Research Article

https://doi.org/10.33484/sinopfbd.570134 A New Generalization of Injective Modules

Esra ÖZTÜRK SÖZEN*

Sinop University, Faculty of Science and Arts, Department of Mathematics, Sinop, Turkey

Abstract

In this paper, as a generalization of injective modules, we define two different modules: modules that have the property ($\delta - SE$) and modules that have the property ($\delta - SSE$), and we investigate basic properties of them. Namely, modules that have a δ -supplement that is a direct summand in its every extension and modules that have a strong δ -supplement in its every extension are tackled here. Particularly, it is proved that a ring whose modules have the property ($\delta - SE$) is δ -semiperfect. Let R be a ring, M be an R-module with IM = 0 for an ideal of R. It is shown that if the R-module M has the property ($\delta - SE$), then so does \overline{R} -module M, under a special condition, where $\overline{R} = \frac{R}{I}$. Finally we supply an example showing that a module that has the property ($\delta - SE$) may not have the property ($\delta - SSE$).

Keywords: δ -supplement, \bigoplus - δ -supplement, module extension, δ -semiperfect ring.

İnjektif Modüllerin Yeni Bir Genelleştirmesi

Öz

Bu çalışmada, injektif modüllerin yeni bir genelleştirmesi olarak iki farklı modül tanımlanmakta ve bunların temel özellikleri incelenmektedir. Bunlardan birincisi ($\delta - SE$) özelliğine sahip modüller, yani her genişlemesinde direkt toplam terimi olacak şekilde bir δ tümleyene sahip olan modüller; ikincisi ise ($\delta - SSE$) özelliğine sahip modüller, yani her genişlemesinde güçlü δ –tümleyene sahip olan modüllerdir. Özel olarak, tüm modülleri ($\delta - SE$) özelliğine sahip olan halkaların δ -yarı mükemmel olduğu ispatlanmıştır. Ayrıca R bir halka, M bir R-modül ve R nin IM = 0 koşulunu sağlayan I ideali için $\overline{R} = \frac{R}{I}$ olmak üzere, özel bir şart altında R-modül olarak ($\delta - SE$) özelliğine sahip M modülünün \overline{R} -modül olarak da ($\delta - SE$) özelliğine sahip olduğu gösterilmiştir. Çalışmanın sonunda ($\delta - SE$) özelliğine sahip fakat ($\delta - SSE$) özelliğine sahip olmayan modüle bir örnek verilmiştir.

Anahtar kelimeler: δ -tümleyen, \oplus - δ -tümleyen, modül genişlemesi, δ -yarı mükemmel halka.

Introduction

In this paper, all rings are associative with identity and all modules are unital left modules, unless otherwise specified. The notation (N < M) $N \le M$ means that *N* is a (proper) submodule of *M* or *M* is an extension of *N*. A submodule $N \le M$ is called essential in *M* if $N \cap X \ne$ 0 for every nonzero submodule *X* of *M* and denoted by $N \le M$. Dually, a proper

Received: 25.05.2019 **Accepted:** 01.08.2019

^{*} Corresponding Author: ORCID ID: orcid.org/0000-0002-2632-2193 e-mail: esozen@sinop.edu.tr

Sinop Uni J Nat Sci 4 (2):122-129(2019) ISSN: 2536-4383

submodule N of M is called small in M if $N + X \neq M$ for every proper submodule X of M and denoted by $N \ll M$. Let N and X be submodules of M. X is called a supplement of N in M if it is minimal with respect to the property M = N + X, equivalently, M = N + X and $N \cap X \ll X$. If every submodule of *M* has a supplement in M, M is called supplemented. The module M is called \oplus -supplemented if every submodule of M has a supplement in *M* that is a direct summand of *M*. A module *M* is called strongly supplemented or lifting if every submodule U of M has a strong supplement Vin М. i.e.. $M = U + V, U \cap V \ll V$ and $(U \cap V) \oplus$ U' = U for some submodule U' of U. Note that a module *M* is called lifting if and only if every submodule N of M includes a direct summand K of M such that $\frac{N}{\kappa} \ll \frac{M}{\kappa}$. detailed information related to For supplemented, \oplus -supplemented and lifting modules and other concepts given here we refer to [1], [2] and [3] respectively.

The singular submodule of a module M is Z(M) containing the elements of M whose annihilators are essential in R. A module M is called singular if Z(M) = M [4]. In [5], Zhou introduced the concept of δ -small submodules as a generalization of small submodules. A submodule N of M is called δ -small in M if for any submodule X

of M provided that $\frac{M}{x}$ singular, M = N + Ximplies that X = M and denoted by the notation $N \ll_{\delta} M$. $\delta(M)$ indicates the sum of all δ -small submodules of M. A submodule X of M is said to be a δ supplement of a submodule N in M if N + X = M and $N \cap X \ll_{\delta} X$ [6]. A module *M* is called δ -supplemented if every submodule of *M* has a δ -supplement in M. Of course, every supplemented module is δ -supplemented but the converse is not true in general. In [6], Koşan defined and investigated δ -lifting (or strongly δ supplemented) modules besides δ supplemented modules as a generalization of lifting modules. A module M is called δ lifting (strongly δ -supplemented) if every submodule N of M has a strong δ supplement K' in M, i.e., for any $N \leq M$, there exists a decomposition $M = K \bigoplus K'$ such that $K \leq N$ and $N \cap K' \ll_{\delta} K'$. Also *M* is called \bigoplus - δ -supplemented if every submodule of *M* has a δ -supplement which is a direct summand of M [8]. Clearly δ lifting modules are \oplus - δ -supplemented.

A module M is called injective if it is a direct summand in its every extension [9]. Since every direct summand of a module M is also a supplement submodule in M, in [10] Zöschinger introduced the module with the property (E), namely it has a supplement in its every extension, as a generalization of injective modules. Recently, several authors have studied remarkable generalizations of these modules (see in [11], [12]). In [13] and [14], modules that have the properties (SE), (SSE) and $(\delta - E)$ were defined respectively.

In this study we give a new generalization of injective modules using the notion of δ -supplement. By following the terminology and notation as in [13], we call a module *M* has the property $(\delta - SE)$ if in any extension N of M, M has a δ supplement that is a direct summand of N. We call a module *M* has the property (δ – SSE) as a proper generalization of modules with the property (SSE) if it has a strong δ supplement in its every extension. As an example we prove simple modules having the property ($\delta - SSE$) and even we prove that semisimple modules with $\delta(M) \ll_{\delta} M$ and $\frac{M}{\delta(M)}$ singular over δ -semilocal rings also have the property $(\delta - SSE)$. Moreover being injective and having the properties $(\delta - SE)$ and $(\delta - SSE)$ for a module M coincides over a left δ -V-ring. We answer when all submodules of a module M has the property $(\delta - SE)$. Zöschinger proved in [10] that if an R-module M with IM =0 for an ideal I of R has the property (E)then so does \overline{R} -module M, where \overline{R} is the ring $\frac{R}{l}$. We give the similar fact for modules that have the property ($\delta - SE$) under a specific condition in Proposition 9. In addition we show that in Proposition 10 modules that have the property ($\delta - SE$) also have the property ($\delta - SSE$) if they are fully invariant submodules in every extension. At the end we give the fact that if every left *R*-module has the property ($\delta - SE$), then the ring *R* is δ -semiperfect.

Clearly we have the following hierarchy:

Injective module \Rightarrow module that has the property $(\delta - SSE) \Rightarrow$ module that has the property $(\delta - SE) \Rightarrow$ module that has the property $(\delta - E)$.

Results

Lemma 1: Let M be a module. Then $Soc(\delta(M)) \ll_{\delta} M$.

Proof: In aspect of brevity, let say $Soc(\delta(M)) = X$ and assume M = X + Y for any submodule *Y* of *M* with $\frac{M}{Y}$ singular. Setting $Z = X \cap Y$, we have $X = Z \oplus Z'$ for some $Z' \leq X$ and $M = X + Y = (Z \oplus Z') + Y = Z' \oplus Y$. It is a known fact from [4, Prop. 1.24] that any simple right *R*-module is either singular or projective. So in particular there exist two cases for any simple submodule *S* of *Z'*. *Case 1*: Assume that *S* is singular. Since it is a direct summand and δ -small (=small, because of singularity) submodule in *M*, *Z'* is δ -small in *M* as a direct summand. So Z' = M since $\frac{M}{r}$ is singular.

Case 2: Assume that this submodule is projective. Since it is also semisimple we can say it is δ -small in Z'. By the same way in case (1), again $Z' \ll_{\delta} M$. Hence $X \ll_{\delta} M$.

Recall that a submodule *K* of a module *M* is the weak δ -supplement of a submodule *L* in *M* if M = K + L and $K \cap L \ll_{\delta} M$.

Proposition 2: Let M be a semisimple module. Then the following statements are equivalent.

- 1. *M* has the property (δE) ;
- 2. *M* has the property (δSE) ;
- 3. *M* has a weak δ -supplement in every extension *N*;
- For every module N with M ≤ N, there exists a submodule K of N such that N = M + K and M ∩ K ≤ δ(N);
- 5. *M* has the property (δSSE) .

Proof: (1) \Rightarrow (2): Let *N* be any extension of *M*. By (1), we have N = M + K and $M \cap K \ll_{\delta} K$ for some submodule $K \leq M$. Since *M* is semisimple, there exists a submodule *X* of *M* such that $M = (M \cap K) \bigoplus X$. So $(M \cap K) \cap X = K \cap X = 0$. Therefore, $N = M + K = [(M \cap K) + X] + K = K + X$. This means that

 $N = K \bigoplus X$ and so *M* has the property ($\delta - SE$).

 $(2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ are clear.

(4) \Rightarrow (5): Let $M \leq N$. Then there exists a submodule K of N such that N = M + K and $M \cap K \leq \delta(N)$. By Lemma 1, we obtain that $Soc(\delta(N)) \ll_{\delta} N$. Since M is semisimple we can write the decomposition $M = (M \cap K) \bigoplus X$ for some submodule $X \leq M$. It follows that $M \cap K = Soc(M \cap K) \leq Soc(\delta(N)) \ll_{\delta} N$.

Applying [5, Lemma 1.4], $M \cap K$ is a δ -small submodule of N. Since $N = M + K = [(M \cap K) \bigoplus X] + K = X \bigoplus K$, we obtain that $M \cap K \ll_{\delta} K$ by [15]. Hence K is a strong δ supplement of M in N.

 $(5) \Rightarrow (1)$ is clear.

Recall that a ring *R* is called δ -semilocal if $\frac{R}{\delta(R)}$ is semisimple, where $\delta(R) = \delta(R)$ denotes the sum of all δ -small left ideals of *R* [16].

Lemma 3: The following statements for a module *M* are equivalent :

- a) *M* is δ -semilocal;
- b) Any $N \in Gen(M)$ is δ -semilocal.

Proof: For every $N \in Gen(M)$ there exists a set Λ and an epimorphism $f: M^{(\Lambda)} \longrightarrow N$. Since $f(\delta(M)) \leq \delta(N)$ and $\frac{M^{(\Lambda)}}{\delta(M^{(\Lambda)})} \cong (\frac{M}{\delta(M)})^{(\Lambda)}$ always holds, we get an epimorphism $\overline{f}: (\frac{M}{\delta(M)})^{(\Lambda)} \longrightarrow \frac{N}{\delta(N)}$. Hence N is δ -semilocal.

Corollary 4: Let *M* be a semisimple R-module over a δ -semilocal ring *R* with $\delta(M) \ll_{\delta} M$ and $\frac{M}{\delta(M)}$ singular. Then *M* has the property $(\delta - SSE)$.

Proof: Let *N* be an *R*-module with $M \le N$. Since *R* is δ -semilocal, we obtain that *N* is semilocal by Lemma 3. Therefore, there exists a submodule *K* of *N* such that N =M + K and $M \cap K \le \delta(N)$. Applying Proposition 2, we derive that *M* has the property ($\delta - SSE$).

It is clear that every injective module has the property $(\delta - SSE)$. The following example shows that a module that has the property $(\delta - SSE)$ need not to be injective. Firstly, we need the following lemma.

Lemma 5: Every simple module has the property ($\delta - SSE$).

Proof: It is similar to the proof of Lemma 2.1 in [13].

A uniserial module M is an R-module over a ring R whose submodules are totally ordered by inclusion. Dually, a serial module is a direct sum of uniserial modules. Any simple module is trivially uniserial, and likewise semisimple modules are serial modules. A ring R is left serial if the Rmodule R is serial [17].

Example: $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is uniserial when *n* is a prime power but not injective as a \mathbb{Z} -module. So

the \mathbb{Z} -module $\frac{\mathbb{Z}}{p\mathbb{Z}}$, where p is prime, has the property ($\delta - SSE$) but it is not injective.

Lemma 6: Let *M* be a module that has the property $(\delta - SE)$. Suppose that *N* is an extension of *M* such that $\delta(N) = 0$. Then *M* is a direct summand of *N*.

Proof: Let *N* be any extension of *M*. Since *M* has the property $(\delta - SE)$ there exist submodules *K* and *K'* of *N* such that N = M + K, $M \cap K \ll_{\delta} K$ and $N = K \bigoplus K'$. By the hypothesis, $M \cap K \leq \delta(N) = 0$. It follows that $N = M \bigoplus K$.

Recall from [8] that a ring *R* is a left δ -*V*-ring if and only if $\delta(M) = 0$ for every left *R*-module *M*.

Proposition 7: For a module *M* over a left δ - *V* -ring, the following statements are equivalent.

- 1. *M* is injective;
- 2. *M* has the property (δSSE) ;
- 3. *M* has the property (δSE) .

Proof: $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are clear.

(3) \Rightarrow (1) follows from Lemma 6.

Theorem 8: For a module *M* the following statements are equivalent:

- 1. Every submodule of *M* has the property (δSE) ;
- 2. For any extension N of M and any submodule K such that N = M +

K, K contains a δ -supplement of M in N that is a direct summand of K.

Proof: (1) \Rightarrow (2) : Let *N* be any extension of *M*. Suppose that a submodule *K* of *N* satisfies N = M + K. By the hypothesis $M \cap K$ has the property ($\delta - SE$), so $M \cap K$ has a δ supplement *L* in *K* such that *L* is a direct summand of *K*, that is, $K = (M \cap K) + L$, $(M \cap K) \cap L = M \cap$ $L \ll_{\delta} L$ and there exists a submodule *L'* of *K* such that $K = L \bigoplus L'$. Then N = $M + K = M + (M \cap K) + L = M + L$, $M \cap L \ll_{\delta} L$ and *L* is also a direct summand of *K*.

(2) \Rightarrow (1): Let *U* be any submodule of *M* and *N* be any extension of *U*. We heve the following pushout diagram by the inclusion homomorphisms i_1 and i_2 .

It follows that $F = Im(\alpha) + Im(\beta)$ and α is a monomorphism by the properties of pushout, and so $M \cong Im(\alpha)$. By assumption $Im(\alpha)$ has a δ -supplement V in F with $V \le Im(\beta)$, i.e., $F = Im(\alpha) + V$, $Im(\alpha) \cap V \ll_{\delta} V$ and there exists a submodule K of $Im(\beta)$ such that $Im(\beta) = V \bigoplus K$. Then we get N = $\beta^{-1}(Im(\alpha)) + \beta^{-1}(V) = U + \beta^{-1}(V)$ and $U \cap \beta^{-1}(V) \ll_{\delta} \beta^{-1}(V)$. Since β is a monomorphism, we have that N = $\beta^{-1}(Im(\beta)) = \beta^{-1}(V) \bigoplus \beta^{-1}(K)$, which means that $\beta^{-1}(V)$ is a direct summand of N. Therefore U has the property $(\delta - SE)$.

Proposition 9: Let *R* be a ring, *I* be an ideal of *R* with $\overline{R} = \frac{R}{I}$ and *M* be an *R*-module that has the property ($\delta - SE$) with IM =0. If for any module *K* the submodule *IK* is fully invariant in *K*, then \overline{R} -module *M* also has the property ($\delta - SE$).

Proof: It can be proved similar to Prop. 2.3 in [13].

Proposition 10: Let *M* be a module that has the property $(\delta - SE)$. If *M* is a fully invariant submodule in every extension, then \overline{R} -module *M* also has the property $(\delta - SSE)$.

Proof: It can be proved similar to Prop. 2.4 in [13].

Theorem 11: Let *R* be a ring. If every left *R*-module has the property ($\delta - SE$), then *R* is δ -semiperfect.

Proof: Let assume that every left *R*-module has the property $(\delta - SE)$. Accordingly, every left ideal of *R* has a δ -supplement in *R* as a left *R*-module. Thus the module $_RR$ is $\bigoplus -\delta$ -supplemented. Therefore *R* is a δ -semiperfect ring. Generally it is obvious that modules that have the property $(\delta - SSE)$ also have the property $(\delta - SE)$ but the converse may not be true in specific cases. In [13], the author proved that every left *R*-module over a commutative artinian serial ring *R* has the property (*SE*). Now by using this fact, we give an example of a module that has the property $(\delta - SE)$ but does not have the property $(\delta - SSE)$.

Example 12: Let *R* be a local Dedekind domain. For an integer $n \ge 3$, it is a known fact that $\frac{R}{Rad(R)^n}$ is artinian serial as an *R*module. Hence $\frac{R}{Rad(R)^n}$ has the property (*SE*) and so ($\delta - SE$). On the other hand $\frac{R}{Rad(R)^n}$ does not have the property ($\delta - SSE$) as an *R*-module as *R* is local (see in [13] and [18]).

References

[1] Clark J., Lomp C., Vajana N., Wisbauer R., 2006. Frontiers in Mathematics, Lifting Modules, Supplements and Projectivity in Module Theory, Birkhauser, Basel.

[2] Keskin D., Smith P.F., Xue W., 1999. Rings whose modules are \oplus supplemented, Journal of Algebra, 218: 470-487.

[3] Wisbauer R., 1991. Foundations of Modules and Rings, Gordon and Breach Science Publishers, Dusseldorff, 616p.

[4] Goodearl K.R., 1976. Pure and Applied Mathematics, A series of Monographs and Textbooks, Ring Theory, Nonsingular rings and modules, Marcel Dekker, Inc., New York and Basel.

[5] Zhou Y., 2000. Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq., 7(3): 305-318.

[6] Koşan M.T., 2007. δ -lifting and δ -supplemented modules, Algebra Colloq., 14(1): 53 - 60.

[7] Al-Takhman K., 2007. Cofinitely δ -supplemented and cofinitely δ -semiperfect modules, Int. J. Algebra, 1(12): 601-613.

[8] Üngör B., Halıcıoğlu S., Harmancı A., 2014. On a class of δ -supplemented modules, Bull. Malays. Math. Sci. Soc., 37(3): 703-717.

[9] Sharpe D.W., Vamos P., 1972. Injective modules, Cambridge University Press.

[10] Zöschinger H., 1974. Moduln die in jeder Erweiterung ein Komplement haben, Math. Scand. 35: 267-287.

[11] Çalışıcı H., Türkmen E., 2012. Modules that have a supplement in every cofinite extension, Georgian Math. J., 19: 209-216.

[12] Sözen E.Ö., Eryılmaz F., Eren Ş., 2017. Modules that have a weak δ -supplement in every torsion extension, Journal of Science and Arts, 17, 2(39): 269-274.

[13] Türkmen B.N., 2016. On generalizations of injective modules, Publications De L'institut Mathematique, 99(113): 249-255.

[14] Sözen E.Ö., Eren Ş., 2017. Modules that have a δ -supplement in every extension, Eur. J. Pure App. Math.,10(4): 730-738.

[15] Talebi Y., Hamzekolaei A., 2009. Closed weak δ -supplemented modules, JP Journal of Algebra, Number Theory and Applications, 13(2): 193-208.

[16] Talebi Y., Talaee B., 2009. On generalized δ -supplemented modules, Vietnam J. Math., 37(4): 515-525.

[17] Puninski G., 2001. Serial Rings, Kluwer, Dordrecht, Boston, London.

[18] Tribak R., 2015. When finitely generated δ -supplemented modules are supplemented, Algebra Colloq., 22(1): 119-130.