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Abstract

In this paper, we obtain a α - Suzuki fixed point theorem by using C - class function on quasi metric spaces.
Also we give an example which supports our main theorem.
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1. Introduction

In this paper N and R denote the sets of positive integers, respectively the set of real numbers, while
N0 := N ∪ {0} and R+

0 := [0,∞).
In 2008, the generalization theorem of Banach contraction principle [2], which was introduced by T.Suzuki
[7], later this theorem is also referred as Suzuki type contraction. In 2014, Ansari [1] introduced the concept
of C- class functions and proved the unique fixed point theorems for certain contractive mappings with
respect to the C - class functions.

The aim of this paper is to prove a α-Suzuki type fixed point theorem by using (C)- class functions in
quasi metric spaces.

2. Preliminaries

The aim of Suzuki [7] is to extend the well-known Edelstein’s Theorem by using the notion of C-condition.
Popescu [5] re-considered this approach to extend Bogin’s fixed point theorem:

Email address: v.m.l.himabindu@gmail.com (Venigalla Madhulatha Himabindu)

Received November 05, 2019, Accepted: December 11, 2019, Online: December 18, 2019.



V.M.L. HimaBindu, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 43–50. 44

Theorem 2.1. Let a self-mapping T on a complete metric space (X, d) satisfies the following condition:

1

2
d(x, Tx) ≤ d(x, y) (1)

implies
d(Tx, Ty) ≤ ad(x, y) + b[d(x, Tx) + d(y, Ty)] + c[d(x, Ty) + d(y, Tx)] (2)

where a ≥ 0, b > 0, c > 0 and a+ 2b+ 2c = 1. Then T has a unique fixed point.

First we recall some basic definitions which play crucial role in the theory of quasi metric spaces.

Definition 2.2. Let X be a non-empty set X and q : X ×X → R+ be a function which satisfies: such that
for all x, y, z ∈ X:

(q1) q(x, y) = 0 if and only ifx = y;

(q2) q(x, y) ≤ q(x, z) + q(z, y).

The pair (X, q) is called a quasi- metric space.

Example 2.3. Let X = l1 be defined by

l1 = {{xn}n≥1 ⊂ R,
∞∑
n=1

|xn| <∞}.

Consider d : X ×X → [0,∞) such that

q(x, y) =

{
0∑∞

n=1 |xn|
ifx � y,
ifx � y.

q is a quasi - metric. Mention that x � y if xn ≥ yn for all n, where x = {xn} and y = {yn} are in X.

Definition 2.4. Let (X, q) be a quasi-metric space.

q(i) A sequence {xn} in X is said to be convergent to x if lim
n→∞

q(xn, x) = lim
n→∞

q(x, xn) = 0.

q(ii) A sequence {xn} in X is called left-Cauchy if for every ε > 0 there exists a positive integer N = N(ε)
such that q(xn, xm) < ε for all n ≥ m > N .

q(iii) A sequence {xn} in X is called right-Cauchy if for every ε > 0 there exists a positive integer N = N(ε)
such that q(xn, xm) < ε for all m ≥ n > N .

q(iv) A sequence {xn} in X is called Cauchy sequence if for every ε > 0 there exists a positive integer
N = N(ε) such that q(xn, xm) < ε for all m,n > N .

Remark: From definition it is obvious that a sequence {xn} in a quasi-metric space is Cauchy if and only
if it is both left-Cauchy and right-Cauchy.

Ansari [1] introduced the concept of C- class functions as the following:

Definition 2.5. (See [1]) A mapping F : [0,+∞)2 → R is called a C- class function if it is continuous and
for all s, t ∈ [0,+∞),
(a) F (t, s) ≤ s;
(b)F (s, t) = s implies that either s = 0 or t = 0.

We denote C as the family of all C- class functions.
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Example 2.6. (See [1]) The following functions F : [0,+∞)2 → R are elements in C.
(1) F (s, t) = s− t for all s, t ∈ [0,∞);
(2) F (s, t) = ms for all s, t ∈ [0,∞) where 0 < m < 1;
(3) F (s, t) = s

(1+t)r for all s, t ∈ [0,∞) where r ∈ (0,∞);

(4) F (s, t) = (s+ l)
1

(1+t)r − l for all s, t ∈ [0,∞) where l > 1, r ∈ (0,∞);
(5) F (s, t) = s logt+a a for all s, t ∈ [0,∞) where a > 1;
(6) F (s, t) = s− (1+s

2+s)( t
1+t) for all s, t ∈ [0,∞);

(7) F (s, t) = sβ(s) for all s, t ∈ [0,∞) where β : [0,∞)→ [0, 1) and is continuous;
(8) F (s, t) = s − ϕ(s) for all s, t ∈ [0,∞) where ϕ : [0,∞) → [0,∞) is a continuous function such that
ϕ(t) = 0 if and only if t = 0;
(9) F (s, t) = sh(s, t) for all s, t ∈ [0,∞) where h : [0,∞) × [0,∞) → [0,∞) is a continuous function such
that h(t, s) < 1 for all s, t ∈ [0,∞);
(10) F (s, t) = s− (2+t

1+t)t for all s, t ∈ [0,∞);
(11) F (s, t) = n

√
ln(1 + sn) for all s, t ∈ [0,∞).

Definition 2.7. (See [1]) A function ψ : [0,∞) → [0,∞) is called an altering distance function if the
following properties are satisfied:
(a) ψ is nondecreasing and continuous;
(b) ψ(t) = 0 if and only if t = 0.

We denote Ψ the family of all altering distance function.

Definition 2.8. (See [1]) A function ϕ : [0,∞) → [0,∞) is called an ultra altering distance function if the
following properties are satisfied:
(a) ϕ is continuous;
(b) ϕ(t) > 0 for all t > 0.

We denote Φ the family of all altering distance function.

In 2012, Samet et al. [6] introduced α - admissible mappings as the following:

Definition 2.9. (See. [6], [3] ) A mapping f : X → X is called α- admissible if for all x, y ∈ X we have

α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1,

where α : X ×X → [0,∞) is a given function.

Definition 2.10. [4] A mapping f : X → X is called a triangular α- admissible if it is α - admissible and
satisfies

α(x, y) ≥ 1
α(y, z) ≥ 1

}
⇒ α(x, z) ≥ 1,

where x, y, z ∈ X and α : X ×X → [0,∞) is a given function.

Definition 2.11. [4] A mapping f : X → X is said to be weak triangular α - admissible if it is α-admissible
and satisfies

α(x, fx) ≥ 1⇒ α(x, f2x) ≥ 1,

where α : X ×X → [0,∞) is a given function.

Lemma 2.12. [4] Let f : X → X be a weak triangular α-admissible mapping. Assume that there exists
x0 ∈ x such that α(x0, fx0) ≥ 1. If xn = fnx0, then α(xm, fxn) ≥ 1 for all m,n ∈ N0 with m < n.

The following auxiliary result is going to be used in the proof of existence theorems.
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Lemma 2.13. Let f : X → X be a triangular α- admissible mapping. Assume that there exists x0 ∈ X such
that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1. If xn = fnx0, then α(xm, xn) ≥ 1 for all m,n ∈ N.

Definition 2.14. Let (X, q) be a quasi metric space and let f : X → X be a given mapping f is an
F (ψ − φ) − α-Suzuki- type rational contraction condition.If there exist two functions α : X × X → [0,∞)
such that α(x, y) ≥ 1 and

1

2
q(x, fx) ≤ q(x, y)

implies that
ψ (q (fx, fy)) ≤ F (ψ (M (x, y)) , ϕ (M (x, y))) , (3)

for all x, y in X, where
M (x, y) = max

{
q(x, y), 1+q(x,fx).q(y,fy)

1+q(x,y)

}
,

ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C.

Now we prove our main result.

3. Main Results

Theorem 3.1. Let (X, q) be a complete quasi metric space and f : X → X be mappings such that f is
F (ψ − φ)− α-Suzuki- type rational contractive suppose that

(i) f : X → X is weak triangular α- admissible mapping

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1

(iii) f is continuous or If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for
all n and as n → ∞, then there exists a subsequence {xn(k)} of xn such that α(xn(k), x) ≥ 1 and
α(x, xn(k)) ≥ 1 for all k

Then f has fixed point in X.

Proof. By assumption (ii), there exists x0 ∈ X, such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1.
Define the sequence {xn} in X as fxn = xn+1 , n = 1, 2, 3, · · ·
If xn0 = xn0+1 for some n0 > 0, then xn0 is a fixed point of f and the proof is done. Assume that xn 6= xn+1

for all n ≥ 0. Since f is α- admissible,

α(x0, fx0) = α(x0, x1) ≥ 1⇒ α(fx0, fx1) = α(x1, x2) ≥ 1

and continuing we obtain

α(xn, xn+1) ≥ 1 forall n ∈ N.

Since
1
2q(xn, fxn) ≤ q(xn, xn+1).

From (3),we get
ψ (q (fxn, fxn+1)) ≤ F (ψ (M (xn, xn+1)) , ϕ (M (xn, xn+1))) .

M(xn, xn+1) = max
{
q(xn, xn+1),

1+q(xn,xn+1).q(xn+1,xn+2)
1+q(xn,xn+1)

}
= max{q(xn, xn+1), q(xn+1, xn+2)}.
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Hence,

ψ(q(xn+1, xn+2)) ≤ F (ψ (max{q(xn, xn+1), q(xn+1, xn+2)}), ϕ(max{q(xn, xn+1), q(xn+1, xn+2)})) .

If q(xn+1, xn+2) is maximum then we have

ψ(q(xn+1, xn+2)) ≤ F (ψ(q(xn+1, xn+2)), ϕ(q(xn+1, xn+2))) < ψ(q(xn+1, xn+2))

, which is a contradiction.
Hence q(xn, xn+1) is maximum. Thus

ψ(q(xn+1, xn+2)) ≤ F (ψ(q(xn, xn+1)), ϕ(q(xn, xn+1)) (4)

Since ψ is increasing we have q(xn+1, xn+2) ≤ q(xn, xn+1).
Thus {q(xn, xn+1)} is a non - increasing sequence of non - negative real numbers and must converge to a
real number, say, r ≥ 0. Suppose r > 0.
Letting n→∞ in (4) , we get
ψ(r) ≤ F (ψ(r), ϕ(r)). This implies that ψ(r) = 0 and ϕ(r) = 0 which yields

lim
n→∞

q(xn, xn+1) = 0. (5)

Now we prove that {xn} is a left-Cauchy sequence in (X, q). On contrary suppose that {xn} is not left -
Cauchy.
Then there exist an ε > 0 and monotone increasing sequences of natural numbers {mk} and {nk} such that
nk > mk,

q(xmk
, xnk

) ≥ ε (6)

and
q(xmk

, xnk−1) < ε. (7)

From (6) and (7), we obtain

ε ≤ q(xmk
, xnk

)
≤ q(xmk

, xnk−1) + q(xnk−1, xnk−1) + q(xnk−1, xnk
)

< ε+ q(xnk−1, xnk−1) + q(xnk−1, xnk
).

Letting k →∞ and then using (6), we get

lim
k→∞

q(xmk
, xnk

) = ε. (8)

Letting k →∞ and then using (5) and (8) in
|q(xmk−1, xnk

)− q(xmk−1, xmk
)| ≤ q(xmk

, xnk
)

we obtain
lim
k→∞

q(xmk−1, xnk
) = ε. (9)

Letting k →∞ and then using (5) and (8) in
|q(xmk

, xnk+1)− q(xnk
, xnk+1)| ≤ q(xmk

, xnk
)

we obtain
lim
k→∞

q(xmk
, xnk+1) = ε. (10)

Hence, we get
Since f is weak triangular α-admissible. Then, from Lemma2.13 we have

α(xnk
, xmk

) ≥ 1
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If 1
2q(xmk−1, xmk

) > q(xmk−1, xnk
) then letting k →∞,

we get 0 ≥ ε from 5 and 9.
It is a contradiction. Hence
1
2q(xmk−1, xmk

) ≤ q(xmk−1, xnk
).

From (3), we have
ψ (q(xmk

, xnk+1))
= ψ (q(fxmk−1, fxnk

))
≤ F (ψ (M(xmk−1, xnk

)) , ϕ (M(xmk−1, xnk
))) ,

where
M(xmk−1, xnk

) = max
{
q(xmk−1, xnk

),
1+q(xmk−1,xmk

).q(xnk
,xnk+1)

1+q(xmk−1,xnk
)

}
.

Letting k →∞ and then using (10) and (5) we have

ψ (ε) ≤ F (ψ (max {ε, 0}) , ϕ (max {ε, 0}))
≤ F (ψ (ε) , ϕ (ε)) .

It follows that ψ (ε) = 0 or ϕ (ε) = 0. This implies that ε = 0 which is a contradiction. Hence {xn} is left -
Cauchy in (X, q). Similarly, {xn} is right - Cauchy
Thus {xn} is a Cauchy sequence in (X, q).
Hence,

lim
n, m→∞

q(xn, xm) = 0. (11)

Since xn+1 = fxn, it follows {xn} is a Cauchy sequence in the complete quasi - metric space (X, q). There-
fore, there exists u ∈ X such that

lim
n→∞

q(xn, u) = lim
n→∞

q(u, xn) = 0. (12)

From continuity of f we get
lim
n→∞

q(xn, fu) = lim
n→∞

q(fxn−1, fu) = 0. (13)

and

lim
n→∞

q(fu, xn) = lim
n→∞

q(fu, fxn−1) = 0. (14)

Combining (13) and (14), we deduce

lim
n→∞

q(xn, fu) = lim
n→∞

q(fu, fxn) = 0. (15)

From 12 and 15, due to the uniqueness of the limit, we conclude that u = fu, that is , u is a fixed point of
f .

Now we claim that, for each n ≥ 1, at least one of the following assertions holds.

1

2
q(xn−1, xn) ≤ q(xn−1, u) or

1

2
q(xn, xn+1) ≤ q(xn, u).

On the contrary suppose that

1

2
q(xn−1, xn) > q(xn−1, u) and

1

2
q(xn, xn+1) > q(xn, u)

for some n ≥ 1.
Then we have

q(xn−1, xn) ≤ q(xn−1, u) + q(u, xn)

<
1

2
[q(xn−1, xn) + q(xn, xn+1)]

≤ q(xn−1, xn),
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which is a contradiction and so the claim holds.
Suppose 1

2q(xn, xn+1) ≤ q(xn, u) .
Suppose fu 6= u.
Since the sequence {xn} converges to u ∈ X,from (iii), there exists a subsequence {xn(k)} of xn such that
α(xn(k), u) ≥ 1 and α(u, xn(k)) ≥ 1 for all k.
We have

1
2q(xnk

, xnk+1) ≤ 1
2q(xnk

, u)

from (3), we have

ψ (q(fxnk
, fu)) ≤ F (ψ (M (xnk

, u)) , ϕ (M (xnk
, u))) ,

where

M (xnk
, u) = max

{
q(xnk

, u),
1+q(xnk

,fxnk
).q(u,fu)

1+q(xnk
,u)

}
.

Letting n→∞ and using 14,we get

ψ (q(u, fu))

≤ F
(
ψ
(

max
{
q(u, u), 1+q(u,u).q(u,fu)

1+q(u,u)

})
, ϕ
(

max
{
q(u, u), 1+q(u,u).q(u,fu)

1+q(u,u)

}))
,

≤ F (ψ (q(u, fu)) , ϕ (q(u, fu))) < ψ (q(u, fu)) ,

which is a contradiction.
Thus, fu = u.
Hence, u is a fixed point of f .

(H) for all x, y ∈ Fix(f), we have α(x, y) ≥ 1, where Fix(f) denotes the set of fixed points of f .

Theorem 3.2. Adding (H) to the hypotheses of Theorem(3.1), f has a unique fixed point.

Proof. Due to Theorem (3.1), we have u is a fixed point of f . Let w be another fixed point of f .
Suppose u 6= w.
From (H), we have

α(u,w) ≥ 1, for all u, w ∈ Fix(f).

Since 1
2q(u, fu)} ≤ q(u,w), from (3), we obtain

ψ (q(u,w)) = ψ (q(fu, fw))
≤ F (ψ (M(u,w)) , ϕ (M(u,w))) ,

where
M(u,w) = max

{
q(u,w), 1+q(u,u).q(w,w)

1+q(u,w)

}
= q(u,w).

Thus
ψ (q(u,w)) ≤ F (ψ (q(u,w)) , ϕ (q(u,w))) .
It follows that ψ (q(u,w)) = 0 or ϕ (q(u,w)) = 0.
This implies that q(u,w) = 0 which is a contradiction.
Hence u = w.
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Example 3.3. Let X = [0,∞) and q be the quasi metric on X given by

q(x, y) =

{
|x|
0

ifx 6= y,
ifx = y,

for all x, y ∈ X. It is obvious that (X, q) be a complete quasi- metric space. Suppose that f : X → X is
defined by

fx =

{
x3 − 2x

x
8

ifx > 2,
ifx ∈ [0, 2].

Now, define α : X ×X → [0,∞) as

α(x, y) =

{
1
0

ifx, y ∈ [0, 1]
otherwise.

Let F (s, t) = s− t for all s, t ∈ [0,∞). Let ψ(t) = t, ϕ(t) = t
2 .

1
2q(x, fx) ≤ x

≤ q(x, y)

ψ (q (fx, fy)) = q (fx, fy)
= fx,
= x

8
= 1

2q(x, y)
≤ 1

2M (x, y)
= M (x, y)− 1

2M (x, y)
= F (ψ (M (x, y)) , ϕ (M (x, y)))

Therefore, all of the conditions of Theorem 3.1 are satisfied and 0 is the fixed point of f.

If we let α(x, y) = 1 for all x ∈ X, we get the following result.

Corollary 3.4. Let (X, q) be a complete quasi metric space and let f : X → X be a given mapping f is an
F (ψ − φ)-Suzuki- type rational contraction condition. If there exist functions ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such
that

1

2
q(x, fx) ≤ q(x, y)

implies that
ψ (q (fx, fy)) ≤ F (ψ (M (x, y)) , ϕ (M (x, y))) ,

where

M (x, y) = max
{
q(x, y), 1+q(x,fx).q(y,fy)

1+q(x,y)

}
,

for all x, y in X. Then f has a unique fixed point in X.
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