Cx
3 = vx( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

nRetun−1(ux + xuxx + yuxy +utx +
1

1−n ux)+
(
xux ++yuy +ut +

1
1−n u

)
(−3n(n−1)Retun−2uxv+nPun−1v−nRetun−1(uxvu + vx)),

Cy
1 = nRetun−1uyxv−3n(n−1)Retun−2uyuxv+nPun−1uxv−nRetun−1ux(uyvu + vy),

Cy
2 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

nRetun−1uyyv−3n(n−1)Retun−2(uy)
2v+nPun−1uyv−nRetun−1uy(uyvu + vy),

Cy
3 = vy( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

nRetun−1(xuxy + yuy +uyy +uty +
1

1−n uy)+
(
xux + yuy +ut +

1
1−n u

)
(−3n(n−1)Retun−2uyv+nPun−1v−nRetun−1(uyvu + vy)).

6. Symmetry analysis for boundary value problem

In this section, we will discuss the symmetry analysis for the boundary value problem. Lie symmetry analysis is one of the most
widely-applicable methods of finding exact solutions of differential equations, but it was not widely used for solving boundary value
problems. And the reason is the initial and boundary conditions are usually are not invariant under any obtained Lie symmetry method
transformations [3, 29–31]. So, for partial differential equations, an invariant solution found by applying symmetry transformation solves a
given boundary value problem, when the symmetry transformation leaves invariant all boundary conditions and the domain of the boundary
value problem.
Now, let the Q-condition symmetry

Q = ξ1(x,y, t,u)
∂

∂x
+ξ2(x,y, t,u)

∂

∂y
+ τ(x,y, t,u)

∂

∂ t
+η(x,y, t,u)

∂

∂u
, (6.1)

with

Qk(ut −F(x,y,u,
∂u
∂x

,
∂u
∂y

, ...,
∂ ku
∂xk ,

∂ ku
∂yk ))|M = 0,

and the manifold M = {ut −F(x,y,u, ∂u
∂x ,

∂u
∂y , ...,

∂ ku
∂xk ,

∂ ku
∂yk ) = 0,Q(u) = 0} is admitted by the boundary value problem defined on a domain

Ω:

ut = F
(

x,y,u,
∂u
∂x

,
∂u
∂y

, ...,
∂ ku
∂xk ,

∂ ku
∂yk

)
, (x,y, t) ∈Ω⊂ R2×R+, (6.2)

da(x,y, t) = 0 : Ba

(
t,x,y,u,

∂u
∂x

,
∂u
∂y

, ...,
∂ k−1u
∂xk−1 ,

∂ k−1u
∂yk−1

)
= 0, a = 1, ..., p. (6.3)
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lc(x,y, t) = ∞ : Lc(x,y, t,u,
∂u
∂x

,
∂u
∂y

, ...,
∂ k−1u
∂xk−1 ,

∂ k−1u
∂yk−1 ) = 0, c = 1, ..., p∞. (6.4)

Here Ba(t,x,y,u, ∂u
∂x ,

∂u
∂y , ...,

∂ k−1u
∂xk−1 ,

∂ k−1u
∂yk−1 ) boundary condition on da(x,y, t). Suppose that the above boundary value problem has a unique

solution.
So, for the manifold M = {lc(x,y, t) = ∞,Lc(x,y, t,u, ∂u

∂x ,
∂u
∂
, ..., ∂ ku

∂xk ,
∂ ku
∂yk ) = 0} there exist a smooth bijective transformation that maps the

manifold M into

M∗ = {l∗c (x∗,y∗, t∗) = ∞,L∗c(x
∗,y∗, t∗,u,

∂u
∂x∗

,
∂u
∂

, ...,
∂ k∗u

∂ (x∗)k∗ ,
∂ k∗u

∂ (y∗)k∗ ) = 0}.

Definition 6.1. The symmetry Q which has the form (6.1) is allowed by the boundary value problem (6.2)-(6.4) if:

• Q(k)(ut −F(x,y,u, ∂u
∂x ,

∂u
∂y , ...,

∂ ku
∂xk ,

∂ ku
∂yk )) = 0 for ut = F(x,y,u, ∂u

∂x ,
∂u
∂y , ...,

∂ ku
∂xk ,

∂ ku
∂yk );

• Qda(x,y, t) = 0 for da(x,y, t) = 0, a = 1, ..., p;
• Q(k)Ba(x,y, t,u, ∂u

∂x ,
∂u
∂y , ...,

∂ ku
∂xk ,

∂ ku
∂yk ) = 0 for Ba(t,x,y,u, ∂u

∂x ,
∂u
∂y , ...,

∂ ku
∂xk ,

∂ ku
∂yk ) = 0 on da(x,y, t) = 0, a = 1, .., p;

• there exist a smooth bijective transformation that maps the manifold M into M∗ of the same dimensionality;
• Q∗l∗c (x

∗,y∗, t∗) = 0 for l∗c (x
∗,y∗, t∗) = 0, c = 1, ..., p∞;

• Q∗(k∗)Lc(x,y, t,u, ∂u
∂x ,

∂u
∂y , ...,

∂ ku
∂xk ,

∂ ku
∂yk ) = 0 for lc(x,y, t) = ∞, c = 1, ...,r.

Let us consider our fractional partial differential equation (1.1) with α = 1, which defined on the domain 0≤ t < ∞, x > 0, and y > 0 with
initial and boundary conditions

ut +Pnun−1(ux +uy) = nRg(t)(un−1(uxx +uyy +(n−1)un−2((ux)
2 +(uy)

2)), n > 1, P,R 6= 0 (6.5)

u(x,y,0)−→ ∞, (x,y) ∈ R+×R+,

u(0,0, t) = Φ(t), t ∈ [0,∞],
u(x,y, t)(x,y)→(0,0) −→ ∞, t ∈ [0,∞].

The problem (6.5) for g(t) = et with boundary and initially conditions is not invariant. But it is invariant for g(t) = 1 and g(t) = tb, b > 0.
As we found before the equation (1.1) with g(t) = tb has an infinitesimal generator

X = (c1 + c2x)
∂

∂x
+(c3 + c2y)

∂

∂y
+ c2

t
b

∂

∂ t
+ c2

b−α

b(n−1)
u

∂

∂u
.

So, after applying X to boundary condition as ξ1(0) = 0 for x= 0 and ξ2(0) = 0 for y= 0 we get c1 = c3 = 0 and c2

(
b−1

b(n−1)Φ(t)− t dΦ

dt

)
= 0,

where Φ(t) = Kt
b−1
n−1 , K is arbitrary constant.

According above definition let assume t∗ = t, x∗ = 1/x, y∗ = 1/y, and u∗ = u bijective transformation which maps M = {x→∞,y→∞,u→
∞} to M∗ = {x∗→ 0,y∗→ 0,u∗→ 0}. This transformation maps the infinitesimal operator X to X∗. Thus, X = x ∂

∂x +y ∂

∂y +
t
b

∂

∂ t +
b−1

b(n−1)
∂

∂u

infinitesimal operator with X∗ = −x∗ ∂

∂x∗ − y∗ ∂

∂y∗ +
t∗
b

∂

∂ t∗ −
b−1

b(n−1)u∗ ∂

∂u∗ leaves invariant the equation (6.5) with boundary and initially
conditions:

u(t,x,y)t→0 −→ ∞, (x,y) ∈ R+×R+,

u(t,0,0) = Kt
b−1
n−1 , t ∈ [0,∞],

u(t,x,y)(x,y)→(0,0) −→ ∞, t ∈ [0,∞].

Which give us u = t
b−1
n−1 f (r1,r2), where r1 =

x
tb , r2 =

y
tb transformation, after applying that we get

b−1
n−1 f −b(r1 fr1 + r2 fr2 )+nP f n−1( fr1 + fr2 )−R(n f n−1( fr1r1 + fr2r2 )+n(n−1) f n−2( f 2

r1
+ f 2

r2
)) = 0,

f (r1,r2)(r1 ,r2)→(0,0) −→ 0,
lim

(r1 ,r2)−→(∞,∞)
f (r1,r2) = K,

boundary value problem of partial differential equation with two independent variable.
And the equation (1.1) with g(t) = 1 have an infinitesimal generator

X = c1
∂

∂x
+ c2

∂

∂y
+(c3t + c4)

t
b

∂

∂ t
+ c4

1
1−n

∂

∂u
.

Thus, as ξ1(0) = 0 for x = 0, ξ2(0) = 0 for y = 0, and τ(0) = 0 for t = 0 we get

c1 = 0, c2 = 0, c4 = 0, and c3

(
1

1−n
Φ(t)− t

dΦ

dt

)
= 0.

So, Φ(t) =Ct
1

1−n , C is arbitrary constant. According above, the X = t ∂

∂ t +
1

1−n
∂

∂u with X∗ = t∗ ∂

∂ t∗ −
1

1−n u∗ ∂

∂u∗ infinitesimal operator leaves
invariant the equation (6.5) with boundary and initially conditions:

u(t,x,y)t→0 −→ ∞, (x,y) ∈ R+×R+,

u(t,0,0) =Ct
1

1−n , t ∈ [0,∞],
u(t,x,y)(x,y)→(0,0) −→ ∞, t ∈ [0,∞].

Which give us u = t
1

1−n h(x,y) transformation, after applying that we get
1

1−n h+nPhn−1(hx +hy)−R(nhn−1(hxx +hyy)+n(n−1)hn−2(h2
x +h2

y)) = 0,
h(x,y)(x,y)→(0,0) −→ 0,

lim
(x,y)−→(∞,∞)

h(x,y) =C,

boundary value problem of partial differential equation with two independent variable.
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7. Conclusion

In this work, we presented the application of Lie group analysis to study time-fractional nonlinear generalized Burgers’ differential equations.
So, we found some exact solutions of nonlinear generalized Burgers’ differential equation with fractional derivative here we used the method
of Lie groups method. Also, we obtained the conservation laws for corresponding cases of the function g(t). After applying the Lie groups
we got boundary value problems with reduced dimension for special cases of g(t). Moreover we defined conditions which leave invariant the
boundary value problem (1.1)-(1.2) for g(t) = tλ and g(t) = 1 with α = 1. The symmetry method on fractional boundary value problem is
our future research.
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