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Abstract
Rough set theory provides a mathematical tool to study vague, imprecise, inconsistent
and uncertain knowledge. The topological notions are closely related to the notions and
results of rough set theory, so the conjoint study of rough set theory and topology becomes
essential. Researchers have widely discussed the topological aspects and their applications
in rough set theory. This study highlights the inter dependencies of topology and classical
rough set theory and the significant work done in this area during the last twenty years.
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1. Introduction
In information science, knowledge is sometimes organized in an imprecise or vague

manner and has a level of granularity. To address these issues of the knowledge system,
discriminant analysis, theory of evidence (Dempster-Shafer theory), fuzzy set theory, etc.
have been developed in the twentieth century. The rough set theory, introduced by Pawlak
in the early 1980’s [39,41], is one of them and is used as a mathematical tool for a perusal
of unsettled, uncertain and vagueness of imprecise data in information systems. Rough
set theory has inbuilt topological concepts. Approximation operators are the central idea
in the rough set theory, and have properties of closure, interior, and frontier operators,
which are topological operators induced by an equivalence relation on the universe. Thus,
the study of rough set by using concepts of topology is helpful to study real-life prob-
lems like data mining [79], machine learning, pattern recognition, image processing [45],
medical events [59], etc. (see also [29, 40, 47, 48, 79, 82, 83, 87]). In Pawlak’s rough set
theory, the equivalence relations have limitations in generating granule base (neighbor-
hood base). Therefore there are several generalizations of Pawlak’s rough set theory, and
each generalization employs topological concepts. Conjoint studies of the rough set theory
and topology are still needed. The methods of construction of topological structures on
a universe are used in the modeling of mathematical, quantitative and qualitative data.
Skowron and Wiweger first described the role of topological aspects in information system
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and rough sets in 1988 [56,67]. Some of the works in the combination of rough set theory
and topological theory can be found [7, 30,50,55,71,73,85].

The present paper outlines the significant work done by different researchers on topolog-
ical structures on the rough set theory and its applications with respect to the underlying
structures. Fuzzy rough sets have also been the center of attraction of many researchers
but in this review article, we focus only on classical rough sets and their topological as-
pects.

We start the discussion from Pawlak’s idea of approximation operators and then discuss
more general approaches to the rough set theory and their topological aspects. Thus the
sequence of the review about topological aspects of rough sets is as follows: Section 2
describes some definitions and basic concepts of topology and the rough set theory. Section
3 compiles the literature on the topological theory developed in the context of rough sets.
Section 3 comprises of five subsections: In Subsection 3.1, we review the concepts of rough
sets influenced by equivalence relation and their topological properties. Subsection 3.2
accumulates arbitrary binary relation based rough sets, their topological properties and
results on it. Subsection 3.3 summarizes the work done in the framework of covering-
based rough sets and their related topological aspects. Subsection 3.5 recapitulate some
topological aspects of logics and algebras on rough sets. Subsection 3.6 synopsizes some
theories related to rough sets in three further subsections which encapsulate the discussion
of the relative study of near set theory, dynamical system and formal concept analysis on
the rough sets. Finally, in the last section (Section 4), we conclude the survey.

2. Basic concepts of topological spaces and rough sets
Throughout this paper, U denotes a non-empty set, R denotes an equivalence relation

on U ; P(U) is the power set of U, and Xc denotes the complement of a set X. In this
section, we collect some basic concepts, characteristics, and operations of the rough set
theory and topology.

2.1. Topological spaces
Definition 2.1 ([8]). A knowledge structure is a pair (U, τ), where U is a non-empty set
and τ is a family of subsets of U, containing at least U and ∅. When the family τ of a
knowledge structure (U, τ) is closed under union, i.e., ∪F ∈ τ whenever F ⊆ τ, we say
(U, τ) is a knowledge space.
Definition 2.2. Let U be a non-empty set and τ a subset of the power set of U. Then τ
is said to be a topology on U if the following properties hold:
(i) ∅ and U are in τ.
(ii) If Ai ∈ τ, where i ∈ Λ (an arbitrary index set), then

∪
i∈Λ Ai ∈ τ.

(ii) If A1, A2, . . . , An ∈ τ, then
∩n

j=1 Aj ∈ τ.
The pair (U, τ) is said to be a topological space.
Definition 2.3. Let (U, τ) be a topological space. The members of τ are called open sets.
Let A be a subset of U. The interior of A is defined as,

intτ (A) =
∪

{G ∈ τ : G ⊆ A}.

Definition 2.4. Let (U, τ) be a topological space. The complement of a member of τ is
called a closed set. Let A be a subset of U. The closure of A is defined as,

clτ (A) =
∩

{F ⊆ U : A ⊆ F and F is a closed set}.

If every member of τ is closed in a topological space (U, τ), then τ is called a quasi-
discrete topology or clopen topology.
Definition 2.5 ([1]). A topological space (U, τ) whose topology τ is closed under arbitrary
intersections is called an Alexandrov space.
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Definition 2.6 ([76]). Let x ∈ U. A neighborhood of x, denoted by N(x), is a subset
of U, which contains the point x. A neighborhood system of x is a non-empty family of
neighborhoods of x.

Definition 2.7. Let U be a non-empty set and C be a family of non-empty subsets of U.
Then C is called a cover of U if and only if

∪
C = U.

Definition 2.8. Let C be a covering of a non-empty set U. The neighborhood of any
element x ∈ U with respect to C is defined as,

NC(x) =
∩

{A ∈ C : x ∈ A}.

Definition 2.9 ([76]). Let Θ be a binary relation on a non-empty set U. Then we can
define the predecessor neighborhood (Θ-left neighborhood) and successor neighborhood
(Θ-right neighborhood) of any element x ∈ U, respectively as,

Θp(x) = {z ∈ U : zΘx} and Θs(x) = {z ∈ U : xΘz}.

2.2. Rough set theory
There are many approaches to the problem of how to understand and manipulate knowl-

edge. The data table can be obtained as a result of measurements, observations or repre-
sentations of the knowledge of an agent or a group of agents. Such data table is known
as information systems (sometimes, knowledge representation systems or attribute-value
systems) (see [15,38]). We can define information system as follows:

Table 1. An Information System

U a1 a2 . . . an

x1 f(x1, a1) f(x1, a2) . . . f(x1, an)
x2 f(x2, a1) f(x2, a2) . . . f(x2, an)
x3 f(x3, a1) f(x3, a2) . . . f(x3, an)
...

...
...

...
...

xk f(xk, a1) f(xk, a2) . . . f(xk, an)

Definition 2.10 ([38]). An information system is a quadruple S = (U,A, V, f), where U
is a non-empty finite set, A is a non-empty finite set of attributes, V =

∪
a∈A Va, Va is the

value set of the attribute a, f : U ×A → V is defined by f(u, a) ∈ Va for all (u, a) ∈ U ×A,
and is called the information (knowledge) function.

Many applications require one (or more) distinguished attribute, called a decision at-
tribute. An information system of this kind is known as a decision system and is of the
form S = (U,A = C ∪ D, V, f), where C is the set of condition attributes, D is the set of
decision attributes, C ∩ D = ∅.

The beginning pole of the rough set theory is the indiscernibility relation, which is
generated by the information about objects of interest and refers to the granularity of
knowledge, that affects the definition of universe of discourse. The indiscernibility relation
is intended to express the fact that due to the lack of knowledge one is unable to discern
some objects employing the given information.

Let S = (U,A, V, f) be an information system and let B ⊆ A. Then any two elements
x, y ∈ U are said to be B−indiscernible in S if and only if f(x, a) = f(y, a), for each a ∈ B.
Clearly every subset of A induces a unique indiscernibilty relation which is an equivalence
relation denoted by IND(B). In this paper, we will denote it by R, for convenience.
The ordered pair (U, R) is called an approximation space, where R is an indiscernibility
(equivalence) relation.
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The key point of the rough set theory is to approximate vague concepts by their lower
and upper approximations, which are fundamental notions in the rough set theory. These
operators form an interior and a closure of a set in the framework of partition topology. In
this section, we discuss the concept of rough sets and some of their generalized structures.

Pawlak [39] defined rough sets using the concept of equivalence relation and named
that relation as indiscernibility relation. Pawlak’s approximation space is represented by
(U, R). By [x]R, we denote the equivalence class of R determined by an element x of U.

Yao [76] generalized rough sets using arbitrary binary relations. Let U be a non-empty
set known as a universe, and Θ be a binary relation on U. Then the pair (U, Θ) is called
an approximation space (Yao’s approximation space).

Zhu [85] defined rough sets using coverings. Let C be a covering of a set U. The pair
(U,C) is called an approximation space (covering approximation space).

Lashin et al. [27] defined rough sets using a topological space (U, τ). In this case, if intτ

and clτ are the interior and closure operators induced by topology τ, then (U, intτ , clτ ) is
an approximation space. However, in literature, (U, τ) has also been called an approxima-
tion space.

The approximation operators, lower approximation ∗ : P(U) → P(U) and upper ap-
proximation ∗ : P(U) → P(U), where P(U) is the power set of U, defined in rough set
theory using various concepts are shown in the following table:

Table 2. Approximation Operators

Case Lower Approximation X∗ Upper Approximation X∗

Equivalence Relation {x ∈ U : [x]R ⊆ X} {x ∈ U : [x]R ∩ X ̸= ∅}
Binary Relation {x ∈ U : Θs(x) ⊆ X} {x ∈ U : Θs(x) ∩ X ̸= ∅}

Covering
∪

{M ∈ C : M ⊆ X} X∗ ∪ (
∪

{NC(x) : x ∈ X − X∗})
Topological Space intτ (X) clτ (X)

Let B(X) = X∗ − X∗ be the boundary of the set X. If B(X) = ∅, then X is called a
crisp or an exact set. Otherwise, X is called an inexact set or a rough set.

Properties of approximation operators:
(i) X∗ ⊆ X ⊆ X∗,
(ii) ∅∗ = ∅ = ∅∗ ; U∗ = U = U∗,
(iii) (X ∪ Y )∗ = X∗ ∪ Y ∗,
(iv) (X ∩ Y )∗ = X∗ ∩ Y∗,
(v) (X ∪ Y )∗ ⊇ X∗ ∪ Y∗,
(vi) (X ∩ Y )∗ ⊆ X∗ ∩ Y ∗,
(vii) X ⊆ Y ⇒ X∗ ⊆ Y∗ and X∗ ⊆ Y ∗,
(viii) (Xc)∗ = (X∗)c and (Xc)∗ = (X∗)c,
(ix)(X∗)∗ = X∗ and (X∗)∗ = X∗,
(x) (X∗)∗ = X∗ and (X∗)∗ = X∗,
(xi) X∗ ⊆ (X∗)∗, (X∗)∗ ⊆ X∗, X∗ ⊆ (X∗)∗, (X∗)∗ ⊆ X∗ and X ⊆ (X∗)∗.
Properties (i)-(xi) hold for Pawlak’s rough sets. The properties (ii)-(viii) hold for Yao’s
rough sets; rest of properties do not hold in this concept, in general. All the above
properties hold in Zhu’s covering oriented rough sets except properties (iv) and (viii).
Also, all the above properties hold in Lashin’s topological approach for rough sets except
properties (x) and (xi).
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3. Topological structures on rough sets
In this section, we discuss some variants of rough sets (and their respective topologies)

given by researchers since 1996, such as, rough sets induced by equivalence relations, cov-
erings, subsystems, arbitrary binary relations and topological spaces. We further discuss
logics and algebras of rough sets. At last, we study the connection of rough set theory to
the near set theory, discrete dynamical systems and formal concept analysis.

3.1. Topological structures on rough sets generated by equivalence rela-
tions

Let DR be a partition of non-empty set U defined by an equivalence relation R. It
can easily be seen that the collection of all sets that can be written as unions of some
members of DR together with the empty set is a topology on U . This topology is called
the partition topology generated by DR. The partition topologies are very special. They
are characterized by the fact that every open set is also closed, and vice versa. Natural
extensions of the partition topologies are Alexandrov topologies, which stay in one-to-one
correspondence with preorders (reflexive and transitive relations).

In [31], Liu studied topological properties of the rough set theory. In this paper, the
author discussed a method of defining an equivalence relation on a finite set using a given
equivalence relation and a map: Let U1 and U2 be two non-empty sets, and f : U1 → U2
be a mapping and R1 be an equivalence relation on U1. Then an equivalence relation R2
could be induced on U2 by R1. Let R3 be a reflexive relation such that, if xR1y, then
f(x)R3f(y). Let R2 be the transitive closure of R3, i.e., if mR3n, then f−1(m)R2f−1(n).
Then R2 is an equivalence relation on U2 and R2 = R3, if f is injective. The author
also proved that the mapping f is continuous with respect to the topologies on U1 and
U2 generated by their respective set of equivalence classes considered as bases. The main
results proved in this paper are:

(1) If f is injective and X is a rough set in the approximation space (U1, R1), then
f(X) is a rough set in the approximation space (U2, R2).

(2) If f is surjective and Y is a rough set in the approximation space (U2, R2), then
f−1(Y ) is a rough set in the approximation space (U1, R1).

(3) If f is bijective, then f is continuous and open.
By means of the topological properties of a map f, we can describe some vague objects of
an information system.

Some applications of topological structures on rough sets in the area of image processing
was studied by Quing et al. in [73]. In this paper, topology has been introduced on a
subset X of U instead of the universe U.

Definition 3.1. Let X = (X∗, X∗) be a rough set of the Pawlak’s approximation space
(U, R). Let τ∗ and τ∗ be any two topologies which contain only exact subsets of X∗ and
X∗ respectively. Then the pair τ = (τ∗, τ∗) is said to be a rough topology on the rough
set X = (X∗, X∗) and the pair (X, τ) is known as a rough topological space. Further, for
a rough topology τ = (τ∗, τ∗), τ∗ is known as the lower rough topology and τ∗ is known
as the upper rough topology on X.

Consider a rough topological space (X, τ), where X = (X∗, X∗) and τ = (τ∗, τ∗). Let T
be the collection of all rough open subsets of (X, τ). Then T is a topology on X.

Definition 3.2. Let X = (X∗, X∗) and Y = (Y∗, Y ∗) be two rough sets. Assume that
f1 : X∗ → Y∗ and f2 : X∗ → Y ∗ are bijective maps. At the same time, f1 and f2 keep
the properties of an open set and a closed set; and closure is invariable, i.e., f1(cl(A)) =
cl(f1(A)) and f2(cl(A)) = cl(f2(A)), A ⊆ X; cl(A) is closure of A in X. Then f1 is called
a homeomorphism from X∗ to Y∗, and f2 is called a homeomorphism from X∗ to Y ∗.
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Further, f1 and f2 are also called the lower rough homeomorphism and the upper rough
homeomorphism from X to Y, respectively. Moreover, f = (f1, f2) is called a rough
homeomorphism from X to Y and is labelled as f : X → Y.

Definition of compact rough topological space is also introduced and some basic results
on it are proved, like homeomorphic image of a compact space is compact, etc.

Definition 3.3. Let X = (X∗, X∗) be a rough set. For any open covering U1 of the
set X∗, if there is always a finite subcover U0

1, then X∗ is called the compact set or the
compact lower approximation of X. At the same time, for any open covering U2 of the set
X∗, if there also is always a finite subcover U0

2, then X∗ is called the compact set or the
compact upper approximation of X. The ordered pair (U1,U2) is called an open covering
of X. If there is always a finite subcover ordered pair (U0

1,U0
2) of (U1,U2), then X is called

a compact rough topological space.

The authors have discussed applications of this topological structure to some real life
problems such as finger print recognition, reduction of attributes etc. Let us discuss the
application to reduction of attributes: The topological properties (such as finite coverage
characteristic) provides the ability to analyse an unnecessary attribute of information
systems. For example, assume that S = (U,A, V, f) is an information system. The
equivalence relation, labeled RB, is induced by the attribute set B ⊆ A. Let UR = {Vai}
be a coverage of the relation RA, for all Vai ∈ UR, i ∈ {1, 2, ...}. If (UR \ {Vai})R is
still a coverage of the relation RA , then the attribute Vai is unnecessary. If there are
no unnecessary attributes in the system, the attribute set A is independent. The subset
B ⊆ A is called a reduction of A, usually labeled as red(A), if UR covers RA and RB, and
there are no unnecessary attributes in B.
For example, assume that S = (U,A, V, f), where U = {x1, x2, . . . , x8}, the attribute set
A = {c1, c2, c3, c4}, V1 = V2 = V3 = {1, 2, 3}, V4 = {1, 2}, and the information function f
is shown in Table 3. Obviously,

Table 3. Infor-
mation System

U c1 c2 c3 c4

x1 1 1 1 1
x2 1 2 2 1
x3 1 1 1 1
x4 1 2 2 1
x5 2 2 1 1
x6 2 2 1 1
x7 3 3 3 2
x8 3 3 3 2

Table 4. Information
Form of Compression

U c1 c2 c3 c4

(x1; x3) 1 1 1 1
(x2; x4) 1 2 2 1
(x5; x6) 2 2 1 1
(x7; x8) 3 3 3 2

Table 5. Most Concise Reduction

c1 c2
1 1
1 2
2 2
3 3

c1 c3
1 1
1 2
2 1
3 3

c2 c3
1 1
2 2
2 1
3 3

Ac1 = {{x1, x2, x3, x4}, {x5, x6}, {x7, x8}}, (3.1)
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Ac2 = {{x1, x3}, {x2, x4, x5, x6}, {x7, x8}}, (3.2)
Ac3 = {{x1, x3, x5, x6}, {x2, x4}, {x7, x8}}, (3.3)
Ac4 = {{x1, x2, x3, x4, x5, x6}, {x7, x8}}. (3.4)

Based on the above formulae,

U \ A = {{x1, x3}, {x2, x4}, {x5, x6}, {x7, x8}}. (3.5)

After compressing the objects and their informations, Table 4 is obtained. Since the
combination of formulae (3.1)-(3.4) covers (3.5) and the combination of formulae (3.1)-(3.3)
also covers (3.5), therefore the attribute c4 is an unnecessary attribute in the information
system represented by Table 3 (or Table 4). Similarly, by the compactness property, we
can obtain the three simplest reductions of attributes from this information: {c1, c2},
{c1, c3}, and {c2, c3}. Accordingly, the three most concise reduction forms of information
systems, shown in Table 5, can be obtained.

The study of mathematical structures of rough sets in infinite universes of discourse
has been done in [72]. It is well known that it is often easier to deal with compact sets
and continuous functions defined on compact sets have more controlled behavior than
functions on non-compact sets. For example, two-dimensional compact surfaces have a
nice classification theorem. Also, classifying non-compact surfaces is more difficult and
less satisfying. If space is not compact, we can make it compact by the compactification
of the space. In the field of image analysis, classification of images of a compact universe
become easier. In [13] Hajri et al., studied the compactification of a scattered space. A
topological space U is said to be scattered if every non-empty subset X of U contains at
least one isolated point. Digital line and digital plane are examples of scattered spaces.
Hajri et al. have employed this theory of compactification of scattered spaces in the
classification and regularization of digital images.

In [33], Mathew and John enhanced the results of [73]. According to the definition of
open sets given in [73], ∅ = (∅, ∅) is not always open because ∅ ⊆ X∗ ⊆ ∅ ⊆ X∗ is not
true for a rough set X = (X∗, X∗) with non-empty lower approximation X∗. Thus ∅ is
not always open and therefore, the basic definition of topology in [73] is not valid. In the
process to rectify this problem, they defined a new topological structure on rough sets to
create a rough topological space.

Another application of the concept of topology in rough sets is to study symptoms
of diseases like Chikungunya and Diabetes [59]. The authors showed that the topology
induced by approximation operations can be used used to deal with real world problems.
The concept of topological basis induced by a rough set model has been applied to find
the deciding factors of a recent outbreak in Chikungunya and Diabetes. The following
algorithm has been used to find the deciding factors of the diseases as mentioned above:
Step I: Let U be a finite universe. A finite set A of attributes is divided into two classes,
C of condition attributes and D of decision attributes. An equivalence relation R on U is
defined with respect to C. A subset X of U represent the data as an information table,
columns of which are labeled by attributes, rows by objects and entries of the table are
attribute values.
Step II: Find the lower approximation, upper approximation and the boundary region of
X with respect to R.
Step III: Generate the topology τR on U and its basis βR as: τR = {∅, U, X∗, X∗, B(X)}
and βR = {U, X∗, B(X)}, where B(X) is the boundary of the set X.
Step IV: Remove an attribute ‘a’ from C and find the lower and upper approximations
and the boundary region of X with respect to the equivalence relation on C − (a).
Step V: Generate the topology τR−(a) on U and its basis βR−(a).
Step VI: Repeat steps III and IV for all attributes in C.
Step VII: Those attributes in C for which βR−(a) ̸= βR form the core(R).
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Step VIII: The attributes of core(R) are the deciding factors of the diseases Diabetes
and Chikungunya.

Till 1996, the concept of rough distance function was unknown. Biswas [6] introduced
the concept of rough metric space, and some basic terms of rough metric space like rough
diameter, rough open balls, rough interior points, rough open sets, etc.
Definition 3.4. Let X be a non-empty rough subset of an Pawlak’s approximation space
(U, R). Then the function d : X × X → R is called a rough metric on X if the following
conditions are true, for all x, y, z ∈ X,

(i) d(x, y) ≥ 0,
(ii) d(x, y) = 0 if and only if [x]R = [y]R,
(iii) d(x, y) = d(y, x),
(iv) d(x, y) + d(y, z) ≥ d(x, z).

The function ‘d’ is a rough metric or a rough distance function on X, and the pair (X, d)
is a rough metric space. The rough distance between x and y is defined as d(x, y).

Since rough open balls are not rough sets, therefore rough open sets are not rough sets,
in general.

In [70], Wolski discussed another topological property, viz. completion of a perceptual
system in the near set framework and introduced the concept of a separating completion.
Definition 3.5. A perceptual system is a pair (U, Φ), where U is a non-empty finite set
of perceptual objects and Φ is a countable set of probe functions ϕi : U → R.

Probe functions are real valued functions which represent features of a physical object, a
simple examples of probe functions are the size or weight of an object. Any probe function
can induce a pseudometric (see [43]).
Definition 3.6. A family D = {di : i ∈ I} of pseudometrics on U is called separating if,
for each pair of points x ̸= y, there exists di ∈ D such that di(x, y) ̸= 0.

Let (U, Φ) be a perceptual system, then the perceptual indiscernibility relation RΦ is
defined as RΦ = {(x, y) ∈ U × U : for all ϕi ∈ Φ, ϕi(x) − ϕi(y) = 0} and D(Φ) = {dϕi

:
ϕi ∈ Φ}, where dϕi

(x, y) =| ϕi(x) − ϕi(y) | is a family of pseudometrics which usually does
not separate all points of U .
Definition 3.7. Let (U, Φ) be a perceptual system such that D(Φ) is not a separating
family on U. Then a tolerance (reflexive and symmetric) relation µ on U satisfying:

if xRΦy and xµy, then x = y, for all x, y ∈ U,

will be called a separating completion of D(Φ).
When one deals with an equivalence relation R on U, one is interested in the canonical

projection p : U → U/R, such that p(x) = [x]R, where U/R is set of all equivalence classes
induced by relation R.

Proposition 3.8. Let (U, Φ) be a given perceptual system, such that D(Φ) is not separating
family on U, and let µ be a separating completion of D(Φ). Then for each class X of µ,
the restriction of p : U → U/RΦ to X, is one-one correspondence.

The author showed that how completion could be used to provide a topology on the
family of perceptual elementary sets, i.e., a higher order granulation of objects.

Kondo and Dudek [26] studied the fundamental topological properties of rough sets in-
duced by equivalence relations and proved that an Pawlak’s approximation space (U, R) is
strongly connected, i.e., the whole space is a single granule if and only if R = U ×U . This
result can be used to characterize the freeness of a subset A of U : A subset A of U is free
if every element in A is related to itself only, i.e., A is free if and only if x /∈ (A − {x})∗,
for all x ∈ A. Moreover, A is free if and only if R ∩ (A × A) = {(x, x) : x ∈ A}.
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3.2. Rough set theory obtained by arbitrary binary relations
For an arbitrary binary relation, the successor elements (or right neighborhood, see

Definition 2.9) of a given element are precisely its neighborhood.
As discussed earlier, generalization of Pawlak’s rough set concept was needed due to

the limitation of equivalence classes in generating neighborhood base. This was done by
Yao in where he studied the approximation operators in terms of neighborhood operators:
Let U be a non-empty set. For each element x of U, n(x) ⊆ U is called a neighborhood of
x, where n is a mapping from U to P(U). A neighborhood of x need not contain x. The
neighborhood operator n is said to be a reflexive operator if for all x ∈ U, x ∈ n(x); a
symmetric operator if for all x, y ∈ U, x ∈ n(y) ⇒ y ∈ n(x); and a transitive operator if
for all x, y, z ∈ U, y ∈ n(x) and z ∈ n(y) ⇒ z ∈ n(x). A neighborhood system NS(x),
of an element x is a family of neighborhoods of x. Neighborhood system of U, denoted by
NS(U), is the collection of NS(x), for all x ∈ U. The author considered a special type
of neighborhood system called 1-neighborhood system, in which each element has exactly
one neighborhood. For a finite universe U, we can extend a neighborhood operator n from
U to P(U) as follows:

N(X) =
∪

x∈X

n(x).

For the empty set ∅, N(∅) = ∅. The mapping N : P(U) → P(U) associates each subset
of U with a subset of U. The class of 1-neighborhood systems can be interpreted using
the more familiar notion of binary relations. For a binary relation Θ and two elements
x, y ∈ U, if xΘy, we say that y is Θ-related to x, x is a predecessor of y and y is a successor
of x. Given a binary relation Θ, define
Θs(x) = {y : xΘy},
Θp(x) = {y : yΘx},
Θp∧s(x) = {y : xΘy and yΘx} = Θp(x) ∩ Θs(x),
Θp∨s(x) = {y : xΘy or yΘx} = Θp(x) ∪ Θsx.
Then Θs, Θp, Θp∧s and Θp∨s are neighborhood operators from U to P(U). Yao proved
that these neighborhoods generate same upper and lower approximations if and only if the
binary relation Θ is symmetric. The author, therefore, used an arbitrary neighborhood
operator n to define distinct pairs of approximation operators as follows:

(I). X∗ = {x ∈ U : n(x) ⊆ X}, X∗ = {x ∈ U : n(x) ∩ X ̸= ∅}.
(II). X∗ = ∪{n(x) : x ∈ U, n(x) ⊂ X} = {x ∈ U : there exists y such that x ∈ n(y) ⊆

X}, X∗ = ((Xc)∗)c = {x ∈ U : for all y, x ∈ n(y) implies n(y) ∩ X ̸= ∅}.
(III). X∗ = ∪{n(X) : x ∈ U, n(x) ∩ X ̸= ∅} = {x ∈ U : there exists y such that

x ∈ n(y) ∩ X ̸= ∅}, X∗ = ((Xc)∗)c = {x ∈ U : for every y, x ∈ n(y) implies
n(y) ⊆ X}.

Note that in [I], the approximations are element based. Lower approximation in [II] and
upper approximation in [III] are granule based definitions and these are not dual of each
other, in general. Thus to obtain of duality between the upper and lower approximation
operators, Yao defined the upper approximation in [II] and lower approximation in [III]
separately using the set theoretic complementation ‘()c’. Conditions on neighborhood
operators under which some or all of these approximation operators are equivalent are
given in the following theorem.

Theorem 3.9. Let U be a non-empty set and n : U → P(U) be a neighborhood operator.
Then,

(1) The two pairs of lower and upper approximation operators defined by [II] and [III]
are equivalent if and only if the family {n(x) ̸= ∅ : x ∈ U} forms a partition of the
universe U .
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(2) The two pairs of lower and upper approximation operators defined by [I] and [II]
are equivalent if and only if the neighborhood operator n is reflexive and transitive.

(3) The two pairs of lower and upper approximation operators defined by [I] and [III]
are equivalent if and only if the neighborhood operator n is symmetric and transi-
tive.

(4) The three pairs of lower and upper approximation operators defined by [I], [II] and
[III] are equivalent if and only if n is reflexive, symmetric and transitive.

Kondo, in [25] studied the topological properties of generalized rough sets by using an
arbitrary reflexive binary relation instead of an equivalence relation. A type of compactness
condition COMP was proposed, and it was proved that a topology which satisfies COMP
could determine the lower and upper approximation operators induced by reflexive and
transitive relations. The condition COMP is: For all Oλ ∈ τ and A ⊆ U, if

∩
Oλ ∩ A = ∅,

then there exists a finite subset {Oi} (i 6 n) of {Oλ} such that O1 ∩ . . . ∩ On ∩ A = ∅,
where τ is the topology on U.

This compactness condition is not satisfied by the topology induced by a reflexive and
transitive relation. Hence Qin et al. in [51] proposed another kind of compactness con-
dition on the topology generated by the approximation operators induced by a reflexive
and transitive relation:
COMP′ : For all x ∈ U and A ⊆ U, if x ∈ cl(A), then there exists y ∈ A such that
x ∈ cl({y}), where (U, τ) is topological space and cl is a closure operator on U .
There is a one-to-one correspondence between the set of all reflexive and transitive relations
and the set of all topologies which satisfy (COMP′). This correspondence is of theoretical
significance for the study of axiomatic characterization of rough approximation operators
on an infinite universe. Further relaxing the conditions on the indiscernibility relation, Li
et al. [29] investigated properties of the topological spaces induced by reflexive relations or
tolerance relations on the universe such as separating property, countable property, local
connectedness and pseudo-metrizability. The necessary and sufficient condition for a topo-
logical space (U, τ) to be an approximation space is that (U, τ) is both pseudo-metrizable
and pseudo-discrete.

In the above discussion, we considered the topological structures induced by the ele-
ments based approximation operators defined in [I]. Zhang et al. [81] studied topological
structure of relation based generalized approximation operators, defined as above in [II]
and [III]. Let Θ be a binary relation on U. The necessary and sufficient condition for the
upper approximation operator to be a topological closure and pseudo closure operator
and the lower approximation operator to be an interior operator is that Θ is reflexive and
transitive.

In [27], Lashin et al. studied the rough set theory for topological spaces, especially for
the class of clopen topologies in which every open set is closed. Topological spaces are ap-
proximation spaces generated by a binary relation if the collection of right neighborhoods
is taken as a subbase.

3.3. Topology on covering based rough sets
Covering based rough sets are natural extensions of classical rough sets [4, 78, 80, 86].

Zhu [85] pursued generalization of rough set theory by using covers in place of equivalence
classes. Recall the definition of lower and upper approximation of covering based rough
sets: Let U be a non-empty set and C be cover of U . The pair (U,C) is called a covering
approximation space. For any X ⊆ U, the lower approximation X∗ =

∪
{M ∈ C : M ⊆ X}

and the upper approximation X∗ = X∗ ∪ {NC(x) : x ∈ X − X∗}, where NC(x) =
∩

{M ∈
C : x ∈ M}. In covering based approximation spaces, the upper approximation satisfies
closure properties but the lower approximation does not satisfies interior properties, as
property (iv) of approximation operators, i.e., (X ∩ Y )∗ = X∗ ∩ Y∗ does not holds for
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covering based rough sets discussed, in general (see [85]). To resolve this problem, the
author found a characterization for lower approximation to behave like interior operator:
“Lower approximation operator is an interior operator if and only if for every M, N ∈ C,
M ∩ N = ∅ or M ∩ N is a union of elements of C, where C is a cover of the a non-empty
set U.” The author also studied the properties of reduct [84, 86], that is, under which
conditions a cover C is reducible.

Definition 3.10. Let C be a covering of a non-empty set U and M ∈ C. If M can be
represented as a union of elements of C − {M}, then we say that M is reducible in C,
otherwise M is irreducible. If there exists an element K ∈ C, which is reducible, then we
say that C is reducible.

Definition 3.11. Given a covering C of a non-empty set U. By eliminating all reducible
elements from C, one finds an irreducible covering, called a reduct of C which is denoted
by reduct(C).

The covering C and the reduct(C) both generate the same upper and lower approx-
imations. The two covering C1 and C2 generate the same lower approximation if and
only if their reducts are same, that is, reduct(C1) = reduct(C2). Further, if reduct(C1) =
reduct(C2), then they generate same upper approximations. Also, C generates Pawlak’s
approximation operators if and only if reduct(C) is a partition of the universe U. The lower
and upper approximation operators of U can be axiomatized as follows:

Theorem 3.12. Let U be a non-empty set. If an operation L : P(U) → P(U) satisfies the
following properties: for any X, Y ⊆ U,

(i) L(U) = U,
(ii) X ⊆ Y ⇒ L(X) ⊆ L(U),
(iii) L(X) ⊆ X,
(iv) L(L(X)) = L(X),

then there exists a covering C of U such that the lower approximation operation of X, i.e.,
X∗, generated by C, equals to L(X).

Theorem 3.13. Let U be a non-empty set. If an operation H : P(U) → P(U) is a closure
operator, i.e., H satisfies the following properties: for any X, Y ⊆ U,

(i) H(X ∪ Y ) = H(X) ∪ H(Y ),
(ii) X ⊆ H(X),
(iii) H(∅) = ∅,
(iv) H(H(X)) = H(X),

then there exists a covering C of U such that the upper approximation operation of X, i.e.,
X∗, generated by, C equals to H(X).

In [88], Zhu and Wang discussed topological properties of four types of covering gen-
eralized rough sets. The conditions under which lower approximation operations become
interior operators; and the conditions under which the upper approximation operations
become closure operators are also studied.

Definition 3.14. Let (U,C) be a covering approximation space and x ∈ U. Then
Md(x) = {K ∈ C : x ∈ K and (for all S ∈ C and x ∈ S and S ⊆ K ⇒ K = S)}
is called the minimal description of x with respect to the covering C.

Definition 3.15. Let (U,C) be a covering approximation space and x ∈ U. Then
∪

{K :
x ∈ K ∈ C} is called the indiscernible neighborhood of x and is denoted by Friends(x).
For x ∈ U,

∪
{Md(x)} is called the closed friend of x and denoted as CFriends(x).

Definition 3.16. Let C be a covering of U. Then the operation CL is defined as follows,
for X ⊆ U,
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CL(X) =
∪

{K : K ∈ C, K ⊆ X}.
We call CL the covering lower approximation operation.

Definition 3.17. Let C be a covering of U. Then the operations FH, SH, TH and RH :
P(U) → P(U) are defined as follows, for X ⊆ U,

FH(X) = CL(X) ∪ {Md(x) : x ∈ X − CL(X)},
SH(X) =

∪
{K : K ∈ C, K ∩ X ̸= ∅},

TH(X) =
∪

{Md(x) : x ∈ X},
RH(X) = CL(X) ∪ {K : K ∈ C, K ∩ (X − CL(X)) ̸= ∅}.

We call FH, SH, TH, and RH the first, second, third and fourth type of covering upper
approximation operations, respectively.

The conditions under which CL is an interior operator and FH, SH, TH, and RH
become closure operators are:

(1) CL is interior operator, RH and FH are closure operators if and only if for all
K1, K2 ∈ C, K1 ∩ K2 is union of finite elements in C.

(2) SH is a closure operator if and only if for all x ∈ U and K ∈ C, either K ⊆
Friends(x) or K ∩ Friends(x) = ∅.

(3) TH is a closure operator if and only if for all x ∈ U and K ∈ C, either K ⊆
Friends(x) or K ∩ Friends(x) = ∅.

Further RH is a closure operator if and only if CL is an interior operator.
Some more approximation spaces were defined by Yang et al. in [74]. The three upper

approximation operators IH, XH and VH corresponding to three approximation spaces
are:

IH(X) = CL(X) ∪ {NC(x) : x ∈ X − CL(X)} =
∪

{NC(x) : x ∈ X},
XH(X) = {x : NC(x) ∩ X ̸= ∅},

VH(X) =
∪

{NC(x) : NC(x) ∩ X ̸= ∅}.

Let C be a covering of U, τC be the topology induced by C. Then B (arbitrary base of
the topology τC)and C generate the same set approximations based on IH, XH and VH
types of covering rough sets if and only if B is a subbase of τC. Let C′ ⊆ C and τC be the
topology induced by C. Then C′ is an granular reduct of C based on IH, XH and VH
types of covering rough sets if and only if C′ is a minimal subbase of τC.

Another contribution to covering-based rough sets was done by Thuan in [60], Thuan
studied the topology constructed by family of covering and investigated its properties: Let
S = (U,A, V, f) be an information system. Let a ∈ A and Θa be a binary relation defined
as follows:

xΘay if and only if a(x) ∩ a(y) ̸= ∅.

Clearly the relation Θa is reflexive. With this definition, Θa determines a cover Ca =
{Θa(x) : x ∈ U} of U, where Θa(x) = {y ∈ U : xΘay}. Also, Θa determines a topology τa :
With respect to Θa, we can define the Θa-left and Θa-right neighborhoods (see Definition
2.9) of an element x ∈ U. To construct the topology τa using Θa-right neighborhoods, we
consider the family Sa = {Θa(x) : x ∈ U} as the subbase. Similarly, we can construct the
topology τa using Θa−left neighborhoods. For all attributes in A, we get the topology τS

which is induced by the subbase
∪

a∈A Sa, where Sa is a subbase of topology τa. Thus the
topological space (U, τS) is constructed from a family of cover {Ca : for all a ∈ A} which
is induced from {Θa : for all a ∈ A}.

In [65], Wang et al. employed down-sets and up-sets to study covering-based rough sets.
They used them to characterize reducible elements and minimal descriptions, which are
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quite important concepts in covering-based rough sets. They also gave lattice structure
and topology in covering-based rough sets using down-sets and up-sets. For the theory of
lattices, we refer to [53].

Definition 3.18. Let (U, ≺) be a poset. For X ⊆ U, define
↓ X = {x ∈ U : there exists a ∈ X, x ≺ a}. Then ↓ X is called a down-set of X on the
poset (U, ≺).

Definition 3.19. Let (U, ≺) be a poset. For X ⊆ U, define
↑ X = {x ∈ U : there exists a ∈ X, a ≺ x}. Then ↑ X is called a up-set of X on the poset
(U, ≺).

The reducible element (see Definition 3.10) and minimal description (see Definition
3.14) in C can be characterized through down-sets by the following result:

Proposition 3.20. Let C be a covering of a non-empty set U. Then (C, ⊆) is a poset.
Suppose K ∈ C. Then K is reducible in C if and only if K =

∪
(↓ {K} − {K}) and

Md(x) = {K ∈ C : x ∈ K and ↓ {K} = {K}}, for all x ∈ U.

Further, the authors proposed the lattice and topological structures on coverings as
follows:

Definition 3.21. Let C be a covering of a non-empty set U. Define τ∗ = {C′ ⊆ C :↓ C′ = C′}
and τ∗ = {C′ ⊆ C :↑ C′ = C′}.

Proposition 3.22. (1) Let C be a covering of a non-empty set U. Then (τ∗, ∪, ∩) and
(τ∗, ∪, ∩) are lattices.

(2) Let C be a covering of U. Then (C, τ∗) and (C, τ∗) are topological spaces. Further,
β∗ = {↓ {K} : K ∈ C} and β∗ = {↑ {K} : K ∈ C} are topological bases of the
topological spaces (C, τ∗) and (C, τ∗), respectively.

Apart from these studies, Medhat in [34] showed that a cover C forms as a subbase for
a topology on U. The lower approximation generated by the cover C is the interior of a set
defined by this topology while the upper approximation may not contain the closure of a
set with respect to this topology.

In [54], Restrepo et al. studied relationships between approximation operators defined
from neighborhood operators and the approximation operators in the covering based rough
set theory. Note that a complete lattice (L,6) is a lattice which has least upper bound
and greatest lower bound for every subset M of L in (L,6).

Definition 3.23. Let f and g be two self-maps on a complete Boolean lattice B. We
say that g is the dual of f, if for all x ∈ B, g(xc) = (f(x))c, where xc represents the
complement of x ∈ B.

Definition 3.24. Let f and g be two self-maps on a complete Boolean lattice B. We say
that g is a conjugate of f, if for all x, y ∈ B, x ∧ f(y) = 0 if and only if y ∧ g(x) = 0. If g
is a conjugate of f, then f is a conjugate of g. If a map f is the conjugate of itself, then
f is called self-conjugate.

Definition 3.25. A neighborhood operator is a mapping N : U → P(U). If N(x) ̸= ∅ for
all x ∈ U, N is called a serial neighborhood operator. If x ∈ N(x) for all x ∈ U, N is
called a reflexive neighborhood operator.

The authors defined approximation operators using a neighborhood operator. Let N
be a neighborhood operator. Then the authors defined two lower approximations LN

1 and
LN

2 as follows:
LN

1 (A) = {x : N(x) ⊆ A},
LN

2 (A) =
∪

{N(x) : N(x) ⊆ A},
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and three upper approximations GN
1 , GN

2 and GN
3 as follows:

GN
1 (A) =

∪
{N(x) : x ∈ A},

GN
2 (A) = {x ∈ U : N(x) ∩ A ̸= ∅},

GN
3 (A) =

∪
{N(x) : N(x) ∩ A ̸= ∅}.

Then GN
1 is conjugate of GN

2 ; the pair (GN
2 , LN

1 ) are conjugate if and only if GN
1 = GN

2 ;
and LN

2 is dual of GN
2 . The following proposition is the characterization of pairs of dual

approximation operators based on neighborhoods.

Proposition 3.26. Let N be a neighborhood operator. The following statements are
equivalent:

(i) For all x, y ∈ U, N satisfies y ∈ N(x) ⇒ x ∈ N(y).
(ii) GN

2 = GN
3 .

(iii) There exists a symmetric binary relation Θ on U such that N(x) = {y ∈ U : xΘy}.

Further, we can construct approximation spaces on a subset of U. This was done in [8],
where two subsystems (i.e., family of subsets of subsets of U) were constructed. As there
was no connection between two subsystems, the corresponding lower approximation and
upper approximation were not dual to each other. This problem was resolved by Li and
Jing in [28]. Li and Jing chose a subsystem S and its dual subsystem Sc = {Ac : A ∈ S}
to construct a general approximation space.

Definition 3.27. Let U be a non-empty set and S be a family of subsets of U. Then
(U, S, Sc) is called a general granular space. For any X ⊆ U, the lower and upper approx-
imations of X in (U, S, Sc) are defined, respectively, by
X∗ = S(X) =

∪
{A ∈ S : A ⊆ X},

X∗ = S(X) =
∩

{A ∈ Sc : X ⊆ A}.

The Operator S satisfies the properties of an interior operator except S(U) = U and
S(X ∩ Y ) = S(X) ∩ S(Y ). Similarly S satisfies the properties of a closure operator except
S(∅) = ∅ and S(X ∪ Y ) = S(X) ∪ S(Y ).
The new model can be considered as an extension of the rough set models on covering
approximation spaces, knowledge spaces, topological spaces and Pawlak’s approximation
spaces by the following results:

(1) Let (U, S, Sc) be a general granular space. Then S is a covering of U, if and only if
S(U) = U or S(∅) = ∅.

(2) Let (U, S, Sc) be a general granular space. Then S is a knowledge space on U, or
Sc is a closure system on U, if and only if S(S) ⊆ S or S(Sc) ⊆ Sc.

(3) Let (U, S, Sc) be a general granular space, where S is a covering of U. Then S is
a base for a topology on U, if and only if for any X1, X2 ∈ P(U), S(X1 ∩ X2) =
S(X1) ∩ S(X2) or S(X1 ∪ X2) = S(X1) ∪ S(X2).

(4) Let (U, S, Sc) be a general granular space. Then there is a subsystem D ⊆ S such
that D is a partition of U and D = S. Further D = S, if and only if S satisfies
S(U) = U, S(X ∩ Y ) = S(X) ∩ S(Y ) and S(S(X)) ⊆ X, or S satisfies S(∅) = ∅,
S(X ∪ Y ) = S(X) ∪ S(Y ) and X ⊆ S(S(X)).

3.4. Topological aspects of logic and algebra on rough sets
It is hard to authenticate who was the first to use the algebraic methods. The studies in

the logic of Boole himself led to the notion which nowadays we call Boolean algebra [53].
Tarski [58] introduce the turning point in the algebraic study of logic as the method of
treating formulae, or equivalence classes of formulae as elements of abstract algebra, which
is now known as the Lindenbaum-Tarski algebra. The primary use of the Lindenbaum-
Tarski algebra is to study the correspondence between logic and abstract algebras. Of
course, the algebra corresponding to classical logic is a Boolean algebra. Boolean and
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other algebras are somewhat general structures. A proper representation theorem es-
tablishes their deeper mathematical meaning. The representation theorem, establishes a
relationship between logic, algebra, set theory, and topology [57]. The first representation
theorem for Boolean algebras was established by Stone (in [57]) and stated the following:

Theorem 3.28. Every Boolean algebra A is isomorphic to a field of sets. More exactly,
A is isomorphic to a field of subsets of its Stone space S, which is a compact and totally
disconnected Hausdorff space.

Many researchers have contributed to this area. Here, we discuss some important
researchers of topology done in the field of logic and algebra of classical rough sets.
Wasilewska [66] studied the idea of rough equality of sets which leads to a definition
of new classes of algebras, called topological quasi-Boolean algebras and topological rough
algebras. Rough algebra, introduced by Banerjee and Chakraborty [2], is a particular case
of Boolean algebra, which is a slight abstraction of De-Morgan’s lattices. The authors also
proved the representation theorem for topological rough algebras:
For every topological quasi-Boolean algebra (topological rough algebra) there exists a
monomorphism from topological quasi-Boolean algebra into a topological quasi-field (rough-
field) of sets of a topological space. A rough algebra is isomorphic to a topological rough-
field of sets.

In [75], Yao compared the constructive and algebraic approaches in the study of rough
sets. Different classes of rough set algebras are obtained from different types of binary
relations. Using constructive approach, a rough set algebra can be defined as follows:

Definition 3.29. Let (U, Θ) be a Yao’s approximation space, where Θ is a binary relation
on a non-empty set U. The pair of approximation operators is defined as,
X∗ = {x : Θs(x) ⊆ X}, X∗ = {x : Θs(x) ∩ X ̸= ∅}, where Θs(x) = {y : xΘy}.
Then the system (P(U), ∩, ∪, c, ∗) is called a rough set algebra, where ∩, ∪, and c are set
intersection, union and complement, respectively, and ∗ denotes the pair of approximation
operators.

In the algebraic approach, one defines a pair of dual approximation operators and states
axioms that must be satisfied by the operators. In an algebraic or axiomatic approach, the
primitive notion is a system (P(U), ∩, ∪, c, L, H), where (P(U), ∩, ∪, c) is the set algebra,
and L, H : P(U) → P(U) are unary operators on the power set P(U). We call L and H
the approximation operators, indicating their intended physical interpretation. They are
defined by axioms without direct reference to the binary relation.

Definition 3.30. Let L, H : P(U) → P(U) be two unary operators on the power set P(U).
They are dual operators if

(i) L(X) = (H(Xc))c,
(ii) H(X) = (L(Xc))c,

for all X ⊆ U .

For the algebraic study of the theory of rough sets, the following theorem can be easily
obtained from the constructive approach.

Theorem 3.31. Suppose L, H : P(U) → P(U) are dual unary operators. There exists a
binary relation Θ on U such that L(X) = X∗ and H(X) = X∗ for all X ⊆ U, if and only
if L and H satisfy the properties:

(i) L(U) = U,
(ii) L(X ∩ Y ) = L(X) ∩ L(Y ),
(iii) H(∅) = ∅,
(iv) H(X ∪ Y ) = H(X) ∪ H(Y ).

A counterpart of Definition 3.30 is therefore obtained in the algebraic framework.
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Definition 3.32. Let L, H : P(U) → P(U) be a pair of dual operators. If L satisfies
axioms (i) and (ii), or equivalently, H satisfies axioms (iii) and (iv) of above theorem,
then the system (P(U), ∩, ∪, c, L, H) is called a rough set algebra, and L and H are called
approximation operators.

Set-theoretic operators L and H are viewed as the counterparts of the necessity and
possibility operators in modal logic [77]. The algebraic approach is more flexible and
general than the constructive approach.

In [10], Eklund et al. showed that a partially ordered monad [32] contains sufficient
structure for modeling monadic topologies, rough sets, and Kleene algebras. The authors
showed how monads [3, 32] could be used to generalize and interpret rough situations. In
particular, a partially ordered ordinary power set monad contains sufficient structure to
provide rough set operations.

Järvinen et al. [18–21] studied lattice structure of rough approximations and rough sets
determined by indiscernibility relations which are not necessarily reflexive, symmetric or
transitive.
Definition 3.33. Let P and Q be two preorders (reflexive and transitive relations). A
pair (f, g) of maps f : P → Q and g : Q → P is called a Galois connection if, f(p) ≤ q
if and only if p ≤ g(q). The map g is called the adjoint of f . The map f is called the
co-adjoint of g.

Any map f between two complete lattices has an adjoint g, and the pair (f, g) is a
Galois connection, if and only if f is a complete join-morphism.

The upper approximation operator determined by an arbitrary binary relation Θ on a
universe U is a complete join-morphism on the power set of U . Therefore it induces a
Galois connection such that the adjoint is the lower approximation operator determined
by the inverse relation of Θ. The main properties of rough approximation operators fol-
low from the conventional and well-known properties of Galois connections on Boolean
lattices. The set of fixed points of the upper approximation operation determined by a
reflexive indiscernibility relation Θ forms an Alexandrov topology τΘ, and if the relation
Θ is also symmetric, the topology τΘ is closed under complementation. Moreover, if the
underline relation Θ is reflexive, then the upper approximation operator serves as the
smallest neighborhood operator of the Alexandrov topology τΘ.

Some widely known and well established topological notions are closely related to no-
tions and results introduced and rediscovered in the rough set literature. These were
studied by Vlach [64] where he discussed the notion of an approximation space through a
pair of isotonic function [14], and then compared it with Pawlak’s approximation space.
The author showed that topologies induced by approximation operators of the rough set
theory are uniform topologies (see [16,37]).
Let R be an equivalence relation in U and let DR be the partition of U induced by R. A
subset X of U is R-definable if it is either empty or a member of DR or union of two or
more members of DR. Alternatively, the lower approximations of subsets of U are values
of the set-to-set function fR : P(U) → P(U) defined by

fR(X) =
∪

{A ∈ DR : A ⊆ X}, X ⊆ U.

It can easily be verified that, the dual of fR is
fd

R(X) =
∪

{A ∈ DR : A ∩ X ̸= ∅}.

Hence (U, (fR, fd
R)) forms an approximation space where fR(X) and fd

R(X) are the lower
and upper approximations respectively. The upper approximation of a subset of U are
values of the function that is dual to the function whose values are lower approximation
of the given subset of U, and vice versa. It can easily be seen that, for all subsets X and
Y of U, we have

(1) fR(X) ⊆ X ⊆ fd
R(X), i.e., (U, (fR, fd

R)) is a uniform approximation space.
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(2) X ⊆ Y implies fR(X) ⊆ fR(Y ) and fd
R(X) ⊆ fd

R(Y ), i.e., fR and fd
R are isotones.

(3) fR(fR(X)) = fR(X) and fd
R(fd

R(X)) = fd
R(X).

(4) fR(fR(X)) = fd
R(fR(X)).

(5) fR(fd
R(X)) = fd

R(fd
R(X)).

Thus, fR is idempotent and contractive and fd
R is a closure function, i.e., fd

R is idempotent
and expansive. Also it is clear that, Pawlak’s R-definable sets are exact in the approxi-
mation space (U, (fR, fd

R)). Pawlak’s lower and upper approximations of subsets of U are
R-definable sets. It is also useful to notice that, for all X and Y,
fR(X ∩ Y ) = fR(X) ∩ fR(Y ),
fd

R(X ∪ Y ) = fd
R(X) ∪ fd

R(Y ),
fR(∅) = fd

R(∅) = ∅ and fR(U) = fd
R(U) = U.

We know that P(U) is a complete lattice. The set of all functions which map the power
set P(U) of a non-empty set U into itself, inherits from P(U) a set algebra and inclu-
sion. Moreover, this set is also a semigroup with respect to the composition of func-
tions and the identity function. Since Pawlak’s rough sets can be represented by or-
dered pairs (fR(X), fd

R(X)) of lower and upper approximations, therefore the relation
‘≤’ gives a natural partial order ‘≼’ on the collection of rough sets in (U, R) defined as
(fR(X), fd

R(X)) ≼ (fR(Y ), fd
R(Y )). This partially ordered set is a complete Stone lattice

[5]. The ordered set of rough sets determined analogously by relations that are simul-
taneously symmetric and transitive but not necessarily reflexive also forms a complete
Stone lattice (see [19]). However, Järvinen [17, 19] showed that the ordered set of rough
sets determined by tolerance relations and transitive relations are not even semilattices
necessarily, in general.

3.5. Theories related to rough sets
In this section, we give a brief survey on some of the theories related to classical rough

sets and topology and their conjoint applications.

3.5.1. Near set theory. In [44,45], Peters et al. discussed how to describe and compare
visual objects. In the process, they investigated the conjoint study of rough sets and
proximity spaces [23,24,52,61–63]. The authors considered two forms of nearness relations,
namely, a spatial and a descriptive relation to study nearness of objects. There is a
natural transition from the two forms of nearness relations to nearness in a generalized
approximation space. Let δ ⊆ P(U) × P(U) denote a nearness (proximity) relation on a
non-empty set U. For B, C ⊆ U, we write BδC (B is spatially near C). If B is not near
(far) C (denoted by Bδ̄C, where δ̄ = P(U) ×P(U) − δ), then B ∩ C = ∅. Now let us define
the two nearness relations given in the paper.

Definition 3.34. [36] The relation δ ⊆ P(U) × P(U) is an Efremovič proximity (also
called an EF-proximity), if and only if, for A, B, C ∈ P(U), the following axioms hold:
(1) AδB ⇒ A and B are not empty,
(2) A ∩ B ̸= ∅ ⇒ AδB,
(3) AδB ⇒ BδA (symmetry),
(4) Aδ(B ∪ C) if and only if AδB or AδC,
(5) Efremovič axiom: Aδ̄B ⇒ Aδ̄C and Bδ̄Cc, for some C ⊆ U.
The pair (U, δ) is called an EF-proximity space.

Let U be a non-empty set and let Φ = {ϕ1, ..., ϕi, ..., ϕn} be a set of probe functions, i.e.,
ϕi : U → R represents features of each x. Let Φ(x) denote a feature vector for the object
x, or a vector of feature values that describe x, i.e., Φ(x) = (ϕ1(x), ..., ϕi(x), ..., ϕn(x)). A
feature vector provides a description of an object.
Define an equivalence relation RΦ ⊆ U × U by, RΦ = {(x, y) ∈ U × U : Φ(x) = Φ(y)}. The
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relation RΦ is called an Φ-indiscernibility relation [42] and the pair (U, RΦ) is a Pawlak’s
approximation space. The upper approximation of E ⊆ U is defined by,

E∗ =
∪

[x]Φ∩E ̸=∅
[x]Φ =

∪
x∈U :Φ(x)∈QΦ(E)

[x]Φ,

where QΦ(E) = {Φ(x) : x ∈ E} is called the description of E relative to Φ and [x]Φ is
the equivalence class of x ∈ U determined by RΦ. The lower approximation of E ⊆ U is
defined by,

E∗ =
∪

[x]Φ⊆E

[x]Φ =
∪

x∈U :Φ(x)∈QΦ(E)+

[x]Φ,

where QΦ(E)+ = {v ∈ QΦ(E) : for all x ∈ E, Φ(x) = v}.
Now define the descriptive intersection ∩Φ of subsets A and B of X by

A ∩Φ B = {x ∈ U : Φ(x) ∈ QΦ(A) ∩ QΦ(B)}.

Then A∩Φ B = A∗ ∩B∗. For any two non-empty sets A and B, descriptive union is defined
by

A ∪Φ B = {x ∈ U : Φ(x) ∈ QΦ(A) ∪ QΦ(B)}.

We have A ∪Φ B = (A ∪ B)∗. Let us assume that Φ(x) ∈ Rn, where R is the set of real
numbers. The descriptive proximity relative to Φ is defined as follows:

Definition 3.35. [45] The binary relation δΦ is a descriptive Efremovič-proximity (EF-
proximity), provided the following axioms are satisfied for A, B, C ⊆ U :
(i) AδΦB ⇒ A ̸= ∅, B ̸= ∅,
(ii) A ∩Φ B ̸= ∅ ⇒ AδΦB,
(iii) AδΦB ⇒ BδΦA,
(iv) AδΦ(B ∪ C) ⇔ AδΦB or AδΦC,
(v) AδΦB ⇒ AδΦC and BδΦCc, for some C ⊆ U.
The pair (U, δΦ) is called a descriptive EF-proximity space (briefly, descriptive EF-space).
Two points are descriptively distinct if they have different descriptions. For distinct points
x, y ∈ U, a descriptive EF-proximity is separated, if and only if, it satisfies
(vi) {x}δΦ{y} ⇒ Φ(x) = Φ(y) (c.f. EF-Proximity Separation Axiom [36]).
The tuple (U, RΦ, δΦ) denotes a descriptive nearness approximation space, which is a
Pawlak’s approximation space endowed with the descriptive EF-proximity relation δΦ.

Let (U, RΦ, δΦ) be a descriptive nearness approximation space and let A, B ⊆ U. Then,
for descriptively near sets, the following statements are equivalent:
(a) AδΦE,
(b) there exists x ∈ U such that [x]Φ ∩ A ̸= ∅ and [x]Φ ∩ E ̸= ∅,
(c) A∗ ∩ E∗ ̸= ∅,
(d) there exists y ∈ A and z ∈ E such that [y]Φ = [z]Φ.
Concepts of nearness and remoteness of granules are defined using descriptive nearness.
Consider the following example: Let (U, RΦ, δΦ) be the descriptive nearness approximation
space, where RΦ = {(x, y) : Φ(x) = Φ(y)} shown in Figure 1(A). Here U is a set of picture
elements (pixels) in a micro-fossil image as shown in Figure 1(B) and Φ is the set of probe
functions representing color and greyscale intensity features of pixels in U . In this example,
the authors compared the age groups of different micro-fossils using nearness theory on
rough sets of micro-fossils. Let the distinguished collection of subsets B ⊂ P2(U) in
Figure 1(B) be B = {B1, B2, E1, E2, E3, E4}. Observe that the set A in Figure 1(B) and
each of the subsets in B is a rough set because the lower approximation of each subset
is empty. These selected subsets are of interest because they contain parts of the bodies
for micro-fossils of different age groups. The bodies have varying mass, depending on the
age of the micro-fossils. To extract an upper approximation nearness granule from the
distinguished subsets, we consider portions of the upper approximation of A relative to
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(a) Complex Fossil Image
(b) Sample Rough Set-Based Setae Gran-
ules

Figure 1. Microfossil Image

the upper approximation of each subset in B and portions of the upper approximation of
each subset in B relative to the upper approximation of A.

DisΦ∗(A, C) = Φ∗A − Φ∗C (portion of Φ∗A different from Φ∗C),
IndΦ∗(A, C) = Φ∗A ∩ Φ∗C (portion of Φ∗A common with Φ∗C),
DisΦ∗(C, A) = Φ∗C − Φ∗A (portion of Φ∗C different from Φ∗A),

where C ∈ {B1, B2, E1, E2, E3, E4}.
We are only interested in comparing the descriptions of pixels in A∗ with descriptions of

pixels in each upper approximation of distinguished subsets from B. Obviously, from the
above definition IndΦ∗(A, C) ̸= ∅, i.e., A and C are near. However, information encoded
in DisΦ∗(A, C) and DisΦ∗(C, A) is also useful when one would like to compare the sets
A, C. For example, the sets A, C may be near but they differ as described by DisΦ∗(A, C)
and DisΦ∗(C, A). The proposed approach of extracting a nearness granule is motivated by
an interest in comparing the pixels in portions of the upper approximations of the subsets
in B with the upper approximation of A.
The beauty of this approach is that we can utilize our knowledge of the equivalence classes
in U to learn to what extent the classes represented by A∗ are also represented to a greater
or lesser degree in the upper approximation of one or more of the distinguished subsets in
B, and vice versa. With this approach in mind, we obtain a sample upper approximation
nearness granule, namely,

A∗ = DisΦ∗(A, C), where C ∈ {E1, E2, E3, E4},
B∗

i = DisΦ∗(Bi, Ej)∗, where i ∈ {1, 2} and j ∈ {1, 2, 3, 4}.
For example, A∗δΦB∗

1 (A∗ is descriptively near B∗
1), since a portion of the upper approx-

imation containing purple pixels in the equivalence class (for setae) is represented by A∗

and B∗
1 .

3.5.2. Finite functional topology, Discrete dynamical system, and Rough set
theory. Functional information system provides a detailed information for a specific type
of activity or related group of activities, as well as summarized information for manage-
ment control of such activities. Here, we will discuss the contribution of Wolski [69] in
this field. Wolski described discrete dynamical system through the concept of rough sets
for the study of finite functional topology. The author focused on functional system which
describe some process represented by a function ρ. In this paper, he used the topological
structure generated by lower approximations of subsets of U, and named it as approxi-
mation topological space. For a topological space (U, τ), the relation of set inclusion on
τ can be converted into a preorder ≼ defined on elements of U, called the specialization
preorder, as follows:



Topological structures in rough set theory: A survey 1289

a ≼ b if and only if cl({a}) ⊆ cl({b}),
where cl({a}) is the closure of {a} with respect to the topological space (U, τ). For an
arbitrary preordered set (U, ≼), there is always a topology τ whose specialization preorder
is ≼ .

Definition 3.36. Let (U, ≼) be a preordered set. A specialization topology on U is a
topology τ with a specialization preorder ≼ such that every automorphism of U is a
homeomorphism of (U, τ).

As there exists a one-to-one correspondence between Alexandrov topologies on a set
U and preorders on U, so for a preordered set (U, ≼), we shall denote the correspond-
ing Alexandrov topological space by (U, τ≼). Thus for a given information system S =
(U,A, V, f) equipped with its information order ≼, (U, τ≼) is an Alexandrov topological
space. If S = (U,A, V, f) is a complete information system having information order ≼
(which is an equivalence relation), then (U, τ≼) is a completely regular Alexandrov topo-
logical space [1, 22]. Since the author started with the concept of an information system,
his interest was restricted to discrete dynamical systems. These systems have been already
investigated in the context of computer science in [12,35].

Definition 3.37. A discrete dynamical system is a pair (U, ρ) where U is a set and
ρ : U → U is simply a function from U into itself.

A key concept in the study of discrete dynamical systems is the orbit of a point.

Definition 3.38. Let ρ : U → U. The ρ-orbit of a ∈ U, often called the ρ-trajectory of a,
Oρ(a), is defined as a sequence:

(ρ0(a), ρ1(a), ρ2(a), ρ3(a), ...),
where ρk = ρoρk−1. The usual interpretation of orbit is that the iterations of ρn(a) describe
the evolution of a in discrete time n. Of course, any orbit Oρ(a) can be converted into a
set Osρ(a):

Osρ(a) = {b ∈ U : b = ρn(a), for some n},

a ∈ U. The ρ-orbit of a is cyclic if ρn(a) = a, for some n ≥ 1. We also say that a is
a cyclic point (or a periodic point) for ρ. The ρ-orbit of a is called eventually cyclic if
ρn(a) = ρm(a), for some n, m with n ̸= m, and in this case a is eventually cyclic point for
ρ.

Let U be a set and ρ : U → U be a function. Define
τρ = {A ⊆ U : ρ(A) ⊆ A}, where ρ(A) = {ρ(x) : x ∈ A}.

It is easy to observe that τρ is a topology on U, called functional topology on U. Let (U, ρ)
be a discrete dynamical system. Then (U, τρ) is an Alexandrov topological space.

Definition 3.39. Let (U, τ) be a topological space. Then we say that the topology τ is
a functional topology if there is a map ρ : U → U such that τ = τρ for some functional
topological space (U, τρ).

Let (U, τρ) be a functional topological space. Then Osρ(a) is the minimal open neigh-
borhood of a ∈ U and the set {Osρ(a) : a ∈ U} forms a minimal basis of τρ.

Definition 3.40. Let S = (U,A, V, f) be an information system. Let ≼ denotes its
information order and τ≼ is specialization topology with a specialization preorder ≼. Then
S is called functional if the corresponding topological space (U, τ≼) is functional. If τρ = τ≼
for some ρ : U → U, then we say that the information system S = (U,A, V, f) describes
the process ρ.



1290 P.K. Singh, S. Tiwari

The lower and upper approximations can be defined by means of orbits as follows:

A = {a ∈ U : Osρ(a) ⊆ A},

A = {a ∈ U : Osρ(a) ∩ A ̸= ∅},

A ⊆ U. Also, every a ∈ U is an eventually cyclic point for ρ. Lastly, the author discussed
the granular approach via dynamical systems. For a functional information system S =
(U,A, V, f) and a ∈ U, Oρ(a) represents the smallest information granule containing a.

Definition 3.41. Let S = (U,A, V, f) be a functional information system (for some ρ).
A granular orbit GOρ(a) of a is defined as a sequence:

(Osρ(ρ0(a)),Osρ(ρ1(a)),Osρ(ρ2(a)), ...,Osρ(ρm(a))).

Since every point of a ∈ U is eventually cyclic, the author proved the following result:

Proposition 3.42. Let S = (U,A, V, f) be a functional information system, for some ρ
and a ∈ U. Then for all ρ-periodic points b, c ∈ GOρ(a), Osρ(b) = Osρ(c).

With the help of granular view of orbits, one could obtain quite rich lattice structures
such as De Morgan Algebra [53] or 2-valued Łukasiewicz algebra (see [46]).

3.5.3. Formal concept analysis. In [68], Wolski established some formal relationships
between formal concept analysis [11] and rough set theory based on the theory of finite
topological approximations. The composition of the derivation operators from the formal
concept analysis and the upper and lower approximation operators of rough set theory
naturally emerge from the specialization order. This is an indication of some relationship
between the formal concept analysis and the rough set theory. The composition of the
derivation operator of formal concept analysis is the opposite operator with respect to the
specialization order to the upper approximation of the rough set theory. Thus the formal
concept analysis and the rough set theory taken together brought a semantics to the tense
logic S4.t [49]. Thus, a topological space and its finite approximation are indistinguishable
by means of the standard temporal language, i.e., in the case of topological approximate
reasoning, we should employ tense logic S4.t interpreted by the rough set theory and
the formal concept analysis instead of the unimodal systems with the rough set theory
semantics.

4. Conclusion
Topology is a useful theoretic framework for the study of rough sets. Approximation

operators in the rough set theory are topological operators. Hence, a conjoint investigation
of the rough set theory and topology is required, which has been done by many researchers
since inception. We have done a literature review of the rough set theory and some of
its variants which are designed using different bases: equivalence relational, arbitrary
binary relational, topological, covering based. The discussion in this article focus on the
topological structures on rough sets and some applications of topological structures on
rough sets. Topological aspects of logic and algebra on rough sets are also discussed. The
connections between the dynamical system and the rough set theory, the near set theory
and the rough set theory, and the formal concept analysis and the rough set theory are
also reviewed in this paper.

There are still some open problems/areas which can be explained in the future research
of topological aspects of rough sets. Some of them are:

(1) The structures of rough uniform spaces, rough function spaces, and rough geomet-
rical topology are still unexplored.
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(2) In the information system S = (U,A, V, f), the function f : U × A → V is in-
dependent of time. If we consider a time-dependent function f, then the values
of function may vary with time. As a result, the topological structure on U may
also differ from time to time. The study of topological structures by considering a
time-dependent function f is still an open problem in this area.

(3) Topological structures on a information system S = (U,A, V, f), where U is effect
algebra [9] are still open to be studied.

(4) The field of topological groups still needs to be explored in the context of approx-
imation spaces.

(5) Extension problems of topology on the topological structures defined on various
approximation spaces still need attention from the researchers.

We hope this review will give a cutting edge and a wide reference to the conjoint research
of rough sets and topology.
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