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Abstract
Let R be an associative ring. An additive map x 7→ x∗ of R into itself is called an involution
if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x hold for all x ∈ R. The main purpose of this paper is
to study some additive mappings on prime and semiprime rings with involution. Moreover,
some examples are given to demonstrate that the restrictions imposed on the hypothesis
of the various results are not superfluous.
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1. Notations and Introduction
Throughout the present paper, R will represent an associative ring with center Z(R).

As usual, the commutator xy − yx will be denoted by [x, y]. Given an integer n ≥ 2, a
ring R is said to be n-torsion free if nx = 0 (where x ∈ R) implies that x = 0. A ring R is
called prime if aRb = (0) (where a, b ∈ R) implies a = 0 or b = 0 and is called semiprime
ring if aRa = (0) (where a ∈ R) implies a = 0. An additive map x 7→ x∗ of R into itself
is called an involution if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x hold for all x ∈ R. A ring
equipped with an involution is called ring with involution or ∗-ring. An element x in a ring
with involution is said to be Hermitian if x∗ = x and skew-Hermitian if x∗ = −x. The sets
of all Hermitian and skew-Hermitian elements of R will be denoted by H(R) and S(R),
respectively. The involution is said to be of the first kind if Z(R) ⊆ H(R), otherwise it is
said to be of the second kind. In the latter case, S(R) ∩ Z(R) 6= (0). If R is 2-torsion free
then every x ∈ R can be uniquely represented in the form 2x = h + k where h ∈ H(R)
and k ∈ S(R). Note that in this case x is normal, i.e., xx∗ = x∗x, if and only if h and k
commute. If all elements in R are normal, then R is called a normal ring. An example is
the ring of quaternions. A description of such rings can be found in [17] and [20], where
further references can be found.
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Let R be a ring. An additive mapping d : R → R is called a derivation (respectively
reverse derivation) if d(xy) = d(x)y + xd(y) (respectively d(xy) = d(y)x + yd(x)) holds
for all x, y ∈ R. A derivation d is called inner if there exists a ∈ R such that d(x) = [a, x]
for all x ∈ R. According to [16], an additive mapping d : R −→ R is called a Jordan
derivation if d(x2) = d(x)x + xd(x) holds for all x ∈ R. An additive mapping F : R −→
R is called a generalized derivation (respectively generalized Jordan derivation) if there
exists a derivation (respectively Jordan derivation) such that F (xy) = F (x)y + xd(y)
(respectively F (x2) = F (x)x + xd(x)) holds for all x, y ∈ R. Obviously, any derivation
is a generalized derivation, but the converse is not true in general. A significant example
is a map of the form G(x) = ax + xb for some a, b ∈ R; such generalized derivations are
called inner. Generalized derivations have been primarily studied on operator algebras.
Therefore, any investigation from the algebraic point of view might be interesting (see for
example [18] and [19]). In [19], Lee extended the definition of generalized derivation as
follows: by a generalized derivation he means an additive mapping G : J −→ U such that
G(xy) = G(x)y + xd(y) for all x, y ∈ J , where U is the left Utumi quotient ring of R, J
is a dense right ideal of R, and d is a derivation from J to U . He also showed that every
generalized derivation can be uniquely extended to a generalized derivation of U . In fact,
there exists a ∈ U and a derivation d of U such that G(x) = ax + d(x) for all x ∈ U .
Considerable work has been done on generalized derivations in prime and semiprime rings
during the last few years (see [9–12,15,25,28], where further references can be found).

An additive mapping T : R → R is said to be a left centralizer (respectively reverse left
centralizer) if T (xy) = T (x)y (respectively T (xy) = T (y)x) for all x, y ∈ R. The definition
of a right centralizer (respectively reverse right centralizer) should be self-explanatory.
An additive mapping T is called a two-sided centralizer in case T is a left and a right
centralizer. In case T : R −→ R is a two-sided centralizer, where R is a semiprime ring
with extended centroid C, then there exists an element λ ∈ C such that T (x) = λx for all
x ∈ R (see [4, Theorem 2.3.2]). An additive mapping T : R −→ R is called a Jordan left
centralizer if T (x2) = T (x)x holds for x ∈ R. In 1991, Zalar [34] proved that any Jordan
left (respectively right) centralizer on a 2-torsion free semiprime ring is a left (respectively
right) centralizer. Later [24], Molńar proved that in case we have an additive mapping
T : A −→ A, where A is a semiprime H∗-algebra, satisfying the relation T (x3) = T (x)x2

(respectively T (x3) = x2T (x)) for all x ∈ A, then T is a left (respectively right) centralizer.
For more related results concerning centralizers on rings and algebras we refer the reader
to [13,29–32], and [33], and references therein.

Let R be a ring with involution. Following [3], an additive mapping T : R −→
R is said to be a left ∗-centralizer (respectively reverse left ∗-centralizer) if T (xy) =
T (x)y∗(respectively T (xy) = T (y)x∗) holds for all x, y ∈ R. The definition of a right ∗-
centralizer (respectively reverse right ∗-centralizer) should be self explanatory. An additive
mapping T : R −→ R is called a ∗-centralizer if T is both a left and right ∗-centralizer. An
additive mapping T : R −→ R is said to be a Jordan left ∗-centralizer if T (x2) = T (x)x∗

is satisfied for all x ∈ R. Note that for some fixed element a ∈ R, the mapping x 7→ x∗ is
a reverse left ∗-centralizer and x 7→ ax∗ is a reverse right ∗-centralizer on R. In Sections 2
and 3, we study left ∗-centralizers and Jordan left ∗-centralizers in prime and semiprime
rings. In particular, we prove that if a prime ring R with involution admits an additive
map T : R → R satisfying the relation T (xm+n+1) = (x∗)nT (x)(x∗)m for all x ∈ R, then
there exists q ∈ Qr(R) such that T (x) = qx∗ for all x ∈ R, where m and n be positive
integers such that char(R) = 0 or m+n+1 ≤ char(R) (Proposition 2.3 and Theorem 2.4).
Moreover, besides proving some results related to Jordan left ∗-centralizers (Theorem 3.4
and Theorem 3.5), we characterize normal rings among all noncommutative prime rings
with involution (Theorem 3.1).

Let S be a nonempty subset of R. A mapping f : R −→ R is called a centralizing
on S if [f(x), x] ∈ Z(R) for all x ∈ S. In particular, when [f(x), x] = 0 for all x ∈ S,
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f is said to be commuting on S. The fundamental result on commuting mappings and
related mappings is due to Posner [27] who proved that if a prime ring R admits a nonzero
derivation d such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative. This result
was subsequently refined and extended by number of algebraists, we refer the reader to [5],
[6], [21], and [22] for a comprehensive bibliography. Recently, some authors studied these
notions in the setting of rings with involution (see [1], [25], and [26] and references therein).
In 2014, Ali and Dar [2] obtained a ∗-version of Posner’s second theorem. Precisely, they
proved that if a prime ring with involution such that char(R) 6= 2 and d(S(R)∩Z(R)) 6= (0)
admits a nonzero derivation d : R → R satisfying [d(x), x∗] ∈ Z(R) for all x ∈ R, then R
is commutative. In Section 4, we review a few important results for generalized derivation
and remove the condition d(S(R) ∩ Z(R)) 6= (0) (Theorem 4.1). Further, we give some
examples which demonstrate that the restrictions imposed on the hypothesis of the various
results are not superfluous.

2. Preliminary results
In this section, we collect some well known results and review a few important facts
about right Martindale ring of quotients (see [23]) that will be needed in the subsequent
discussions. For an extended work related to the theory of rings of quotients, we refer
the reader to the book [4]. Let R be a prime ring with right and symmetric Martindale
ring of quotients Qr(R) and Qs(R), extended centroid C, and central closure Rc = RC,
respectively. When R has an involution, then we can extend to it an involution on Rc and
Qr(R) (see [8] and [23] for details) and hence in this case we may assume that it is an
involution of C as well. In the view of [4, Proposition 2.1.7], we state some properties of
Qr(R) as follows:

(i) R ⊆ Qr(R);
(ii) For every q ∈ Qr(R) there exists a nonzero ∗-ideal I of R such that Iq ⊆ R;
(iii) If q ∈ Qr(R) and I is a nonzero ∗-ideal of R such that Iq = 0, then q = 0;
(iv) If I is an ∗-ideal of R and f : I −→ R is a right R-module map, then there exists

q ∈ Qr(R) such that f(x) = qx∗ for all x ∈ I.

We begin our discussion with the following results which are motivated by the work
of Hvala [18].

Proposition 2.1. Let R be a prime ring with involution and f : R −→ R be a nonzero
additive map satisfying f(xy) = f(x)y∗ for all x, y ∈ R. Then R is commutative and there
exists λ ∈ C such that f(x) = λx∗ for all x ∈ R.

Proof. By the assumption, we have f(xy) = f(x)y∗ for all x, y ∈ R. Computing
f(xyz) in two different ways, we obtain f(x)[y∗, z∗] = 0 for all x, y, z ∈ R. This implies
f(R)R[R, R] = (0). Since f is nonzero and R is prime, we see that R is commutative.
Consequently, a map g : R → R defined by g(x) = f(x)∗ is an R-bimodule homomorphism
(i.e., a centralizer). Hence, there exists µ ∈ C such that g(x) = µx and so f(x) = λx∗ for
all x ∈ R, where λ = µ∗. This proves the proposition completely. �

Proposition 2.2. Let R be a semiprime ring with involution and f : R −→ R be an
additive map satisfying f(xy) = f(y)x∗ for all x, y ∈ R. Then there exists q ∈ Qr(R) such
that f(x) = qx∗ for all x ∈ R.

Proof. Note that a map g : R → R defined by g(x) = f(x)∗ is a right R-module ho-
momorphism (i.e., a right centralizer). Hence, in the view of property (iv) of Qr(R) just
mentioned above there exists µ ∈ Qr(R) (see [4, Proposition 2.1.7] for more details) such
that g(x) = µx for all x ∈ R. Thus, f(x) = qx∗, where q = µ∗, for all x ∈ R. �
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Proposition 2.3. Let R be a 2-torsion free semiprime ring with involution. If f : R → R
is an additive map such that f(x2) = f(x)x∗ for all x ∈ R, then there exists q ∈ Qr(R)
such that f(x) = qx∗ for all x ∈ R.
Proof. Let us define a map g : R → R by g(x) = f(x)∗. Then g(x2) = xg(x) for all x ∈ R.
Hence, Proposition 1.4 in [34] implies that g(xy) = xg(y) for all x, y ∈ R. Consequently,
f(xy) = f(y)x∗ for all x, y ∈ R. Now, Proposition 2.2 yields the conclusion. �

Having established the auxiliary results we can pass to our first theorem.
Theorem 2.4. Let m and n be positive integers, and R be a prime ring with involution
such that char(R) = 0 or m + n + 1 ≤ char(R). Let T : R → R be an additive mapping
satisfying the relation T (xm+n+1) = (x∗)nT (x)(x∗)m for all x ∈ R. Then there exists
q ∈ Qr(R) such that T (x) = qx∗ for all x ∈ R.
Proof. By the given hypothesis, we have T (xm+n+1) = (x∗)nT (x)(x∗)m for all x ∈ R.
Applying the involution on both sides of the last expression, we obtain T (xm+n+1)∗ =
xmT (x)∗xn for all x ∈ R. Define a new map S : R → R such that S(x) = T (x)∗ for all
x ∈ R. Then S is additive, since T is additive. Therefore we have S(xm+n+1) = xmS(x)xn

for all x ∈ R. Hence in the view of [[14],Theorem 3], we are forced to conclude that S is
a two sided-centralizer that is, S(xy) = xS(y) = S(x)y for all x, y ∈ R. This implies that
(T (xy))∗ = x(T (y))∗ = (T (x))∗y for all x, y ∈ R. Again applying involution on both sides
of the last expression, we find that T (xy) = T (y)x∗ = y∗T (x) for all x, y ∈ R. In the view
of Proposition 2.2, we get the required result. The proof is now completed. �

3. Jordan left ∗-centralizers on prime rings
We shall start our investigation with the following theorem which is motivated by the

result proved in [7].
Theorem 3.1. Let R be a noncommutative prime ring with involution such that char(R) 6=
2. Then the following conditions are equivalent:

(i) R is normal.
(ii) There exists a nonzero commuting Jordan left ∗-centralizer map T on R.

Proof. Suppose (i) holds, that is, R is a normal ring. Then the mapping x 7→ x∗ is a
commuting nonzero Jordan left ∗-centralizer on R. Now suppose (ii) holds, we want to
prove R is normal. Since (ii) holds, so there exists a nonzero Jordan left ∗-centralizer
T : R → R such that [T (x), x] = 0 for all x ∈ R. Thus in the view of [[6], Theorem 3.2],
there exists µ ∈ C and a map ν : R → C such that

T (x) = µx + ν(x)
for all x ∈ R. On the other hand, it follows from the proof of Proposition 2.3 that there
exists q ∈ Qr(R) such that T (x) = qx∗ for all x ∈ R. Hence, we have qx∗ − µx ∈ C for all
x ∈ R. Consequently, we conclude that

[qx∗ − µx, y] = 0 for all x, y ∈ R. (3.1)
Since (3.1) is the identity involves involution, so it is a functional identity or the so-called
g-identity (see [[4], Chapter 6]). In the view of [4, Theorem 6.4.6], we conclude that
[qx∗ − µx, y] = 0 for all x, y ∈ Qs(R), the symmetric ring of quotients. Note that Qs(R)
has the identity element 1. Replacing x by 1 in the above expression and using the fact
that µ ∈ C, we obtain [q, y] = 0 for all y ∈ Qs(R). Thus,

T (x) = λx∗

for all x ∈ R, where λ = q ∈ C. Since T 6= 0, it follows that λ 6= 0. Hence we conclude
that 0 = [T (x), x] = [λx∗, x] = λ[x∗, x] for all x ∈ R. Thus, by the primeness of R, R is
normal. This proves the theorem completely. �
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The above theorem has the following interesting consequences:

Corollary 3.2. Let R be a prime ring with involution such that char(R) 6= 2. Let T be a
nonzero Jordan left ∗-centralizer on R such that [T (x), x] = 0 for all x ∈ R. Then there
exists λ ∈ C, the extended centroid of R such that T (x) = λx∗ for all x ∈ R.

Proof. The proof follows from the above theorem. �

Remark 3.3. Here it will be interesting to see that if we consider an involution of the
second kind in Theorem 3.1, then R will be commutative. In Section 5, an example is also
provided which shows that involution being of the second kind is a necessary condition.
In fact, we prove the following result.

Theorem 3.4. Let R be a prime ring with involution of the second kind such that char(R) 6=
2. If R admits a nonzero Jordan left ∗-centralizer T : R → R such that [T (x), x] = 0 for
all x ∈ R. Then R is commutative.

Proof. By Theorem 3.1 R is normal and since the involution of the second kind then R
is commutative by [2, Lemma 2.1]. �

The following example shows that the restriction of the second kind involution in
above theorem is not redundant.

Example 3.5. Let R =
{(

a b
c d

) ∣∣∣ a, b, c, d ∈ Z

}
. Clearly, R is a prime ring with matrix

addition and matrix multiplication. Define ∗ : R −→ R such that(
a b
c d

)∗
=

(
d −b

−c a

)
for all

(
a b
c d

)
∈ R.

Obviously, Z(R) =
{(

a 0
0 a

) ∣∣∣ a ∈ Z

}
. Then x∗ = x for all x ∈ Z(R), and hence Z(R) ⊆

H(R), which shows that the involution is of the first kind. If we consider T (x) = x∗, then
T is a Jordan left ∗-centralizer and T satisfies [T (x), x] = 0 for all x ∈ R. However, R is
not commutative. This shows that the hypothesis of second kind involution is essential in
Theorem 3.4.

Theorem 3.6. Let R be a noncommutative prime ring with involution such that char(R) 6=
2. Let T1, T2 be two nonzero Jordan left ∗-centralizers on R such that T1(x)x−xT2(x) = 0
for all x ∈ R. Then there exists λ ∈ C such that T1(x) = T2(x) = λx∗ for all x ∈ R and
hence R is normal.

Proof. By the given hypothesis, we have
T1(x)x − xT2(x) = 0 (3.2)

for all x ∈ R. On linearizing (3.2), we get
T1(x)y + T1(y)x − xT2(y) − yT2(x) = 0 (3.3)

for all x, y ∈ R. Replacing y by yx in (3.3) and using Proposition 2.2 we arrive at
T1(x)yx + T1(x)y∗x − xT2(x)y∗ − yxT2(x) = 0 (3.4)

for all x, y ∈ R. Using (3.2) in (3.4), we obtain T1(x)yx+T1(x)y∗x−T1(x)xy∗ −yT1(x)x =
0. This can be further written as [T1(x), y]x+T1(x)[y∗, x] = 0 for all x, y ∈ R. In the view
of Proposition 2.3, T1(x) = q1x∗ (where q1 ∈ Qr(R)) for all x ∈ R. Thus, we obtain

[q1x∗, y]x + q1x∗[y∗, x] = 0 for all x, y ∈ R. (3.5)
The identity (3.5) is a g-identity (see [4, Chapter 6]). In the view of [4, Theorem 6.4.6],
we conclude that [q1x∗, y]x + q1x∗[y∗, x] = 0 for all x, y ∈ Qs(R), the symmetric ring of
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quotients. Note that Qs(R) has the identity element 1. Replacing x by 1 in (3.5), we see
that [q1, y] = 0 for all y ∈ Qs(R). Hence,

T1(x) = λx∗

for all x ∈ R, where λ = q1 ∈ C. Since T1 6= 0, it follows that λ1 6= 0. Also T2(x) = q2x∗,
by Proposition 2.3. Hence from (3.2), λx∗x − xq2x∗ = 0 for all x ∈ R. The last identity is
a g-identity. Thus by [4, Theorem 6.4.6], we obtain λx∗x − xq2x∗ = 0 for all x ∈ Qs(R),
the symmetric ring of quotients. Replacing x by 1 in last expression, we see that λ = q2.
Thus T2(x) = T1(x) = λx∗ for all x ∈ R, where 0 6= λ ∈ C. Hence we conclude that
0 = T1(x)x − xT2(x) = λx∗x − xλx∗ = λ(x∗x − xx∗) for all x ∈ R. Thus by the primeness
of R, R is normal. This proves the theorem completely. �

4. Generalized derivations on prime rings
Let S be a nonempty subset of R. Following [2], a mapping f : S → R is said to be

∗-centralizing on S if [f(x), x∗] ∈ Z(R) for all x ∈ S, and is said to be ∗-commuting on S
if [f(x), x∗] = 0 holds for all x ∈ S. The study of such mappings was initiated by Ali and
Dar in [2]. Moreover, they characterized these mappings in prime rings with involution.
Further they obtained a ∗-version of Posner’s second theorem. Precisely, they proved
that if a prime ring with involution such that char(R) 6= 2 and d(S(R) ∩ Z(R)) 6= (0)
admitting a nonzero derivation d : R → R satisfying [d(x), x∗] ∈ Z(R) for all x ∈ R,
then R is commutative. Thus in the view of this result, it is natural to ask whether the
analogue of the above mentioned theorem holds for generalized derivations. Our next
theorem answers this question.

Theorem 4.1. Let R be a prime ring with involution of the second kind such that char(R) 6=
2. If R admits a nonzero generalized derivation F : R → R such that [F (x), x∗] ∈ Z(R)
for all x ∈ R, then R is commutative.

First we establish the following result.

Theorem 4.2. Let R be a prime ring with involution of the second kind such that char(R) 6=
2. If R admits a nonzero left centralizer T : R → R such that [T (x), x∗] ∈ Z(R) for all
x ∈ R, then R is commutative.

Proof. Suppose on the contrary that R is not commutative. Since T is a left centralizer
of R i.e., T (x) = ax for all x ∈ R, where a ∈ Qmr(R). Note that [T (x), x∗] ∈ Z(R)
for all x ∈ R. This further implies that [T (x)∗, x] ∈ Z(R) for all x ∈ R. Now using
similar arguments as we used in Theorem 3.4 with necessary variation, we get the required
result. �

Now we are ready to give

Proof of Theorem 4.1. Suppose R is not commutative. By the given assumption
[F (x), x∗] ∈ Z(R) for all x ∈ R. This further implies that [F (x)∗, x] ∈ Z(R) for all x ∈ R.
Therefore in the view of Brešar’s result [6, Theorem A], there exists λ ∈ C and an additive
map µ : R → C such that

F (x) = λx∗ + µ(x)
for all x ∈ R. By [19, Theorem 4], there exists a derivation d : R → Qmr(R) and
b ∈ Qmr(R) such that F (x) = d(x) + bx for all x ∈ R. So

d(x) = λx∗ − bx + µ(x) (4.1)

for all x ∈ R. Choose 0 6= β∗ = −β ∈ Z(R). Let x ∈ R. Then by (4.1), we have

d(βx) = −βλx∗ − βbx + µ(βx) (4.2)
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for all x ∈ R. Also we can write
d(βx) = βd(x) + d(β)x (4.3)

= βλx∗ − βbx + βµ(x) + d(β)x
for all x ∈ R. Comparing (4.2) and (4.3), we obtain

2βλx∗ + d(β)x = µ(βx) − βµ(x) (4.4)
for all x ∈ R. Commuting above relation with x∗ gives

[d(β)x, x∗] = 0
for all x ∈ R. In the view of Theorem 4.2, d(β) = 0. This reduces (4.4) into

2βλx∗ = µ(βx) − βµ(x)
for all x ∈ R. Thus 2βλx∗ ∈ C for all x ∈ R, implying that λ = 0. Hence, F (x) ∈ Z(R)
for all x ∈ R and so F = 0 which is a contradiction. This proves the theorem. �

Example 4.3. Let R =
{(

a b
c d

) ∣∣∣ a, b, c, d ∈ Z

}
. Clearly, R is a prime ring with matrix

addition and matrix multiplication. Define ∗ : R −→ R same as in Example 3.5. If we
consider F to be the identity map, then F is a generalized derivation with an associated
derivation d = 0 and also a left centralizer, and F satisfies the identity [F (x), x∗] = 0 for
all x ∈ R. However, R is not commutative. This shows that the hypothesis of second kind
involution is crucial in Theorem 4.1 and 4.2.

The next example shows that it is essential for R to be prime in the hypotheses of
Theorem 4.1.

Example 4.4. Define R = R × C, where R, F , and ∗ are same as in Example 4.3.
Obviously, R is a semiprime ring with involution τ , which is defined by τ(r, z) = (r∗, z̄),
where z̄ denotes the complex conjugate of z. One can easily observe that τ is an involution
of the second kind. Moreover, if F = (F (r), 0), then the hypothesis of Theorem 4.1 are
satisfied but R is not commutative.

Acknowledgment. The authors are grateful to the referee(s) for his/her careful reading
of the manuscript and improving Theorem 3.1. Also, we wish to express our sincere
thanks to Professor Andre Leroy for his useful discussions during the preparation of the
manuscript.
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