Advances in the Theory of Nonlinear Analysis and its Applications 4 (2020) No. 1, 43–50. https://doi.org/10.31197/atnaa.643140 Available online at www.atnaa.org Research Article

Suzuki - $F(\psi-\phi)-\alpha$ type fixed point theorem on quasi metric spaces

Venigalla Madhulatha Himabindu^a

^aDepartment of Mathematics, Koneru Lakshmaiah Educational Foundation, Vaddeswaram, Guntur - 522 502, Andhra Pradesh, India.

Abstract

In this paper, we obtain a α - Suzuki fixed point theorem by using C - class function on quasi metric spaces. Also we give an example which supports our main theorem.

Keywords: Quasi - metric space, Suzuki type contraction, C - Class function, α - admissible mapping. 2010 MSC:

1. Introduction

In this paper \mathbb{N} and \mathbb{R} denote the sets of positive integers, respectively the set of real numbers, while $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and $\mathbb{R}_0^+ := [0, \infty)$.

In 2008, the generalization theorem of Banach contraction principle [2], which was introduced by T.Suzuki [7], later this theorem is also referred as Suzuki type contraction. In 2014, Ansari [1] introduced the concept of C- class functions and proved the unique fixed point theorems for certain contractive mappings with respect to the C - class functions.

The aim of this paper is to prove a α -Suzuki type fixed point theorem by using (C)- class functions in quasi metric spaces.

2. Preliminaries

The aim of Suzuki [7] is to extend the well-known Edelstein's Theorem by using the notion of C-condition. Popescu [5] re-considered this approach to extend Bogin's fixed point theorem:

Email address: v.m.l.himabindu@gmail.com (Venigalla Madhulatha Himabindu)

Received November 05, 2019, Accepted: December 11, 2019, Online: December 18, 2019.

Theorem 2.1. Let a self-mapping T on a complete metric space (X, d) satisfies the following condition:

$$\frac{1}{2}d(x,Tx) \le d(x,y) \tag{1}$$

implies

$$d(Tx, Ty) \le ad(x, y) + b[d(x, Tx) + d(y, Ty)] + c[d(x, Ty) + d(y, Tx)]$$
(2)

where $a \ge 0$, b > 0, c > 0 and a + 2b + 2c = 1. Then T has a unique fixed point.

First we recall some basic definitions which play crucial role in the theory of quasi metric spaces.

Definition 2.2. Let X be a non-empty set X and $q: X \times X \to R^+$ be a function which satisfies: such that for all $x, y, z \in X$:

- $(q_1) q(x,y) = 0$ if and only if x = y;
- $(q_2) q(x,y) \le q(x,z) + q(z,y).$

The pair (X,q) is called a quasi- metric space.

Example 2.3. Let $X = l_1$ be defined by

$$l_1 = \{\{x_n\}_{n \ge 1} \subset R, \sum_{n=1}^{\infty} |x_n| < \infty\}$$

Consider $d: X \times X \to [0,\infty)$ such that

$$q(x,y) = \begin{cases} 0 & ifx \leq y, \\ \sum_{n=1}^{\infty} |x_n| & ifx \geq y. \end{cases}$$

q is a quasi - metric. Mention that $x \succeq y$ if $x_n \ge y_n$ for all n, where $x = \{x_n\}$ and $y = \{y_n\}$ are in X.

Definition 2.4. Let (X,q) be a quasi-metric space.

- q(i) A sequence $\{x_n\}$ in X is said to be convergent to x if $\lim_{n \to \infty} q(x_n, x) = \lim_{n \to \infty} q(x, x_n) = 0.$
- q(ii) A sequence $\{x_n\}$ in X is called left-Cauchy if for every $\epsilon > 0$ there exists a positive integer $N = N(\epsilon)$ such that $q(x_n, x_m) < \epsilon$ for all $n \ge m > N$.
- q(iii) A sequence $\{x_n\}$ in X is called right-Cauchy if for every $\epsilon > 0$ there exists a positive integer $N = N(\epsilon)$ such that $q(x_n, x_m) < \epsilon$ for all $m \ge n > N$.
- q(iv) A sequence $\{x_n\}$ in X is called Cauchy sequence if for every $\epsilon > 0$ there exists a positive integer $N = N(\epsilon)$ such that $q(x_n, x_m) < \epsilon$ for all m, n > N.

Remark: From definition it is obvious that a sequence $\{x_n\}$ in a quasi-metric space is Cauchy if and only if it is both left-Cauchy and right-Cauchy.

Ansari [1] introduced the concept of C- class functions as the following:

Definition 2.5. (See [1]) A mapping $F : [0, +\infty)^2 \to R$ is called a C- class function if it is continuous and for all $s, t \in [0, +\infty)$, (a) $F(t, s) \leq s$;

(b)F(s,t) = s implies that either s = 0 or t = 0.

We denote C as the family of all C- class functions.

Example 2.6. (See [1]) The following functions $F : [0, +\infty)^2 \to R$ are elements in C. (1) F(s,t) = s - t for all $s, t \in [0, \infty)$; (2) F(s,t) = ms for all $s, t \in [0, \infty)$ where 0 < m < 1; (3) $F(s,t) = \frac{s}{(1+t)^r}$ for all $s, t \in [0, \infty)$ where $r \in (0, \infty)$; (4) $F(s,t) = (s+t)^{\frac{1}{(1+t)^r}} - l$ for all $s, t \in [0, \infty)$ where $l > 1, r \in (0, \infty)$; (5) $F(s,t) = s \log_{t+a} a$ for all $s, t \in [0, \infty)$ where a > 1; (6) $F(s,t) = s - (\frac{1+s}{2+s})(\frac{t}{1+t})$ for all $s, t \in [0, \infty)$; (7) $F(s,t) = s\beta(s)$ for all $s, t \in [0, \infty)$ where $\beta : [0, \infty) \to [0, 1)$ and is continuous; (8) $F(s,t) = s - \varphi(s)$ for all $s, t \in [0, \infty)$ where $\varphi : [0, \infty) \to [0, \infty)$ is a continuous function such that $\varphi(t) = 0$ if and only if t = 0; (9) F(s,t) = sh(s,t) for all $s, t \in [0, \infty)$ where $h : [0, \infty) \times [0, \infty) \to [0, \infty)$ is a continuous function such that h(t,s) < 1 for all $s, t \in [0, \infty)$; (10) $F(s,t) = s - (\frac{2+t}{1+t})t$ for all $s, t \in [0, \infty)$; (11) $F(s,t) = \sqrt[n]{\ln(1+s^n)}$ for all $s, t \in [0, \infty)$.

Definition 2.7. (See [1]) A function $\psi : [0, \infty) \to [0, \infty)$ is called an altering distance function if the following properties are satisfied:

- (a) ψ is nondecreasing and continuous;
- (b) $\psi(t) = 0$ if and only if t = 0.

We denote Ψ the family of all altering distance function.

Definition 2.8. (See [1]) A function $\varphi : [0, \infty) \to [0, \infty)$ is called an ultra altering distance function if the following properties are satisfied:

- (a) φ is continuous;
- (b) $\varphi(t) > 0$ for all t > 0.

We denote Φ the family of all altering distance function.

In 2012, Samet et al. [6] introduced α - admissible mappings as the following:

Definition 2.9. (See. [6], [3]) A mapping $f: X \to X$ is called α - admissible if for all $x, y \in X$ we have

$$\alpha(x, y) \ge 1 \Rightarrow \alpha(fx, fy) \ge 1,$$

where $\alpha: X \times X \to [0,\infty)$ is a given function.

Definition 2.10. [4] A mapping $f : X \to X$ is called a triangular α - admissible if it is α - admissible and satisfies

$$\begin{array}{l} \alpha(x,y) \geq 1\\ \alpha(y,z) \geq 1 \end{array} \} \Rightarrow \ \alpha(x,z) \geq 1, \end{array}$$

where $x, y, z \in X$ and $\alpha : X \times X \to [0, \infty)$ is a given function.

Definition 2.11. [4] A mapping $f : X \to X$ is said to be weak triangular α - admissible if it is α -admissible and satisfies

$$\alpha(x, fx) \ge 1 \Rightarrow \alpha(x, f^2x) \ge 1.$$

where $\alpha: X \times X \to [0,\infty)$ is a given function.

Lemma 2.12. [4] Let $f : X \to X$ be a weak triangular α -admissible mapping. Assume that there exists $x_0 \in x$ such that $\alpha(x_0, fx_0) \ge 1$. If $x_n = f^n x_0$, then $\alpha(x_m, fx_n) \ge 1$ for all $m, n \in N_0$ with m < n.

The following auxiliary result is going to be used in the proof of existence theorems.

Definition 2.14. Let (X,q) be a quasi metric space and let $f : X \to X$ be a given mapping f is an $F(\psi - \phi) - \alpha$ -Suzuki- type rational contraction condition. If there exist two functions $\alpha : X \times X \to [0,\infty)$ such that $\alpha(x,y) \ge 1$ and

$$\frac{1}{2}q(x,fx) \le q(x,y)$$

implies that

$$\psi\left(q\left(fx,fy\right)\right) \leq F\left(\psi\left(M\left(x,y\right)\right),\varphi\left(M\left(x,y\right)\right)\right),\tag{3}$$

for all x, y in X, where

$$M(x,y) = \max \left\{ q(x,y), \frac{1+q(x,fx) \cdot q(y,fy)}{1+q(x,y)} \right\}$$

 $\psi \in \Psi, \varphi \in \Phi \text{ and } F \in \mathcal{C}.$

Now we prove our main result.

3. Main Results

Theorem 3.1. Let (X,q) be a complete quasi metric space and $f: X \to X$ be mappings such that f is $F(\psi - \phi) - \alpha$ -Suzuki- type rational contractive suppose that

- (i) $f: X \to X$ is weak triangular α admissible mapping
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$ and $\alpha(fx_0, x_0) \ge 1$
- (iii) f is continuous or If $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ and $\alpha(x_{n+1}, x_n) \ge 1$ for all n and as $n \to \infty$, then there exists a subsequence $\{x_n(k)\}$ of x_n such that $\alpha(x_n(k), x) \ge 1$ and $\alpha(x, x_n(k)) \ge 1$ for all k

Then f has fixed point in X.

for all $n \ge 0$. Since f is α - admissible,

Proof. By assumption (*ii*), there exists $x_0 \in X$, such that $\alpha(x_0, fx_0) \ge 1$ and $\alpha(fx_0, x_0) \ge 1$. Define the sequence $\{x_n\}$ in X as $fx_n = x_{n+1}$, $n = 1, 2, 3, \cdots$ If $x_{n_0} = x_{n_0+1}$ for some $n_0 > 0$, then x_{n_0} is a fixed point of f and the proof is done. Assume that $x_n \neq x_{n+1}$

$$\alpha(x_0, fx_0) = \alpha(x_0, x_1) \ge 1 \Rightarrow \alpha(fx_0, fx_1) = \alpha(x_1, x_2) \ge 1$$

and continuing we obtain

$$\alpha(x_n, x_{n+1}) \ge 1$$
 for all $n \in N$.

Since

$$\frac{1}{2}q(x_n, fx_n) \le q(x_n, x_{n+1}).$$

From (3), we get

$$\psi(q(fx_n, fx_{n+1})) \leq F(\psi(M(x_n, x_{n+1})), \varphi(M(x_n, x_{n+1}))).$$

$$M(x_n, x_{n+1}) = \max \left\{ q(x_n, x_{n+1}), \frac{1+q(x_n, x_{n+1}).q(x_{n+1}, x_{n+2})}{1+q(x_n, x_{n+1})} \right\}$$

$$= \max\{q(x_n, x_{n+1}), q(x_{n+1}, x_{n+2})\}.$$

Hence,

$$\psi(q(x_{n+1}, x_{n+2})) \le F(\psi(\max\{q(x_n, x_{n+1}), q(x_{n+1}, x_{n+2})\}), \varphi(\max\{q(x_n, x_{n+1}), q(x_{n+1}, x_{n+2})\})) + \varphi(q(x_{n+1}, x_{n+2})) + \varphi(q(x_{n+1}, x_{n+2})) + \varphi(q(x_{n+1}, x_{n+2})) + \varphi(q(x_{n+1}, x_{n+2}))) + \varphi(q(x_{n+1}, x_{n+2})) + \varphi$$

If $q(x_{n+1}, x_{n+2})$ is maximum then we have

$$\psi(q(x_{n+1}, x_{n+2})) \le F(\psi(q(x_{n+1}, x_{n+2})), \varphi(q(x_{n+1}, x_{n+2}))) < \psi(q(x_{n+1}, x_{n+2}))$$

, which is a contradiction.

Hence $q(x_n, x_{n+1})$ is maximum. Thus

$$\psi(q(x_{n+1}, x_{n+2})) \le F(\psi(q(x_n, x_{n+1})), \varphi(q(x_n, x_{n+1})))$$
(4)

Since ψ is increasing we have $q(x_{n+1}, x_{n+2}) \le q(x_n, x_{n+1})$.

Thus $\{q(x_n, x_{n+1})\}$ is a non - increasing sequence of non - negative real numbers and must converge to a real number, say, $r \ge 0$. Suppose r > 0.

Letting $n \to \infty$ in (4), we get

 $\psi(r) \leq F(\psi(r), \varphi(r))$. This implies that $\psi(r) = 0$ and $\varphi(r) = 0$ which yields

$$\lim_{n \to \infty} q(x_n, x_{n+1}) = 0. \tag{5}$$

Now we prove that $\{x_n\}$ is a left-Cauchy sequence in (X, q). On contrary suppose that $\{x_n\}$ is not left - Cauchy.

Then there exist an $\epsilon > 0$ and monotone increasing sequences of natural numbers $\{m_k\}$ and $\{n_k\}$ such that $n_k > m_k$,

$$q(x_{m_k}, x_{n_k}) \ge \epsilon \tag{6}$$

and

$$q(x_{m_k}, x_{n_k-1}) < \epsilon. \tag{7}$$

From (6) and (7), we obtain

$$\begin{aligned} \epsilon &\leq q(x_{m_k}, x_{n_k}) \\ &\leq q(x_{m_k}, x_{n_k-1}) + q(x_{n_k-1}, x_{n_k-1}) + q(x_{n_k-1}, x_{n_k}) \\ &< \epsilon + q(x_{n_k-1}, x_{n_k-1}) + q(x_{n_k-1}, x_{n_k}). \end{aligned}$$

Letting $k \to \infty$ and then using (6), we get

$$\lim_{k \to \infty} q(x_{m_k}, x_{n_k}) = \epsilon.$$
(8)

Letting $k \to \infty$ and then using (5) and (8) in $|q(x_{m_k-1}, x_{n_k}) - q(x_{m_k-1}, x_{m_k})| \le q(x_{m_k}, x_{n_k})$ we obtain

$$\lim_{k \to \infty} q(x_{m_k-1}, x_{n_k}) = \epsilon.$$
(9)

Letting $k \to \infty$ and then using (5) and (8) in $|q(x_{m_k}, x_{n_k+1}) - q(x_{n_k}, x_{n_k+1})| \le q(x_{m_k}, x_{n_k})$ we obtain

$$\lim_{k \to \infty} q(x_{m_k}, x_{n_k+1}) = \epsilon.$$
(10)

Hence, we get

Since f is weak triangular α -admissible. Then, from Lemma 2.13 we have

$$\alpha(x_{n_k}, x_{m_k}) \ge 1$$

If $\frac{1}{2}q(x_{m_k-1}, x_{m_k}) > q(x_{m_k-1}, x_{n_k})$ then letting $k \to \infty$, we get $0 \ge \epsilon$ from 5 and 9. It is a contradiction. Hence $\frac{1}{2}q(x_{m_k-1}, x_{m_k}) \le q(x_{m_k-1}, x_{n_k})$. From (3), we have $\psi(q(x_{m_k}, x_{m_k+1}))$

$$\begin{aligned} & (q(x_{m_k}, x_{n_k+1})) \\ &= \psi \left(q(fx_{m_k-1}, fx_{n_k}) \right) \\ &\leq F \left(\psi \left(M(x_{m_k-1}, x_{n_k}) \right), \varphi \left(M(x_{m_k-1}, x_{n_k}) \right) \right), \end{aligned}$$

where

$$M(x_{m_k-1}, x_{n_k}) = \max\left\{ q(x_{m_k-1}, x_{n_k}), \frac{1 + q(x_{m_k-1}, x_{m_k}) \cdot q(x_{n_k}, x_{n_k+1})}{1 + q(x_{m_k-1}, x_{n_k})} \right\}.$$

Letting $k \to \infty$ and then using (10) and (5) we have

$$\begin{aligned} \psi\left(\epsilon\right) &\leq F\left(\psi\left(\max\left\{\epsilon,0\right\}\right),\varphi\left(\max\left\{\epsilon,0\right\}\right)\right) \\ &\leq F\left(\psi\left(\epsilon\right),\varphi\left(\epsilon\right)\right). \end{aligned}$$

It follows that $\psi(\epsilon) = 0$ or $\varphi(\epsilon) = 0$. This implies that $\epsilon = 0$ which is a contradiction. Hence $\{x_n\}$ is left -Cauchy in (X, q). Similarly, $\{x_n\}$ is right - Cauchy Thus $\{x_n\}$ is a Cauchy sequence in (X, q). Hence,

$$\lim_{n, \ m \to \infty} q(x_n, x_m) = 0. \tag{11}$$

Since $x_{n+1} = fx_n$, it follows $\{x_n\}$ is a Cauchy sequence in the complete quasi - metric space (X, q). Therefore, there exists $u \in X$ such that

$$\lim_{n \to \infty} q(x_n, u) = \lim_{n \to \infty} q(u, x_n) = 0.$$
 (12)

From continuity of f we get

$$\lim_{n \to \infty} q(x_n, fu) = \lim_{n \to \infty} q(fx_{n-1}, fu) = 0.$$
(13)

and

$$\lim_{n \to \infty} q(fu, x_n) = \lim_{n \to \infty} q(fu, fx_{n-1}) = 0.$$
 (14)

Combining (13) and (14), we deduce

$$\lim_{n \to \infty} q(x_n, fu) = \lim_{n \to \infty} q(fu, fx_n) = 0.$$
 (15)

From 12 and 15, due to the uniqueness of the limit, we conclude that u = fu, that is, u is a fixed point of f.

Now we claim that, for each $n \ge 1$, at least one of the following assertions holds.

$$\frac{1}{2}q(x_{n-1}, x_n) \le q(x_{n-1}, u) \quad \text{or} \quad \frac{1}{2}q(x_n, x_{n+1}) \le q(x_n, u).$$

On the contrary suppose that

$$\frac{1}{2}q(x_{n-1}, x_n) > q(x_{n-1}, u) \quad \text{and} \quad \frac{1}{2}q(x_n, x_{n+1}) > q(x_n, u)$$

for some $n \ge 1$. Then we have

$$q(x_{n-1}, x_n) \leq q(x_{n-1}, u) + q(u, x_n) < \frac{1}{2} [q(x_{n-1}, x_n) + q(x_n, x_{n+1})] \leq q(x_{n-1}, x_n),$$

which is a contradiction and so the claim holds.

Suppose $\frac{1}{2}q(x_n, x_{n+1}) \le q(x_n, u)$.

Suppose $fu \neq u$.

Since the sequence $\{x_n\}$ converges to $u \in X$, from (*iii*), there exists a subsequence $\{x_n(k)\}$ of x_n such that $\alpha(x_n(k), u) \ge 1$ and $\alpha(u, x_n(k)) \ge 1$ for all k. We have

$$\frac{1}{2}q(x_{n_k}, x_{n_k+1}) \le \frac{1}{2}q(x_{n_k}, u)$$

from (3), we have

$$\psi\left(q(fx_{n_k}, fu)\right) \leq F\left(\psi\left(M\left(x_{n_k}, u\right)\right), \varphi\left(M\left(x_{n_k}, u\right)\right)\right)$$

where

$$M(x_{n_k}, u) = \max \left\{ q(x_{n_k}, u), \frac{1 + q(x_{n_k}, fx_{n_k}) \cdot q(u, fu)}{1 + q(x_{n_k}, u)} \right\}.$$

Letting $n \to \infty$ and using 14, we get

$$\psi\left(q(u, fu)\right) \\ \leq F\left(\psi\left(\max\left\{q(u, u), \frac{1+q(u, u).q(u, fu)}{1+q(u, u)}\right\}\right), \varphi\left(\max\left\{q(u, u), \frac{1+q(u, u).q(u, fu)}{1+q(u, u)}\right\}\right)\right), \\ \leq F\left(\psi\left(q(u, fu)\right), \varphi\left(q(u, fu)\right)\right) < \psi\left(q(u, fu)\right),$$

which is a contradiction.

Thus, fu = u. Hence, u is a fixed point of f.

(H) for all $x, y \in Fix(f)$, we have $\alpha(x, y) \ge 1$, where Fix(f) denotes the set of fixed points of f.

Theorem 3.2. Adding (H) to the hypotheses of Theorem(3.1), f has a unique fixed point.

Proof. Due to Theorem (3.1), we have u is a fixed point of f. Let w be another fixed point of f. Suppose $u \neq w$.

From (H), we have

 $\alpha(u, w) \ge 1$, for all $u, w \in Fix(f)$.

Since $\frac{1}{2}q(u, fu) \leq q(u, w)$, from (3), we obtain

$$\psi(q(u,w)) = \psi(q(fu,fw)) \leq F(\psi(M(u,w)),\varphi(M(u,w))),$$

where

$$M(u,w) = \max \left\{ q(u,w), \frac{1+q(u,u).q(w,w)}{1+q(u,w)} \right\} = q(u,w).$$

Thus

$$\begin{split} \psi\left(q(u,w)\right) &\leq F\left(\psi\left(q(u,w)\right),\varphi\left(q(u,w)\right)\right).\\ \text{It follows that } \psi\left(q(u,w)\right) &= 0 \text{ or } \varphi\left(q(u,w)\right) = 0.\\ \text{This implies that } q(u,w) &= 0 \text{ which is a contradiction.}\\ \text{Hence } u &= w. \end{split}$$

Example 3.3. Let $X = [0, \infty)$ and q be the quasi metric on X given by

$$q(x,y) = \begin{cases} |x| & ifx \neq y, \\ 0 & ifx = y, \end{cases}$$

for all $x, y \in X$. It is obvious that (X, q) be a complete quasi- metric space. Suppose that $f : X \to X$ is defined by

$$fx = \begin{cases} x^3 - 2x & ifx > 2, \\ \frac{x}{8} & ifx \in [0, 2] \end{cases}$$

Now, define $\alpha: X \times X \to [0,\infty)$ as

$$\alpha(x,y) = \begin{cases} 1 & ifx, y \in [0,1] \\ 0 & otherwise. \end{cases}$$

Let F(s,t) = s - t for all $s, t \in [0,\infty)$. Let $\psi(t) = t$, $\varphi(t) = \frac{t}{2}$.

$$\begin{split} \frac{1}{2}q(x,fx) &\leq x\\ &\leq q(x,y) \end{split}$$

$$\psi\left(q\left(fx,fy\right)\right) &= q\left(fx,fy\right)\\ &= fx,\\ &= \frac{x}{8}\\ &= \frac{1}{2}q(x,y)\\ &\leq \frac{1}{2}M\left(x,y\right)\\ &= M\left(x,y\right) - \frac{1}{2}M\left(x,y\right)\\ &= F\left(\psi\left(M\left(x,y\right)\right),\varphi\left(M\left(x,y\right)\right)\right) \end{split}$$

Therefore, all of the conditions of Theorem 3.1 are satisfied and 0 is the fixed point of f.

If we let $\alpha(x, y) = 1$ for all $x \in X$, we get the following result.

Corollary 3.4. Let (X,q) be a complete quasi metric space and let $f: X \to X$ be a given mapping f is an $F(\psi - \phi)$ -Suzuki- type rational contraction condition. If there exist functions $\psi \in \Psi$, $\varphi \in \Phi$ and $F \in \mathcal{C}$ such that

$$\frac{1}{2}q(x,fx) \le q(x,y)$$

implies that

$$\psi\left(q\left(fx,fy
ight)
ight)\ \leq F\left(\psi\left(M\left(x,y
ight)
ight),arphi\left(M\left(x,y
ight)
ight)
ight),arphi\left(M\left(x,y
ight)
ight)
ight)$$

where

$$M(x,y) = \max \left\{ q(x,y), \frac{1 + q(x,fx) \cdot q(y,fy)}{1 + q(x,y)} \right\},\$$

for all x, y in X. Then f has a unique fixed point in X.

References

- A.H. Ansari, Note on φ-ψ-contractive type mappings and related fixed point, The 2nd Regional Conference on Math.Appl.PNU, Sept.(2014), 377–380.
- [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals, Fund. Math., 3(1922),133-181.
- [3] E. Karapinar, B. Samet, Generalized $(\alpha \psi)$ contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal , 2012 (2012) Article id: 793486
- [4] E. Karapinar, P. Kumam, Salimi, On α - ψ Meir-Keeler contractive mappings, Fixed Point Theory Appl.2013, Article ID94(2013).
- [5] O. Popescu, Two generalizations of some fixed point theorems, Comp. Math. Appl., 62, 3912–3919, (2011).
- [6] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha \psi$ contractive mappings, Nonlinear Anal. 75(2012), 2154–2165.
- [7] T. Suzuki, A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc. 2008. vol. 136, pp. 1861–1869.