

Araştırma Makalesi / Research Article

Characterization of Curves Whose Tangents Intersect a Straight Line in Euclidean 3-Space

Hatice ÇÜMEN ${ }^{1 *}$, Yılmaz TUNÇER²
${ }^{1}$ Uşak University, Science Instutite, Department of Mathematics, TURKEY
${ }^{2}$ Uşak University, Science and Art Faculty, Department of Mathematics, TURKEY

Geliş: 21 Kasim 2019 Kabul: 9 Aralık 2019 / Received: 21 Kasim 2019 Accepted: 9 Aralık 2019

Abstract

In this study, we investigated the space curves in Euclidean 3 -space whose tangent lines at each point intersect a given straight line passing the origin and intersect a fixed point, and we gave some characterizations in these cases.

Keywords: Frenet frame, tanget vector, space curve.
©2019 Usak University all rights reserved.

1. Introduction

The space curves whose principal normals intersecting a given straight line were first investigated by G. Pirondini, and further considered by E. Cesaro [1]. The corresponding question in affine space had been introduced by B. Su in 1929, He classified the curves and gave some remarkable results in affine 3 -space by using equi-affine frame [3].

Let $\alpha: \mathrm{I} \rightarrow E^{3}$ be unit speed curve and $\{T(s), N(s), B(s)\}$ is the Frenet frame of $\alpha(s) . T(s)$, $N(s)$ and $B(s)$ are called the unit tangent, principal normal and binormal vectors respectively. Frenet formulae are given by

[^0]\[

\left[$$
\begin{array}{l}
T^{\prime}(s) \tag{1}\\
N^{\prime}(s) \\
B^{\prime}(s)
\end{array}
$$\right]=\left[$$
\begin{array}{ccc}
0 & \kappa(s) & 0 \\
-\kappa(s) & 0 & \tau(s) \\
0 & -\tau(s) & 0
\end{array}
$$\right]\left[$$
\begin{array}{c}
T(s) \\
N(s) \\
B(s)
\end{array}
$$\right]
\]

where $\kappa(s)$ and $\tau(s)$ are called the curvature and the torsion of the curve $\alpha(s)$. A space curve $\alpha(s)$ is determined by its curvature $\kappa(s)$ and its torsion $\tau(s)$, uniqely [2, 4].

2. The Space Curves Whose Tangents Intersect a Fixed Line

Let $\alpha: \mathrm{I} \rightarrow E^{3}$ be a curve with arclength parameter and l be the line passing the origin. We assume that the tangents lines intersect the fixed l directed constant and unit vector u at each point of the curve , then we can write the following relation

$$
\begin{equation*}
\alpha(s)+\lambda(s) T(s)=\beta(s) . u \tag{2}
\end{equation*}
$$

where $\beta(s)=\varphi(s) . u$ ve $\varphi(s)$ are the differentiable vector depending s so since $\beta(s)$ is a line then we quaranteed $\beta^{\prime} \wedge \beta^{\prime \prime}=0$. By taking the first and the second derivatives of (2), we get

$$
\begin{gather*}
\quad\left(1+\lambda^{\prime}(s)\right) T(s)+\lambda(s) \kappa(s) N(s)=\beta^{\prime}(s) u \tag{3}\\
\left\{\begin{array}{l}
\left\{\lambda^{\prime \prime}(s)-\lambda(s) \kappa^{2}(s)\right\}(s) \\
\left.+\left\{\kappa(s)+2 \lambda^{\prime}(s) \kappa(s)+\lambda(s) \kappa^{\prime}(s)\right\} N(s)\right\}=\beta^{\prime \prime}(s) u \\
+\{\lambda(s) \kappa(s) \tau(s)\} B(s)
\end{array}\right\} \tag{4}
\end{gather*}
$$

by using (2) and (4). If the tangents of the curve $\alpha(s)$ intersect a fixed point on l then, $\beta^{\prime}=0$ and also $\kappa(s)=0$ and $\lambda(s)=-s+c$. In this case, β is the involute of $\alpha(s)$. Conversely, $\alpha(s)$ is involute of β, then $\alpha(s)$ is a line intersecting a fixed point of fixed line l, so following corollary is concerned.

Corallary 2.1: The tangents of the curve $\alpha(s)$ intersect a fixed point if and only if β is the involute of α and $\alpha(s)$ is a line.

If $\beta^{\prime} \neq 0$ and $\beta^{\prime \prime}=0$ then from (4), we have

$$
\begin{gather*}
\lambda^{\prime \prime}(s)-\lambda(s) \kappa^{2}(s)=0 \tag{5}\\
\kappa(s)+2 \lambda^{\prime}(s) \kappa(s)+\lambda(s) \kappa^{\prime}(s)=0 \tag{6}\\
\lambda(s) \kappa(s) \tau(s)=0 \tag{7}
\end{gather*}
$$

Thus, we can say that there is no solution in the case $\beta^{\prime \prime}=0$ for $\kappa(s) \neq 0$ by considering (6), so there is no curve whose tangent lines intersect a fixed line.

Let $\beta^{\prime \prime} \neq 0$ then from (3) and (4), we have

$$
\begin{gather*}
\left(\lambda^{\prime \prime}(s)-\lambda(s) \kappa^{2}(s)\right) \beta^{\prime}(s)-\left(1+\lambda^{\prime}(s)\right) \beta^{\prime \prime}(s)=0 \tag{8}\\
\left(\kappa(s)+2 \lambda^{\prime}(s) \kappa(s)+\lambda(s) \kappa^{\prime}(s)\right) \beta^{\prime}(s)-\lambda(s) \kappa(s) \beta^{\prime \prime}(s)=0 \tag{9}\\
\lambda(s) \kappa(s) \tau(s)=0 \tag{10}
\end{gather*}
$$

It is clear from (10) that $\alpha(s)$ has to be planar, from (8), we get the solution

$$
\begin{equation*}
\beta(s)=c_{1}+c_{2} \int e^{\int \frac{\lambda^{\prime \prime}(s)-\lambda(s) \kappa^{2}(s) d s}{1+\lambda^{\prime}(s)}} d s \tag{11}
\end{equation*}
$$

Rewrite (11) in (9),

$$
\left\{\begin{array}{l}
c_{2}\left\{\kappa(s)+2 \lambda^{\prime}(s) \kappa(s)+\lambda(s) \kappa^{\prime}(s)\right\}\left(1+\lambda^{\prime}(s)\right) \tag{12}\\
-\lambda(s) \kappa(s)\left\{\lambda^{\prime \prime}(s)-\lambda(s) \kappa^{2}(s)\right\}
\end{array}\right\}=0
$$

and the solution of (12) is,

$$
\begin{equation*}
\lambda(s)=\frac{-c_{2} \int e^{\int i \kappa(s) d s} d s-\int e^{-\int i \kappa(s) d s} d s-c_{1}}{c_{2} e^{\int i \kappa(s) d s}+e^{-\int i \kappa(s) d s}} \tag{13}
\end{equation*}
$$

Here, $\lambda(s)$ is the real solution iff $c_{2}=1$, so the real solution of (12) is

$$
\begin{equation*}
\lambda(s)=-\frac{2 \int \cos (\theta) d s+c_{1}}{2 \cos (\theta)} \tag{14}
\end{equation*}
$$

and from (11), $\beta(s)$ is

$$
\begin{equation*}
\beta(s)=c_{1}+\int e^{\int \phi d s} d s \tag{15}
\end{equation*}
$$

where $\theta=\int \kappa(s) d s$ and

$$
\begin{equation*}
\phi=\frac{\left\{4 \kappa^{2}(s) \sin (\theta)+2 \kappa^{\prime}(s) \cos (\theta)\right\} \cos (\theta) d s+2 c_{1} \kappa^{2}(s) \sin (\theta)+2 \kappa(s) \cos ^{2}(\theta)+c_{1} \kappa^{2}(s) \cos (\theta)}{\kappa(s) \cos (\theta)\left(2 \int \cos (\theta) d s+c_{1}\right)} \tag{16}
\end{equation*}
$$

and c_{1} is an arbitrary constant. For any c_{2} and nonzero constant $\kappa(s)$ in (13), $\lambda(s)$ is

$$
\begin{equation*}
\lambda(s)=-\frac{c_{2} \sin (\kappa s)+\cos (\kappa s)+c_{1}}{\kappa\left(c_{2} \cos (\kappa s)-\sin (\kappa s)\right)} . \tag{17}
\end{equation*}
$$

Hence following corallary is concerned.
Teorem 2.1: Let $\alpha(s)$ be a planar curve with non-constant curvature and the tangent lines at each point of $\alpha(s)$, intersect fixed line l then

$$
\lambda(s)=-\frac{2 \int \cos (\theta) d s+c_{1}}{2 \cos (\theta)}
$$

and

$$
\beta(s)=c_{1}+\int e^{\int \phi d s} d s
$$

where $\theta=\int \kappa(s) d s$ and

$$
\phi=\frac{\left\{4 \kappa^{2}(s) \sin (\theta)+2 \kappa^{\prime}(s) \cos (\theta)\right\} \int \cos (\theta) d s+2 c_{1} \kappa^{2}(s) \sin (\theta)+2 \kappa(s) \cos ^{2}(\theta)+c_{1} \kappa^{2}(s) \cos (\theta)}{\kappa(s) \cos (\theta)\left(2 \int \cos (\theta) d s+c_{1}\right)}
$$

Corallary 2.2: If $\alpha(s)$ is a planar curve with constant nonzero curveture and the tangent lines at each points of $\alpha(s)$ intersect fixed line l, then

$$
\lambda(s)=-\frac{c_{2} \sin (\kappa s)+\cos (\kappa s)+c_{1}}{\kappa\left(c_{2} \cos (\kappa s)-\sin (\kappa s)\right)}
$$

and

$$
\beta(s)=c_{1}+c_{2} \int e^{\int \frac{\lambda^{\prime \prime}(s)-\lambda(s) \kappa^{2}(s) d s}{1+\lambda^{\prime}(s)} d s} d s .
$$

References

1. Cesàro E. Lezioni di geometria intrinseca. Presso l'Autore-Editore. Napoli, Italy, 1896.
2. Blaschke W. Differential geometrie II. Verlag von Julius springer. Berlin, 1923.
3. Su B. Classes of curves in the affine space. Tohoku Mathematical Journal, 1929; 31: 283291.
4. Hacısalihoğlu H.H. Diferensiyel Geometri, Ankara Üniversitesi, cilt I, Ankara, 1993.

[^0]: *Corresponding author:
 E-mail: haticecumen92@gmail.com
 ©2019 Usak University all rights reserved.

