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Abstract

The classical calculus is viewed as additive calculus based on addition in the real line.
Another known multiplicative calculus corresponding to multiplication in the positive real
axis has been precisely introduced. Abstract multiplicative integration through positive
measures has been newly introduced. Results of multiplicative differentiation and integra-
tion have been obtained for completion, when some of them have been obtained through
multiplicative modulus function. Results have been obtained also for abstract multiplicative
measure integration.

1. Introduction

Arithmetic mean of real numbers is considered in elementary statistics and geometric mean of positive real numbers is also considered
in elementary statistics. The first one is a mean for addition and the second one is a mean for multiplication, and both are considered as
applicable. The usual absolute value function is a function for addition. A new absolute value function, which was just mentioned in [1], has
been extremely used for multiplication in [2]. The classical calculus of Newton and Leibnitz is based on addition. Another calculus was
also known for multiplication, and it became an important part of research since the publication of the book [3] and the article [1], which
provides a good introduction for multiplicative calculus. It has been extended in many directions; fractional derivative, complex derivative,
integral transformations, differential equations and applications for science and engineering in [1], [4]-[18]. It has been established in
[19, 20] that multiplicative calculus would also be applicable. The author believes that some precision is required in the introduction of
multiplicative calculus, because it is also treated as a course meant for undergraduate students in view of articles like [21]. This has been
done in this article. Moreover, multiplicative modulus function used in [2] has been applied to derive some new, but elementary results.
Multiplicative integration using positive measures has also been defined precisely and some fundamental results have been obtained. The
author could not find any article in literature for multiplicative abstract measure integration, even though there is an advanced research article
[22] for Lebesgue measure integration. It should be observed that some changes have been done in this article in conventional notations for
multiplicative calculus. Let us begin with a definition of the classical absolute value of real numbers. Let us use the notations R and P for the
set of real numbers and the set of positive real numbers, respectively.

Definition 1.1. If x ∈ R, then additive absolute value of x is denoted by |x|, and defined as the number max{x,−x}.

Let us now present the notation and definition of multiplicative absolute value given in [2].

Definition 1.2. If x ∈ P, then multiplicative absolute value of x is denoted by |x|×, and defined as the number max{x,x−1}.

Proposition 1.3. Let x,y ∈ R, and let u,v ∈ P. Then |uv|× ≤ |u|×|v|×, | logu|= log|u|×, and exp |x|= |expx|×.

Proof. Direct verification.

The second section discusses fundamental results for multiplicative differentiation for completion, the third section discusses multiplicative
Riemann integration with a precise definition, and the fourth section discusses newly introduced multiplicative abstract measure integration.
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2. Multiplicative differentiation

Definition 2.1. Let f : [a,b]→ R be a real valued function and let x0 ∈ [a,b]. Then the derivative of f exists at x0, if lim
x→x0

f (x)− f (x0)
x−x0

exists.

This limit is denoted by f
′
(x0) or d f (x0)

dx or d f
dx |x=x0 or d f (x)

dx |x=x0 , and it is called the derivative of f at x0.

Definition 2.2. Let F : [a,b]→ (0,∞) be a positive real valued function and let x0 ∈ [a,b]. Then the m-derivative of F exists at x0, if

lim
x→x0

(
F(x)
F(x0)

) 1
x−x0 exists, and it is not equal to zero. This limit is denoted by F |(x0) or DF(x0)

Dx or DF
Dx |x=x0 or DF(x)

Dx |x=x0 , and it is called the

m-derivative of F at x0.

Remark 2.3. These definitions can be extended to other intervals of types [a,b),(a,b),(a,b], naturally. One sided derivatives can also be
defined. The higher order derivatives can also be defined.

Lemma 2.4. Let F, [a,b],x0 be as in Definition 2.2. Then DF(x0)
Dx exists if and only if d logF(x0)

dx exists, and in this case, DF(x0)
Dx =

exp
(

d logF(x0)
dx

)
.

Proof. The proof follows from the relation exp
(

logF(x)−logF(x0)
x−x0

)
=
(

F(x)
F(x0)

) 1
x−x0 .

Corollary 2.5. DF(x0)
Dx exists if and only if dF(x0)

dx exists, for F and x0 given in Lemma 2.4.

Proof. Use the relation F(x) = explogF(x), and the chain rule.

Lemma 2.6. Let f , [a,b],x0 be as in Definition 2.1. Then d f (x0)
dx exists if and only if Dexp( f (x0))

Dx exists, and in this case, d f (x0)
dx =

log
(

Dexp( f (x0))
Dx

)
.

Proof. The proof follows from the relation log
(

exp( f (x))
exp( f (x0))

) 1
x−x0 =

f (x)− f (x0)
x−x0

.

Remark 2.7. Formally, D
Dx = exp d

dx log, and d
dx = log D

Dx exp. For any integer n ≥ 2, it can be verified formally that Dn

Dxn = exp dn

dxn log,
and dn

dxn = log Dn

Dxn exp.

Let us try to use these formal relations and let us convert some results of Chapter 5 in [23].

Proposition 2.8. Let F, [a,b],x0 be as in Definition 2.2. Suppose DF(x0)
Dx exists. Then F is continuous at x0.

Proof. Let M =
DF(x0)

Dx . Then 0 < M < ∞, and Mx−x0 → 1 as x→ x0. Therefore, F(x)
F(x0)

→ 1 and hence F(x)→ F(x0) as x→ x0.
Another Proof:
Since d logF(x0)

dx exists, logF(x0) is continuous at x0, and hence F(x) is continuous at x0.

Proposition 2.9. Let F,G be positive real valued functions on [a,b] and m-differentiable at a point x0 in [a,b]. Then D(FG)(x0)
Dx exists and it

is DF(x0)
Dx

DG(x0)
Dx .

Proof. It follows from Definition 2.2.

Theorem 2.10. Suppose f is a real valued function on [a,b]. Let x0 ∈ [a,b]. Suppose f
′
(x0) exists. Let G be a positive real valued function

on an interval I which contains the range of f . Suppose G is m-differentiable at the point f (x0). Let H(t) = G( f (t)), for all t ∈ [a,b]. Then
H is m-differentiable at x0, and H |(x0) = (G|( f (x0))

f ′(x0).

Proof. By Lemma 2.4,

(G|( f (x0))
f ′(x0) =

(
exp
(d logG( f (x0))

dy

)) d f (x0)
dx

(with y ∈ I)

= exp
(d f (x0)

dx
d(logG) f (x0)

dy

)
= exp

(d((logG)◦ f )(x0)

dx

)
=

DH(x0)

Dx
.

Another Proof:
Use Proposition 2.8 and the relation

( H(x)
H(x0)

) 1
x−x0 =

(( G( f (x))
G( f (x0))

) 1
f (x)− f (x0)

) f (x)− f (x0)
x−x0

for the case f (x) 6= f (x0). Separate the case f (x) = f (x0).
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Lemma 2.11. Let F be a positive real valued function defined on [a,b]. If F has a local maximum at a point x0 in (a,b) and if DF(x0)
Dx exists,

then DF(x0)
Dx = 1.

Proof. Suppose DF(x0)
Dx exists. Then d logF(x0)

dx exists. Suppose F has a local maximum at x0 in (a,b). Then d logF(x0)
dx = 0, and hence

DF(x0)
Dx = exp

(
d logF(x0)

dx

)
= 1.

Direct Proof:(
F(x)
F(x0)

) 1
x−x0 ≥ 1, if x < x0, and

(
F(x)
F(x0)

) 1
x−x0 ≤ 1, if x > x0, when x is in a suitable neighborhood of x0.

Theorem 2.12. Suppose F and G are continuous positive real valued functions on [a,b] which are m-differentiable in (a,b). Then there is a

point x0 in (a,b) such that
(

F(b)
F(a)

) G
′
(x0)

G(x0) =
(

G(b)
G(a)

) F
′
(x0)

F(x0)

Proof. Use Theorem 5.9 in [23], and Lemma 2.4 to find a point x0 in (a,b) such that (logF(b)− logF(a))G
′
(x0)

G(x0)
= (logG(b)−

logG(a))F
′
(x0)

F(x0)

Proposition 2.13. Suppose F is a continuous positive real valued function on [a,b] which is m-differentiable in (a,b). Then
(

F(b)
F(a)

) 1
b−a

=

DF(x0)
Dx , for some x0 ∈ (a,b).

Proof. By the mean value theorem, there is a point x0 ∈ (a,b) such that logF(b)− logF(a) = (b−a) d logF(x0)
dx .

Theorem 2.14. Suppose F is an m-differentiable positive real valued function on (a,b).
(a) If F |(x)≥ 1 for all x ∈ (a,b), then F is monotonically increasing in (a,b).
(b) If F |(x) = 1 for all x ∈ (a,b), then F is a constant function in (a,b).
(c) If F |(x)≤ 1 for all x ∈ (a,b), then F is monotonically decreasing in (a,b).

Proof. Apply Theorem 5.11 in [23] to logF function.

Theorem 2.15. Suppose F is an m-differentiable positive real valued function on [a,b]. Let λ be a constant such that F |(a)< λ < F |(b).
Then there is a point x0 in (a,b) such that F |(x0) = λ .

Proof. Observe that exp
(

d logF(a)
dx

)
< λ < exp

(
d logF(b)

dx

)
and hence d logF(a)

dx < logλ <
d logF(b)

dx . By Theorem 5.12 in [23], there is a

x0 ∈ (a,b) such that d logF(x0)
dx = logλ . In this case, F |(x0) = λ .

Theorem 2.16. Let F be a positive real valued function on [a,b], and n be a positive integer such that Dn−1F(t)
Dxn−1 is continuous on [a,b] and

DnF(t)
Dxn exists for every t ∈ (a,b). Let α,β be points in [a,b]. Then there is a point x0 between α and β such that

F(β )
F(α)

=
n−1
∑

k=1

(
DkF(α)

Dxk

) (β−α)k

k!
+
(

DnF(x0)
Dxn

) (β−α)n

n!

Proof. By Remark 2.7, dn−1 logF
dxn−1 is continuous on [a,b] and dn logF(t)

dxn exists for every t ∈ (a,b). By Theorem 5.15 in [23], there is a point x0

between α and β such that f (β )− f (α) =
n−1
∑

k=1

dk f (α)
dxk

(β−α)k

k! +
dn f (x0)

dxn
(β−α)n

n! , where f = logF . The result follows from this relation.

3. Multiplicative Riemann integration

Definition 3.1. Let [a,b] be a given interval. A partition P = x0,x1, ...,xn of [a,b] satisfies a = x0 ≤ x1 ≤ ...≤ xn−1 ≤ xn = b. Let D be the
collection of all partitions of [a,b]. This collection D is a directed set, directed by a relation ≤ defined by: P1 ≤ P2 if and only if P1 ⊆ P2. Let
F : [a,b]→ (0,∞) be a function such that m≤ F(x)≤M, for some m > 0 and M < ∞, for all x ∈ [a,b]. To each partition P = x0,x1, ...,xn of
[a,b], fix ti ∈ [xi−1,xi], for i = 1,2, ...,n, define FP = ∏

n
i=1 F(ti)(xi−xi−1) . Suppose all nets (FP)P∈D converge uniformly to a common number

p ∈ (0,∞) in the following sense: For every ε > 0, there is a partition P0 of [a,b] such that |FP− p|< ε , for all partitions P≥ P0 in D, and
for all selections of ti. The number p is called the m-Riemann integral of F of [a,b], and it is denoted by Mb

a F(x)Dx, or simply, Mb
a F. In this

case, let us say that F is m-Riemann integrable over [a,b].

Remark 3.2. Let F be as in Definition 3.1. Then F is m-Riemann integrable over [a,b] if and only if logF is Riemann integrable over [a,b].
Moreover,

Mb
a F(x)Dx = exp

b∫
a

logF(x)dx,

in this case. Let f be a bounded real valued function on [a,b]. Then f is Riemann integrable over [a,b] if and only if exp f is m-Riemann
integrable over [a,b]. Moreover,

b∫
a

f (x)dx = logMb
a exp f (x)Dx,
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in this case.

Lemma 3.3. Let F : [a,b]→ (0,∞), G : [a,b]→ (0,∞) be functions which are m-Riemann integrable over [a,b]. Then the pointwise
multiplication function FG : [a,b]→ (0,∞) is also m-Riemann integrable over [a,b], and Mb

a (FG)(x)Dx = (Mb
a F(x)Dx)(Mb

a G(x)Dx). If
F(x) = c > 0, for every x ∈ [a,b], then Mb

a F(x)Dx = cb−a.

Proof. It follows from Definition 3.1.

Let us recall that for every number x ∈ (0,∞), |x|× = max{x,x−1}, and for every x,y ∈ (0,∞), |xy|× ≤ |x|×|y|×. Direct verification is
applicable.

Lemma 3.4. Let F : [a,b]→ (0,∞) be m-Riemann integrable. Then, |Mb
a F(x)Dx|× ≤Mb

a |F(x)|×Dx.

Proof. It follows from Definition 3.1.

Theorem 3.5. Suppose f : [a,b]→ (0,∞) be m-Riemann integrable. For a ≤ x ≤ b, define F(x) = Mx
a f (t)Dt. Then, F is continuous on

[a,b]. Moreover, if f is continuous at a point x0 of [a,b], then F is m-differentiable at x0, and F |(x0) = f (x0).

Proof.
x∫

a
log f (t)dt is a continuous function of x in [a,b], by Theorem 6.20 in [23] and Remark 3.2. Thus, F(x) = exp

x∫
a

log f (t)dt is a

continuous function of x in [a,b]. Also, if f is continuous at a point x0 of [a,b], then
d

x∫
a

log f (t)dt

dx

∣∣∣
x=x0

= log f (x0), by Theorem 6.20 in [12].

Thus, F |(x0) = f (x0), when f is continuous at x0.

Theorem 3.6. Let f be an m-Riemann integrable function on [a,b]. Suppose there is an m-differentiable function F on [a,b] such that
F | = f . Then, Mb

a f (x)Dx = F(b)
F(a) .

Proof. The function log f is Riemann integrable over [a,b]. The relation F | = f implies that exp d logF
dx = f or d logF

dx = log f . By Theorem

6.21 in [23],
b∫
a

log f (x)dx = logF(b)− logF(a), and hence Mb
a f (x)Dx = F(b)

F(a) .

4. Multiplicative abstract measure integration

Definition 4.1. Let (X ,M,µ) be a positive measure space. See [24]. Let s : X → [1,∞) be a simple measurable function and let
s = ∑

n
i=1 αiχAi , where αi are distinct real numbers and Ai are pairwise disjoint sets. For A ∈M, define MAsDµ = Πn

i=1αi
µ(A∩Ai). It is +∞ if

and only if some αi > 1 with µ(A∩Ai) = +∞. Let f : X → [1,∞] be a measurable function. For A ∈M, define MA f Dµ = sup1≤s≤ f MAsDµ ,
where s represents a simple measurable function. Let us say that f : X → (0,∞) is m-absolutely m-integrable, if MA| f |×Dµ < ∞. To each
measurable f : X → (0,∞), let us define f+× : X → [1,∞), and f−× : X → [1,∞) by f+× (x) = max{1, f (x)}, and f−× (x) = max{1, f (x)−1}, for

every x ∈ X. Then | f |× = f+× f−× , and f = f+×
f−×

. If f is absolutely m-integrable over X, then let us define MA f Dµ =
MA f+×Dµ

MA f−×Dµ
, for every A ∈M.

Remark 4.2. If f ∈ L1(µ) and f is real valued, then exp f is m-absolutely m-integrable on X, and logMX exp f Dµ =
∫

X f dµ . If F is
m-absolutely m-integrable on X, then logF ∈ L1(µ) and MX FDµ = exp

∫
X logFdµ.

Theorem 4.3. Let ( fn)∞
n=1 be a sequence of measurable functions on X and f be a measurable function X such that

(a) 1≤ f1(x)≤ f2(x)≤ ...≤ ∞, for every x ∈ X, and
(b) fn(x)→ f (x) as n→ ∞, for every x ∈ X.
Then MX fnDµ →MX f Dµ , as n→ ∞.

Proof. Apply the classical monotone convergence theorem to the functions log fn and log f and use Remark 4.2.

Corollary 4.4. Let fn : X → [1,∞] be measurable for n = 1,2, ..., and let f (x) = ∏
∞
n=1 fn(x), for every x ∈ X. Then MX f Dµ =

∏
∞
n=1 MX fnDµ .

Proof. Observe that MX f1 f2Dµ = (MX f1Dµ)(MX f2Dµ). Extend this relation to finite products f1 f2... fn. Now, apply the previous
Theorem 4.3.

The following proposition can be verified directly.

Proposition 4.5. Let f ,g be m-absolutely m-integrable positive real valued functions on X. Let c > 0 be a scalar. Then MX f gDµ =
(MX f Dµ)(MX gDµ) and MX f cDµ = (MX f Dµ)c.

Proposition 4.6. Let fn : X → [1,∞] be measurable, for each n = 1,2, ..., Then

MX lim inf
n→∞

fnDµ ≤ lim inf
n→∞

MX fnDµ.

Proof. Apply the classical Fatou’s lemma to the functions log fn and use Remark 4.2.

Theorem 4.7. Suppose ( fn)∞
n=1 is a sequence of positive real valued measurable functions on X such that f (x) = limn→∞ fn(x) for some

f (x)> 0, for every x ∈ X. Suppose there is an m-integrable function g : X → [1,∞) such that | fn|× ≤ g(x), ∀n = 1,2, ..., ∀x ∈ X. Then f is
an m-absolutely integrable function, limn→∞ MX | fn

f |×Dµ = 1, and limn→∞ MX fnDµ = MX f Dµ.
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Proof. Let Fn = log fn and F = log f . Let G = logg. Then limn→∞ Fn(x) = F(x), ∀x ∈ X , and G ∈ L1(µ). Also, |Fn(x)| = | log fn(x)| =
log | fn|× ≤ logg = G, ∀x ∈ X . By the classical dominated convergence theorem,

∫
X Fndµ →

∫
X Fdµ and limn→∞

∫
X |Fn −F |dµ = 0,

as n→ ∞. Then exp
∫

X log fndµ → exp
∫

X log f dµ, as n→ ∞, and limn→∞ exp
∫

X | log( fn
f )|dµ = limn→∞ exp

∫
X log | fn

f |×dµ = 1. Thus,
limn→∞ MX fnDµ = MX f Dµ , and
limn→∞ MX | fn

f |×Dµ = 1.

Proposition 4.8. Suppose f : X → (0,∞) is an m-absolutely m-integrable function. Then |MX f Dµ|× ≤MX | f |×Dµ .

Proof. It follows from definitions.

Proposition 4.9. (a) Let f : X → [1,∞] be a measurable function on X such that MX f Dµ = 1. Then f = 1 almost everywhere on X.
(b) Let f : X → (0,∞) be m-absolutely m-integrable on X. Suppose ME f Dµ = 1, ∀ E ∈M. Then f = 1 almost everywhere on X.
(c) Let f : X → (0,∞) be m-absolutely m-integrable on X. Suppose |MX f Dµ|× = MX | f |×Dµ . Then there is a constant α such that
α f = | f |× almost everywhere on X.

Proof. Use Proposition 1.3 along with Theorem 1.39 in [24] for log f .

5. Conclusions

Theorem 11.33 in [23] states that a Lebesgue integrable bounded real valued function on [a,b] is Riemann integrable over the interval
if and only if the function is continuous almost everywhere in that interval with respect to classical Lebesgue measure. One can state a
corresponding result for m-Riemann integrable functions. Such observations may give a hope to transform every known result in additive
calculus and abstract measure integration theory through logarithmic exponential transformations. But, it is not true. Theorems 2.10 and 2.12
reveal difficulties in transforming chain rule and a generalized mean value theorem which is used for establishing L’Hospital’s rules. It is yet
to be tried for replacement of exponential transformation and its inverse logarithmic transformation by means of other transformations like
Lorentz transformation and its inverse Lorentz transformation of the theory of Einstein’s special relativity. It is yet to be tried to extend
results which provide generalizations of research work in differentiation, integration and measure theory like the ones provided in [25]-[30].
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