Acceleration Displacement Response Spectra for Design of Seismic Isolation Systems in Turkey

Aslıhan YOLCU¹
Güllüm TANIRCAN²
Cüneyt TÜZÜN³

ABSTRACT
In this study, base shear and inelastic displacement limits of seismic isolation systems are presented through acceleration-displacement response spectra considering the ground motion and design provisions of the Turkish Building Seismic Design Code. A series of nonlinear response history analyses are performed using a combination of eight site-specific design spectra, six isolation systems having six periods and five yield levels. As a result, eight spectra presented herein can be used for the preliminary design stage of seismic isolation systems in Turkey.

Keywords: Seismic isolation, non-linear response history analysis, acceleration-displacement response spectrum.

1. INTRODUCTION
The impact of two devastating earthquakes in Turkey in 1999 has revealed not only the existence of structures in large quantities that are not in compliance with seismic regulations but also nationwide belated implementation of advanced technologies for earthquake resistant design. Until 1999, application of isolation systems was limited to a few numbers of viaducts in Turkey. Istanbul Airport terminal building is the first building that is ever being reinforced by using isolators (friction pendulum bearings) at the time of the 1999 earthquakes. Over the past 19 years the number of applications has increased both for reinforcement of existing structures and for design of new structures. According to database of Turkish Association for Seismic Isolation, as of 2018, number of base isolated structures including airports, hospitals, industrial structures as well as residential houses are over 125.

Note:
- This paper has been received on January 11, 2019 and accepted for publication by the Editorial Board on December 4, 2019.
- Discussions on this paper will be accepted by xxxxx xx, xxxx.
* https://dx.doi.org/10.18400/tekderg.511798

1 Bogazici University, Kandilli Observatory and Earthquake Research Institute, Istanbul, Turkey - aslihanyolcu@hotmail.com - https://orcid.org/0000-0002-4096-1215
2 Bogazici University, Kandilli Observatory and Earthquake Research Institute, Istanbul, Turkey - birgorc@boun.edu.tr - https://orcid.org/0000-0002-0535-5658
3 Gebze Technical University, Department of Civil Engineering, Kocaeli, Turkey - ctuzun@gmail.com - https://orcid.org/0000-0003-2489-2640
As the use of seismic isolation becomes more widespread, seismic design criteria of isolation systems/isolated buildings have taken part in a separate chapter of the most recent Turkish Building Seismic Design Code (hereafter; TBSDC-2018) [2]. According to the provision in the most current seismic design codes (e.g. [2, 3]) isolation systems should be designed considering their nonlinear characteristics under maximum considered earthquake ground motion. Hysteretic behavior of the seismic isolation systems can be defined in accordance with an equivalent linear system with secant stiffness and an equivalent viscous damping approach (e.g. [4, 5]). Effective stiffness, effective period and effective damping ratio are the major properties of an equivalent linear system. The major obstacle in implementing force-displacement hysteresis during the preliminary design of the seismic isolation system is that those properties are response displacement amplitude dependent and hence determining the acceptable displacement response values for the design requires an iterative procedure. In this context, as an alternative to equivalent linear analysis method, time history analysis method has also been practiced by many researchers for the design of isolation systems.

Looking through research in this direction, Park and Otsuka [6] applied the nonlinear response spectrum approach to investigate the optimal yield level of isolation systems at bridges. Tena-Colunga [7] proposed inelastic capacity design spectra of isolation systems for fixed yield strength and post yield stiffness. Ryan and Chopra [8] offered an alternative procedure to the iterative equivalent linear methods by reducing the parameters of equation of motion as presented in the next section. Whittaker and Jones [9, 10] proposed the concept of acceleration-displacement response spectra (ADRS). The concept is based on time history analyses of inelastic single degree of freedom (SDOF) oscillator to represent the nonlinear behavior of the isolation systems. Properties of seismic isolation systems are independent from amplitude and can be selected by designers in the preliminary design process. Hence, the concept helps designers to have a quick point of view about inelastic seismic demands of seismically isolated systems [11]. The concept has been applied to Christchurch-New Zealand, Vancouver-Canada, San Francisco Bay area-USA and Chile based on relevant codes [11] [12]. This concept has also been performed for two specific structures in Istanbul and Erzurum–Turkey following ASCE 7-10 [13] provisions [14]. However, none of the above studies consider different seismic input levels and site classes.

The main objective of this paper is to calculate and present the ADRS graphs considering the ground motion and building seismic design provisions of Turkey [2]. The ADRS approach is applied to high and moderate seismic zones of Turkey using different combinations of two earthquake ground motion levels (maximum considered earthquake: DD1 and design basis earthquake: DD2) and two site categories (stiff sites: ZC, and soil sites: ZD). For each category eleven pairs of ground motion recordings are selected from PEER-West2 [15] worldwide earthquake catalog and linearly scaled to fit the pre-defined design spectra. A large range of post yield stiffness period (2-5 seconds) and yield strength ratio (5% -15% of W) are used to represent a broad envelope which includes not only the practical and applicable period and strength ratio levels but also extreme values of them for an isolation system. Results are discussed in the following parts of the paper. Finally, conclusions are drawn based on the obtained results. Hence, this study can be evaluated as a general approach for preliminary design of seismic isolation systems proposed for Turkey as the first time.

[1].
2. METHODOLOGY

Seismic isolation system can be idealized as a SDOF oscillator with a rigid mass on a single isolator. A bi-linear characterization of force-displacement hysteresis curve which can be considered as the envelope of isolation system response, is used for more practice-oriented representation of the nonlinear behavior of a typical seismic isolation system in a horizontal direction as given in Fig. 1. In the figure, zero displacement force intercept \(Q_d \) expresses characteristic strength of a seismic isolator. \(F_y \) is the yield force. First and second slopes of the force-displacement graph are the elastic stiffness \((k_1) \) and characteristic stiffness \((k_2) \) of the seismic isolation system, respectively. In general applications, \(k_2 \) is taken as a fraction of \(k_1 \) \[16\]. Effective stiffness \((k_e) \) is the diagonal slope of the simplified maximum response and is a function of maximum displacement.

Among all parameters defining the hysteresis loop, \(k_2 \) and \(Q_d \) are dependent only on material properties (e.g. shear modulus of rubber and yield shear stress of lead for lead rubber bearings) and geometric features (e.g. radius of friction pendulum systems, cross section area and thickness of lead rubber bearings) of isolation systems. Ryan and Chopra \[8\] simplified calculation of the equation of motion by utilizing \(\omega = \sqrt{k_2 / m} \) and yield (or characteristic) strength ratio \((Q_d / W) \), where \(W \) is the weight acting on the system.

The deformation history of the isolator \(u(t) \), subjected to ground acceleration \(u_g(t) \), is governed by the Equation 1;

\[
\ddot{u}(t) + \omega^2 u(t) + \left(\frac{Q_d}{W}\right) g z(t, k, u, \dot{u}) = -u_g(t),
\]

where \(g \) is acceleration due to gravity and \(z \) represents the yielding history. Also, \(\ddot{u}(t) \) shows isolator acceleration when \(m \) represents the mass. Moreover, \(t, k, u \) and \(\dot{u} \) are time, stiffness, displacement and velocity, respectively.

Computation of the ADRS graphs consists of two major steps: Preparation of horizontal ground motion excitations in compliance with the TBSDC-2018 \[2\] and calculation of deformation history of a nonlinear SDOF system for various ground motion pairs with predefined hysteretic model parameters. Nonlinear time history analyses are performed for various post yield stiffness period of the isolation system \((T) \), \(Q_d / W \) and \(k_2 \) combinations to obtain the displacement response. Finally, base shear transmitted to superstructure can be found out;

\[
V_M = \frac{S^{DD1}_{R,c(t,M)WBM}}{R}
\]

In the Equation 2, \(S^{DD1}_{R,c} \) is 5% damped spectral acceleration parameter at effective vibration period \((T_M) \) of isolation system under DD1 ground motion level. \(T_M \) corresponds to the period where the maximum displacement of the isolation system is obtained. Earthquake force reduction factors \((R) \) are tabulated in design codes for desired performance levels. Damping scaling coefficient \((\eta_M) \) can be calculated by the following equation \[2, 17, 18\];

\[
\eta = \sqrt{\frac{10}{5+\xi}}
\]
where; ξ is effective damping ratio and it shows the damping ratio as a percent. Parameters for calculation of ξ, vary depending on the type of the isolation system. In this research calculations follow straightforward design concept of friction type isolator.

Figure 1 - (left) Seismic isolation system representation (adapted from Ryan and Chopra [8]) (right) Idealized bi-linear hysteretic response of isolators

3. GROUND MOTION REPRESENTATION

3.1. Selection of Hazard Levels

The capacity of an isolation system should be larger than strength and displacement demands of maximum considered earthquake ground motion (e.g. [2, 13]). Hence, in accordance with this performance expectation, nationwide distribution of the 5% damped spectral acceleration parameters at 1 s period ($S_{\alpha1}$) is investigated. DD1 and DD2 (levels are provided from revised seismic hazard maps of Turkey [19, 20]. In order not to use the earthquake records which may contain near-field effects, the average values of $S_{\alpha1}$ are estimated in the regions at least 15 km from the fault. For the reference site condition, maximum $S_{\alpha1}$ value reaches to 1.4 g at zero distance to major active faults and sharply decrease to 0.6 g at approximately 15-20 km away from the fault lines. For those regions, the hazard is diversified into two levels; moderate hazard level (MH) (0.4 $\leq S_{\alpha1}$ (DD1) <0.5 g) and high hazard level (HH) (0.5 $\leq S_{\alpha1}$ (DD1) <0.6 g). Arithmetic average values of these ranges are used as representative values for calculating elastic response spectra. DD2 performance level is also required by the TBSDC-2018 [2] for calculating maximum shear forces transferred to structure above the isolator. Therefore, corresponding representative average $S_{\alpha1}$ values at DD2 level are chosen compatible with $S_{\alpha1}$ values at DD1 level as 0.30 g and 0.25 g for high and moderate hazard regions, respectively. Case numbers are assigned to eight hazard levels for easy follow-up of the results (Table 1).

Table 1 - Cases for ground motion levels formed by the combination of design, hazard and site categories

<table>
<thead>
<tr>
<th>Hazard Level</th>
<th>Case1</th>
<th>Case2</th>
<th>Case3</th>
<th>Case4</th>
<th>Case5</th>
<th>Case6</th>
<th>Case7</th>
<th>Case8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD1 MH ZC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD1 MH ZD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD2 MH ZC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD2 MH ZD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD1 HH ZC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD1 HH ZD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD2 HH ZC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD2 HH ZD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2. Selection and Scaling of Strong Motion Recordings

30 strong motion recordings are selected from Pacific Earthquake Engineering Research (PEER) Center database [15]. The magnitude (Mw) range is assigned as 6.0 to 7.28 and style of faulting is strike slip considering the two major faulting zones exhibiting the highest seismic hazard in Turkey, the North Anatolian and the East Anatolian Fault Zone. The Distance (R_{jb}) between recording station and vertical projection of fault plane is chosen between 15 km - 60 km. List of earthquake ground motion pairs are tabulated in Table 2. 15 km distance is assumed to be the sufficient distance to neglect near field effects. Pulse-like recordings are ignored. Soil types belong to ZC (360 m/s ≤ V_{30} < 760 m/s) and ZD (180 m/s ≤ V_{30} < 360 m/s) categories. Eleven horizontal ground motion pairs are selected for each of eight groups which are formed by the combination of design, hazard and site categories. Maximum number of ground motion recordings from the same event for each of eight groups is three.

Following the provisions given in TBSDC-2018 [2] ground motion pairs are scaled linearly to match the 5% damped elastic horizontal design spectra. Geometric mean spectrum of selected ground motion pairs fit the horizontal elastic spectra between 1.4-7 s period range. Same scaling factor is used for each horizontal component of a ground motion recording. The majority of scale factors takes values between 1-9. Two out of eleven scaling factors used for DD1/MH /ZC spectrum are as high as 14. Even though small scale values are recommended for linearly scaled ground motions, the effect of scaling factor and magnitude-distance bins on median nonlinear structural response for long period structures (T≤4 s) is found to be small and scale results are unbiased [21]. 5% damped elastic design spectra for DD1 and DD2 design levels are given together with elastic response spectra of selected and scaled recordings in Fig. 3.
3.3. Nonlinear SDOF Time History Analyses

Considering the bilinear hysteretic model in Fig. 1, nonlinear time history analyses are performed for each scaled horizontal component of ground motions. PRISM software [22] is employed for the calculations. Assumptions and parameters for the calculation are as follows. Average k_2/k_1 is taken as 0.1 which is a common value for design purpose, provided by the manufacturers and obtained by prototype test results [17, 23]. Elastic damping ratio of bilinear oscillation is omitted, six periods of vibration ($T = 2.0, 2.5, 3.0, 3.5, 4.0, 5.0$ s) and five Q_d/W (5%, 7.5%, 10%, 12.5%, 15%) values are used. A total of 5280 nonlinear analyses are performed using 30 different bilinear hysteretic curves under the excitation of 11 different ground motion pairs produced for eight cases. Square root of the sum of the squares (SRSS) of two response displacements at period corresponding to the largest response displacement in horizontal direction, is calculated. The largest of the SRSS is considered as the maximum response displacement of the system excited with the scaled ground motion pair and averages of 11 ground motions pair are calculated.

4. RESULTS AND COMPARISON

The analyses results are presented as eight ADRS graphs which are shown in the following pages, in Fig. 4-7. ADRS graphs provide the base shear and displacement demands for the seismic isolation systems in the region under DD1 and DD2 design levels.

In general, base shear ratios change between 3.4% -40% and maximum level is reached at DD1 level (Case 6). Furthermore, there is almost eight times difference in displacement (755 mm / 91 mm) among all cases. The shortest period ($T=2$ s) and the smallest yield ratio (5%) combination gives the maximum base shear ratio of the system. For the same yield level, system has the highest displacement capacity at the longest period. High deformation and high base shear values at above 4 s period (as in Case 5 and Case 6) are considered not feasible. ADRS graphs indicate that optimum isolation system period should be kept between 2.5-4 s considering the fact that the isolation system with a period of 2 s is not effective in terms of spectral acceleration reduction in the superstructure. Regarding the long period range, 5 s period may cause re-centering problems and may result in unfeasible displacement demands. Upper and lower bounds of displacement and base shear values are tabulated in Table 3.

Case 3 (Fig. 4) and Case 6 (Fig. 7) show the response of the system under two extreme ground motion levels and worth comparing. Maximum base shear ratio is 40% and 12% under the excitation of the highest (Case 6) and the lowest levels (Case 3) of ground motion, respectively. Displacement range is between 217 mm and 755 mm with an average value of 190 mm between 2.5 and 4 s for the Case 6. Displacement range is limited to 92 mm - 237 mm for Case 3. There is a similar proportional reduction in minimum base shear ratios, from 10% to 3.5%. There is almost 3.3 times difference between the maximum base shears of Case 3 and Case 6. The maximum displacement value of Case 3 is nearly equal to the minimum displacement of Case 6. The effect of yield levels which are above 10% is not significant on ADRS chart in Case 3 when the period is 3 s.

Case 5 and Case 6 portray the change in the response of the system when the soil type switches from ZC to ZD. At stiff site, (Case 5) maximum and minimum base shear values are 25% less than those at softer soil site (Case 6). When period gets longer at stiff site, the
effect of yield level increases and horizontal displacement lines are lengthened. When the soil gets stiffer the effect of period and yield level diminishes. Displacement demand at soil site is 170 mm larger than it is at stiff site. Similarly, difference in maximum displacement demand is not less than 100 mm at ADRS graphs under moderate hazard conditions (Case 3 and Case 4) as well. Consequently, at soft soil, seismic isolation systems with high fundamental period necessitate very high displacement capacity.

Table 2. Earthquake ground motion used in this study.

<table>
<thead>
<tr>
<th>#</th>
<th>Event</th>
<th>Mw</th>
<th>Station</th>
<th>Rjb (km)</th>
<th>Soil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Düzce, Turkey 1999</td>
<td>7.14</td>
<td>LAMONT 362</td>
<td>23.41</td>
<td>ZC</td>
</tr>
<tr>
<td>2</td>
<td>Hector Mine 1999</td>
<td>7.13</td>
<td>ABY</td>
<td>41.81</td>
<td>ZC</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>JNT</td>
<td>50.42</td>
<td>ZC</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>29P</td>
<td>42.06</td>
<td>ZC</td>
</tr>
<tr>
<td>5</td>
<td>Chi-Chi, Taiwan-04</td>
<td>6.2</td>
<td>CHY024</td>
<td>19.67</td>
<td>ZC</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>CHY006</td>
<td>24.58</td>
<td>ZC</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>CHY029</td>
<td>25.75</td>
<td>ZC</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>CHY101</td>
<td>21.61</td>
<td>ZD</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>CHY030</td>
<td>30.46</td>
<td>ZD</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>CHY028</td>
<td>17.63</td>
<td>ZC</td>
</tr>
<tr>
<td>11</td>
<td>Darfield, New Zealand 2010</td>
<td>7</td>
<td>HVSCS</td>
<td>24.36</td>
<td>ZC</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>CSHS</td>
<td>43.6</td>
<td>ZC</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>OXZ</td>
<td>30.63</td>
<td>ZC</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>PPHS</td>
<td>18.73</td>
<td>ZD</td>
</tr>
<tr>
<td>15</td>
<td>Landers 1992</td>
<td>7.28</td>
<td>CHHC</td>
<td>18.40</td>
<td>ZD</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>PRPC</td>
<td>24.55</td>
<td>ZD</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>HVS</td>
<td>24.36</td>
<td>ZC</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>CCCC</td>
<td>19.89</td>
<td>ZD</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>PRPC</td>
<td>24.55</td>
<td>ZD</td>
</tr>
<tr>
<td>20</td>
<td>El Mayor-Cucapah, Mexico 2010</td>
<td>7.2</td>
<td>CISWSHN</td>
<td>31.79</td>
<td>ZC</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>E11</td>
<td>15.36</td>
<td>ZD</td>
</tr>
<tr>
<td>22</td>
<td>Imperial Valley-06 1979</td>
<td>6.53</td>
<td>TAM</td>
<td>25.32</td>
<td>ZD</td>
</tr>
<tr>
<td>23</td>
<td>Superstition Hills-02 1987</td>
<td>6.54</td>
<td>CHI</td>
<td>18.21</td>
<td>ZD</td>
</tr>
<tr>
<td>24</td>
<td>Victoria, Mexico 1980</td>
<td>6.33</td>
<td>CXO</td>
<td>19.12</td>
<td>ZD</td>
</tr>
</tbody>
</table>
Figure 3 - Target design spectrum and spectra for scaled ground motions for Case 1-8
Fig. 7 shows the response of system for the Case 8. Base shear is around 20% and 5.7% for the smallest and largest period and yield ratio pairs, respectively. Displacements are between 105 mm and 409 mm. The effect of yield levels which are above 12.5% is not significant on ADRS chart when the period is 4 s. On the other hand, difference in yield level dominates the responses of the system at lower periods; 2.5 and 3 s.

Comparison of ADRS graphs for Case 6 and Case 8 reveals that, for the same soil condition, base shear imposed to superstructure under DD2 level is approximately half of that is imposed by DD1 level.

Table 3 - Upper and lower bounds of displacement and base shear

<table>
<thead>
<tr>
<th>CASE #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Displacement (mm)</td>
<td>494</td>
<td>647</td>
<td>237</td>
<td>341</td>
<td>595</td>
<td>755</td>
<td>274</td>
<td>409</td>
</tr>
<tr>
<td>Min. Displacement (mm)</td>
<td>166</td>
<td>176</td>
<td>92</td>
<td>95</td>
<td>226</td>
<td>217</td>
<td>91</td>
<td>105</td>
</tr>
<tr>
<td>Max. Base Shear (V/W)</td>
<td>0.25</td>
<td>0.33</td>
<td>0.12</td>
<td>0.18</td>
<td>0.31</td>
<td>0.40</td>
<td>0.14</td>
<td>0.21</td>
</tr>
<tr>
<td>Min. Base Shear (V/W)</td>
<td>0.07</td>
<td>0.09</td>
<td>0.03</td>
<td>0.05</td>
<td>0.08</td>
<td>0.11</td>
<td>0.04</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Isolation system parameters of Sabiha Gökçen International Airport (SGIA) Terminal building and of 2 actual seismically isolated hospital buildings which are Okmeydanı Training and Research Hospital (OTRH) and Marmara University Başübüyük Training and Research Hospital (BTRH) in Istanbul are compared with those calculated in this study. Triple-friction pendulum devices are used in SGIA Terminal building [24] and OTRH. Lead rubber bearings, sliding bearings and the pot bearing units are used in BTRH [17]. Implementation techniques of the isolators, main parameters which are taken into consideration and the other information for BTRH explained in related references [17, 25, 26].

Table 4 - Design parameters of seismically isolated structures in Istanbul, Turkey. Design parameters for hospitals (OTRH and BTRH) are provided from Bahadır Şadan (personal communication, 2018) and Sabiha Gökçen International Airport (SGIA) design parameters are provided from Zekioglu et al[19]

<table>
<thead>
<tr>
<th></th>
<th>OTRH</th>
<th>BTRH</th>
<th>SGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Fault (km)</td>
<td>>15</td>
<td>>15</td>
<td>>15</td>
</tr>
<tr>
<td>ADRS Chart</td>
<td>Case 2</td>
<td>Case 6</td>
<td>Case 5</td>
</tr>
<tr>
<td>Yield Strength Ratio (%)</td>
<td>10</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Isolation Period (s.)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Displacement Demand (cm)</td>
<td>actual design</td>
<td>45</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>this study</td>
<td>40</td>
<td>34</td>
</tr>
</tbody>
</table>
Comparison is tabulated in Table 4. For the given period and yield strength ratio the displacement values of ADRS graphs are consistent with the values used in the actual design, however a slight underestimation by ADRS graphs is observed. The boundary conditions which restrict structural design may sometimes lead to the extreme solutions of optimum area given in ADRS graphs. For instance, displacement demand needs to be increased due to the criterion of keeping the base shear force below a certain value. In this respect, it should be emphasized that main argument in this research is not to precisely estimate the displacement demand but rather to determine the design solution envelope more quickly and effectively for preliminary phase.

5. CONCLUSION

In this paper, a parametric study is performed to determine the ideal parameters of seismic isolation systems at preliminary design phase. As generally accepted, bilinear force-displacement hysteresis curve is assumed to represent nonlinear behavior of a typical seismic isolation system in a horizontal direction. A series of nonlinear time history analyses are performed for six post-elastic periods and five yield strength ratios of seismic isolation systems under the excitation of eleven ground motion pairs produced for eight cases. Each case is formed by the combination of design, hazard and site categories. Base shear is calculated through the average maximum displacement response. At last, for the given yield strength ratio and isolation period, weight independent base shear versus displacement relationship is represented in ADRS graphs to provide optimal area for the preliminary design of the isolation systems. Graphs can be used for all typical seismic isolation systems since the calculations are solely based on post-elastic periods and yield levels.

![Figure 4 - Acceleration Displacement Response spectra for the Case1 and Case3](image-url)
Figure 5 - Acceleration Displacement Response spectra for the Case2 and Case4

Figure 6 - Acceleration Displacement Response spectra for the Case5 and Case7
It is worth noting that, only for Case 2; at T=3s. period, displacement responses are almost constant when yield levels are equal or higher than 10%. In further studies, analyses might be repeated using different ground motion data set to see if such an issue is raised by the excitation characteristics of the ground motion.

Furthermore, it should also be kept in mind, ADRS graphs presented in this study are valid under non-pulse far field ground motion excitation and may not be realistic at sites very close to active faults, particulary directionality effect is dominant in the ground motion recordings. Hence, this study can be expanded considering pulse-like ground motion sets.

Further studies can be focused on more detailed analysis with specific type of isolators such as high damping rubber bearing (HDRB), lead rubber bearing (LRB) and friction pendulum system (FPS) types.

Symbols

- F_y Yield force
- g Acceleration of gravity
- k Stiffness
- k_1 Elastic stiffness
- k_2 Post-elastic stiffness
- k_e Effective stiffness
\(m_t \) The total mass above the isolation device
\(M_w \) Moment magnitude
\(Q_d \) Strength on yield force
\(R \) Earthquake force reduction factor
\(R_{jb} \) Joyner and Boore distance
\(S_{aD1} \) Lateral spectral acceleration for 5% damping at maximum ground motion level (g)
\(S_{a1} \) Hazard map spectral acceleration coefficient for 1 second period
\(T \) Period
\(t \) Time
\(T_M \) The effective vibration period of seismically isolated building at maximum displacements
\(u \) Displacement
\(u_{max} \) Maximum deformation
\(u_y \) Yield deformation
\(u(t) \) Deformation of seismic isolation system
\(\ddot{u}_g(t) \) Ground acceleration
\(\dot{u} \) Velocity of seismic isolation system
\(V_M \) Base shear which is transmitted to superstructure
\(V_{s30} \) The average shear wave velocity of top 30 meter depth.
\(W \) System weight
\(z \) Yielding history
\(\eta_M \) Damping scaling coefficient
\(\xi \) Damping ratio
\(\omega \) Circular frequency
ADRS Acceleration-Displacement Response Spectra
DD1 Maximum Considered Earthquake
DD2 Design Basis Earthquake
HH High hazard
MH Moderate hazard
SDOF Single degree of freedom
SRSS Square root of the sum of the squares
TBSDC Turkish Building Seismic Design Code
PEER Pacific Earthquake Engineering Research
Acknowledgements

This study is supported by Boğaziçi University Research Fund Grant Number 13144. The subject matter is the MSc thesis of the first author. We thank to Mine B. Demircioğlu-Tümsa for preparing Fig.2.

References

Jones, L., Aiken, I., Black, C., Whittaker, D., Şadan, B., Nonlinear response spectra for isolation system design: case studies in Turkey, California and New Zealand, 3 TDMSK, Izmir, Turkey, 2015.

NGA-West 2 Database (NGA-West2, 2015). Pacific Earthquake Engineering Research Center (PEER), University of California, Berkeley, USA(http://peer.berkeley.edu/ngawest2/).

New Probabilistic Seismic Hazard Map of Turkey (TDTH, 2016) (https://tdth.afad.gov.tr/).

Sartori, M., Maraston, S., Zivanovic, I., Seismic retrofitting of the Marmara Başbıyık University Hospital in Istanbul, 16WCEE, Santiago Chile, 9-13 January 2017.