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Abstract. A ring R is called EM-Hermite if for each a, b ∈ R, there exist

a1, b1, d ∈ R such that a = a1d, b = b1d and the ideal (a1, b1) is regular.

We give several characterizations of EM-Hermite rings analogue to those for

K-Hermite rings, for example, R is an EM-Hermite ring if and only if any

matrix in Mn,m(R) can be written as a product of a lower triangular matrix

and a regular m × m matrix. We relate EM-Hermite rings to Armendariz

rings, rings with a.c. condition, rings with property A, EM-rings, generalized

morphic rings, and PP-rings. We show that for an EM-Hermite ring, the poly-

nomial ring and localizations are also EM-Hermite rings, and show that any

regular row can be extended to regular matrix. We relate EM-Hermite rings

to weakly semi-Steinitz rings, and characterize the case at which every finitely

generated R-module with finite free resolution of length 1 is free.
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1. Introduction

All rings are assumed to be commutative with unity 1. For any ring R, let

Z(R) be the set of all zero-divisors, and reg(R) = R \ Z(R) be the set of all

regular elements, and let U(R) be the set of all units in R. Recall that if R is a

commutative ring with unity, then the total quotient ring of R is the localization

T (R) = (reg(R))−1R. LetMn,m(R) be the ring of all n×mmatrices defined onR. It

is well known that A ∈ U(Mn,n(R)) if and only if det(A) ∈ U(R), A ∈ reg(Mn,n(R))

if and only if det(A) ∈ reg(R), and A is left zero-divisor if and only if it is right

zero-divisor, see [3]. The row
[
a1 a2 · · · an

]
is called unimodular if the ideal

(a1, a2, · · · , an) = R, and it is called regular if the ideal (a1, a2, · · · , an) * Z(R), in

this case the ideal (a1, a2, · · · , an) is called a regular ideal. Similar definitions are

for columns.
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A ring R is called a K-Hermite ring if for each a, b ∈ R, there exist a1, b1, d ∈ R
such that a = a1d, b = b1d and the ideal (a1, b1) = R, see [6] and [8]. It is clear

that if R is a K-Hermite ring, then it is a Bézout ring (every finitely generated

ideal is principal). A ring R is called Hermite if any unimodular row over R can be

completed to an invertible matrix by adding a suitable number of new rows. Any

K-Hermite is Hermite, but the converse is not true, see [10].

We generalize the concept of K-Hermite rings in the following sense: we call

a ring R EM-Hermite, if for each a, b ∈ R, there exist a1, b1, d ∈ R such that

a = a1d, b = b1d and the ideal (a1, b1) is regular. We find that this ring has some

nice properties; it is preserved by the direct products and localizations, and unlike

the case of K-Hermite rings, if R is EM-Hermite, then so is R[x]. We give several

characterizations of EM-Hermite rings analogue to those for K-Hermite rings, for

example, R is an EM-Hermite ring if and only if any matrix in Mn,m(R) can be

written as a product of a lower triangular matrix and a regular m × m matrix.

We also show that any regular row can be extended to a regular matrix by adding

a suitable number of rows. We prove that EM-Hermite rings are non-comparable

with Bézout rings, nor Hermite rings, but R is K-Hermite if and only if it is Bézout

EM-Hermite. We also relate EM-Hermite rings to Armendariz rings, rings with a.c.

condition, rings with property A, PP-rings, weakly semi-Steinitz rings, EM-rings,

and generalized morphic rings. Finally, we characterize when an R-module with

finite free resolution of length 1 is free.

2. EM-Hermite rings

In this section, we define EM-Hermite rings, and give several characterizations

for it, and study some cases at which an EM-Hermite ring is K-Hermite.

Definition 2.1. A ring R is called EM-Hermite if for each a, b ∈ R, there exist

a1, b1, d ∈ R such that a = a1d, b = b1d and the ideal (a1, b1) is regular.

We now give some examples of EM-Hermite rings.

Example 2.2. (1) Since any principal ideal ring is K-Hermite, see [10], it is also

EM-Hermite.

(2) It is clear that any integral domain is an EM-Hermite ring, and so, Z[x] is

an EM-Hermite ring that is not K-Hermite, being non-Bézout.

(3) Consider the idealization Z4(+)Z4, and consider the two elements (2, 0) and

(0, 1). Assume (2, 0) = (a, b)(c, d) and (0, 1) = (a, b)(x, y).

If x 6= 0, then we must have a = 2 = x, and so we have 1 = 2y + 2b, and hence

2 = 0, a contradiction.
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So, we must have x = 0, and hence, 1 = ay, i.e. a is a unit in Z4. Thus we have

c = 2. Now,

(2, d)(0, 2) = (0, 0),

(0, y)(0, 2) = (0, 0).

Hence Ann((2, d), (0, y)) 6= {(0, 0)}, and Z4(+)Z4 is not an EM-Hermite ring. Since

any finite ring is Hermite, then Z4(+)Z4 is Hermite that is not EM-Hermite.

(4) Let R = Z[x1, x2, x3, y1, y2, y3] /(x1y1 + x2y2 + x3y3 − 1) . Then R is an

integral domain, and hence EM-Hermite that is not a Hermite ring, see [12].

We now give equivalent characterizations of EM-Hermite rings, parallel to those

for K-Hermite, see [10].

Theorem 2.3. The following statements are equivalent for a ring R.

(1) R is an EM-Hermite ring.

(2) For any finite set {a1, a2, . . . , an} ⊆ R, there exists {b1, b2, . . . , bn, d} ⊆ R

such that ai = bid, for each i, and the ideal (b1, b2, . . . , bn) is regular.

(3) For any finite set {a1, a2, . . . , an} ⊆ R, there exist d ∈ R and a regular

matrix Q ∈Mn,n(R) such that [a1 a2 . . . an] = [d 0 0 . . . 0]Q.

(4) For any matrix B ∈ Mm,n(R), there exists a regular matrix Q ∈ Mn,n(R)

such that B = LQ, with L a lower triangular matrix.

Proof. (1) ⇒ (2) Assume R is an EM-Hermite ring, and let a, b, c ∈ R. Then

there exist a1, b1, d ∈ R such that a = a1d, b = b1d and r1 = α1a1 + β1b1 ∈
(a1, b1) ∩ reg(R). Also there exist a2, b2, k ∈ R such that d = a2k, c = b2k and

r2 = α2a2 + β2b2 ∈ (a2, b2) ∩ reg(R).

But a = a1d = a1a2k and b = b1d = b1a2k. Also we have r1r2 = (α1α2)(a1a2) +

(α2β1)(a2b1) + (α1β2a1 + β1β2b1)(b2) ∈ (b2, a1a2, a2b1)∩ reg(R). So, the condition

can be applied to any finite subset of R.

(2) ⇒ (3) Let {a1, a2, . . . , an} ⊂ R. Then there exits {bn−1, bn, d1} ⊆ R such

that ai = bid1, for i ∈ {n, n− 1}, and r1 = αn−1bn−1 +αnbn ∈ (bn−1, bn)∩ reg(R).

So we have

[a1 a2 . . . an] = [a1 a2 . . . an−2 d1 0]Q1,

where Q1 =


In−2 0

0

[
bn−1 bn

−αn αn−1

]
 ,

and note that det(Q1) = r1 ∈ reg(R).
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There exists {bn−3, bn−2, d2} ⊂ R such that an−2 = bn−2d2, d1 = bn−3d2 and

r2 = αn−2bn−2 + αn−3bn−3 ∈ (bn−2, bn−3)R ∩ reg(R). So we have

[a1 a2 . . . an−2 d1 0] = [a1 a2 . . . an−3 d2 0 0]Q2,

where Q2 =



In−3 0

0

 bn−2 bn−3 0

−αn−3 αn−2 0

0 0 1




,

and note that det(Q2) = r2 ∈ reg(R).

In this case we have [a1 a2 . . . an] = [a1 a2 . . . an−3 d2 0 0]Q2Q1, and

det(Q2Q1) = r2r1 ∈ reg(R).

Continue to get [a1 a2 . . . an] = [d 0 0 . . . 0]Q, and det(Q) = r ∈ reg(R).

(3) ⇒ (4) Let B ∈ Mm,n(R). We will proceed by induction on m. By (3) the

result is true when m = 1. So assume it is true for all k < m, and let B = [bij ]m×n.

It follows by (3) that [b11 b12 . . . b1n] = [d 0 0 . . . 0]Q1, where Q1 is a regular

matrix. So, [b11 b12 . . . b1n]adj(Q1) = det(Q1)[d 0 0 . . . 0]. Thus, B adj(Q1) =

det(Q1)

[
d 0

C D

]
. By induction hypothesis we have D = L1Q2, where L1 is a lower

triangular matrix and Q2 is regular matrix in M(n−1),(n−1)(R). Substituting we get

B adj(Q1) = det(Q1)

[
d 0

C L1Q2

]
= det(Q1)

[
d 0

C L1

][
1 0

0 Q2

]
,

and so,

B =

[
d 0

C L1

][
1 0

0 Q2

]
Q1.

Now, let L =

[
d 0

C L1

]
, and Q =

[
1 0

0 Q2

]
Q1. Then L is lower triangular, det(Q) =

det(Q2) det(Q1) ∈ reg(R), and B = LQ.

(4)⇒ (1) Let a, b ∈ R, Then there exist d ∈ R, and a regular matrix Q ∈M2,2(R)

such that [a b] = [d 0 ]Q.

So, a = dq11, b = dq12, and det(Q) = q11q22 − q12q21 ∈ (q11, q12)∩ reg(R). Thus,

R is an EM-Hermite ring. �

If we extend our work to non-commutative rings, we will have:

Corollary 2.4. If R is an EM-Hermite ring, then Mn,n(R) is also EM-Hermite.
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Proof. Assume R is an EM-Hermite ring, and let A,B ∈ Mn,n(R). Then there

exist lower triangular matrix L ∈ Mn,2n(R) and a regular matrix Q ∈ M2n,2n(R)

such that [
A B

]
= LQ =

[
L1 0

] [Q1 Q2

Q3 Q4

]
.

So it follows by (3) in Theorem 2.3 that Mn,n(R) is EM-Hermite. �

We can follow the proof of [10] to show that the following statements are equiv-

alent.

Proposition 2.5. The following statements are equivalent for a ring R.

(1) For any matrix B ∈ Mm,n(R), there exists a regular matrix Q ∈ Mn,n(R)

such that BQ = L a lower triangular matrix.

(2) For any vector [a1 a2 . . . an] ∈ M1,n(R), there exists a regular matrix

Q ∈Mn,n(R) and d ∈ R such that [a1 a2 . . . an]Q = [d 0 0 . . . 0].

(3) For any a, b ∈ R, there exists a regular matrix Q ∈M2,2(R) and d ∈ R such

that [a1 a2]Q = [d 0 ].

(4) For any a, b ∈ R, there exist x, y ∈ R such that ax+ by = 0 and (x, y) is a

regular ideal in R.

Assume that R is an EM-Hermite ring, and let a, b, d,−x, y ∈ R such that

a = dy, b = d(−x) and β(−x) +αy = r ∈ reg(R). Then ax+ by = 0. So, R satisfies

condition (4) in Proposition 2.5, and hence it satisfies all the conditions. Moreover

we have: [
a b

]
=

[
d 0

] [ y −x
−β α

]
,

[
a b

] [ α x

β y

]
=

[
dr 0

]
,

with det

[
y −x
−β α

]
= det

[
α x

β y

]
= r ∈ reg(R).

To give a more general result, let B ∈ Mm,n(R). There exists a regular ma-

trix Q ∈ Mn,n(R) such that B = LQ with L a lower triangular matrix. Then

B adj(Q) = det(Q)L. Moreover, det(Q)L is a lower triangular matrix and

det(adj(Q)) = (det(Q))n−1 ∈ reg(R).

Although EM-Hermite rings are in general not K-Hermite, the following Theorem

shows that for some rings they are equivalent.

Theorem 2.6. If every regular element in R is a unit, then R is a K-Hermite ring

if and only if it is an EM-Hermite ring.
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The condition in the above Theorem is not necessary, since Z has regular elements

that are not units, but it is K-Hermite.

Corollary 2.7. If R is a finite ring, then R is K-Hermite ring if and only if it is

an EM-Hermite ring.

Corollary 2.8. For any ring R, T (R) is K-Hermite ring if and only if it is an

EM-Hermite ring.

We now continue the investigation started in [7], [8] and [11] for the cases at

which a Bézout ring is K-Hermite.

Theorem 2.9. A ring R is K-Hermite if and only if it is a Bézout EM-Hermite

ring.

Proof. If R is K-Hermite, then clearly it is a Bézout EM-Hermite ring. So assume

that R is a Bézout EM-Hermite ring, and let a, b ∈ R. Then there exist a1, b1, d ∈ R
such that a = a1d, b = b1d and (d1) = (a1, b1) is a regular ideal in R, and so

d1 ∈ reg(R). Thus we have:

d1 = a1x+ b1y,

a1 = αd1,

b1 = βd1.

Hence we get

d1 = d1(αx+ βy),

and since d1 ∈ reg(R), we would have

1 = αx+ βy.

Therefore, a = α(d1d), b = β(d1d ) and (α, β) = R, i.e. R is K-Hermite. �

3. Relations with other rings

In this section, we relate EM-Hermite rings to Armendariz rings, rings with

a.c. condition, rings with property A, EM-rings, generalized morphic rings, and

PP-rings.

A ring R is said to be Armendariz if the product of two polynomials in R[x] is

zero if and only if the product of their coefficients is zero.

Theorem 3.1. If R is an EM-Hermite ring, then it is Armendariz.
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Proof. Let f(x) =
n∑
i=0

fix
i. Then it follows by Theorem 2.3 that fi = kih for each

i and Ann(k0, . . . , kn) = {0}. So it follows by McCoy’s Theorem that
n∑
i=0

kix
i is

not a zero-divisor in R[x], and f(x) = h
n∑
i=0

kix
i. If g(x) =

m∑
i=0

gix
i = k

m∑
i=0

lix
i with

m∑
i=0

lix
i is not a zero-divisor in R[x]. Then f(x)g(x) = 0 if and only if hk = 0. Thus

we have figj = (hk)(kilj) = 0 for each i and j. Hence R is Armendariz. �

A ring R is said to have a.c. condition, if for any a, b ∈ R there exists c ∈ R
such that Ann(a, b) = Ann(c).

Theorem 3.2. If R is an EM-Hermite ring, then it has a.c. condition.

Proof. Let a, b ∈ R. Then there exist d, x, y such that a = dx, b = dy and the ideal

(x, y) is regular. Thus we have Ann(x, y) = {0} and so, Ann(a, b) = Ann(d). �

A ring R is said to have property A, if any finitely generated ideal contained in

Z(R) has nonzero annihilator. It was shown in [9] that any Noetherian ring has

property A, see Theorem 82.

Theorem 3.3. If R is an EM-Hermite ring, then it has property A.

Proof. Let a, b ∈ R such that Ann(a, b) = {0}. Then there exist d, x, y such that

a = dx, b = dy and the ideal (x, y) is regular. Let r = αx + βy ∈ reg(R). But

d ∈ reg(R) since Ann(d) = Ann(a, b) = {0}. Thus we have

aα+ bβ = dxα+ dyβ = dr ∈ (a, b) ∩ reg(R).

Therefore, (a, b) * Z(R). �

Let R be a ring, and let f(x) ∈ Z(R[x]) such that f(x) = cff1(x), where cf ∈ R
and f1(x) ∈ reg(R[x]). Then cf is called an annihilating content for f(x). It is clear

that deg(f) ≤ deg(f1). If every zero-divisor polynomial in R[x] has an annihilating

content, R is called an EM-ring. A ring R is called generalized morphic ring if

Ann(a) is a principal ideal for each a ∈ R, see [1]. Using Theorem 2.3, one can see

easily that any EM-Hermite ring is an EM-ring. But the following Theorem shows

that the two properties are equivalent if the ring was Noetherian. But first we need

the following important lemma.

Lemma 3.4 ([1, Lemma 3.25]). Assume that R is a Noetherian ring, and bR is a

prime principal ideal with b ∈ Z(R). If a ∈ bR \ {0}, then a = bns for some n ∈ N
and s ∈ R \ bR.
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Theorem 3.5. Assume that R is a Noetherian ring. Then the following are equiv-

alent:

(1) R is an EM-ring.

(2) R is a generalized morphic ring.

(3) R is an EM-Hermite ring.

Proof. For the equivalence of (1) and (2), see [1].

(2) ⇒ (3) Recall first that since R is a Noetherian ring, then Ann(a1, a2) 6= {0}
if and only if the ideal (a1, a2) ⊆ Z(R).

Let a1, a2 ∈ R. IfAnn(a1, a2) = {0}, then a1 = a1.1, a2 = a2.1, andAnn(a1, a2) =

{0}. If 0 6= m ∈ Ann(a1, a2), then (a1, a2) ⊆ Ann(m) ⊆M1 = c1R ⊆ Z(R), where

M1 is a maximal ideal in Z(R), and so it is prime, see [9, Theorem 6]. Hence,

using Lemma 3.4, ai = αic
ki
1 with αi /∈ c1R, and ki ≥ 1 for each i = 1, 2. Let

k11 = Min{ki}, bi = αic
ki−k11
1 . Then ai = ck111 bi and (a1, a2) ⊂ (b1, b2). Then

repeat the work to write bi = ck222 di and (a1, a2) ⊂ (b1, b2) ⊂ (d1, d2). Continue to

get an ascending chain in the Noetherian ring R, and thus it must terminate. Hence

there exits fi ∈ R and ai = ck111 ck222 ck333 . . .knn
n fi = cfi with Ann(f1, f2) = {0}.

(3) ⇒ (1) Clear. �

It was shown in [5] that if X = βR+−R+, then C(X) is a K-Hermite, and hence

EM-Hermite ring, and since X is connected, C(X) is not generalized morphic ring.

Also it was shown in [5] that if X = [−1, 1]× [0,∞), then C(βX −X) is a Bézout

ring that is not K-Hermite, then it follows by Theorem 2.9 that C(βX −X) is not

an EM-Hermite ring. Also it follows by [1] that C(βX −X) is an EM-ring.

We note that the Bézout property and the EM-Hermite property are

non-comparable, but adding them together would give the K-Hermite property,

unlike the case of Hermite property and the EM-Hermite property, they are non-

comparable, and adding them together need not be K-Hermite as in the case of

Z[x].

Recall that a ring R is called a PP-ring if every principal ideal in R is a projective

R-module. While any von Neumann regular ring is K-Hermite, Z[x] is a PP-ring

that is not K-Hermite.

Theorem 3.6. If R is a PP-ring, then it is an EM-Hermite ring.

Proof. Let a1, a2 ∈ R. Then ai = uiei, where ui ∈ reg(R) and ei is an idempotent

for each i, see [4, Lemma 2]. Let e = e1+e2−e1e2. Then e is also an idempotent and

eie = ei for i = 1, 2. Thus ai = eui(ei+1−e), and since 1 = (e1 +1−e)+(e2 +1−
e)−(e1+1−e)(e2+1−e), we have u1u2 = (u1(e1 + 1− e))u2+(u2(e2 + 1− e))u1−
u1(e1 + 1− e)u2(e2 + 1− e) ∈ (u1(e1 + 1− e), u2(e2 + 1− e)) ∩ reg(R). �
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The converse of this theorem needs not be true, since Z8 is an EM-Hermite ring

which is not a PP-ring, being non-reduced.

4. Some properties of EM-Hermite rings

In this section, we study some properties of EM-Hermite rings, such as polyno-

mial rings and localizations of EM-Hermite rings, and extending regular rows to

regular matrices.

The ring Z is K-Hermite, but Z[x] is not, and it is conjectured that if R is

Hermite, then R[x] is Hermite. We now show that if R is an EM-Hermite ring,

then R[x] is EM-Hermite.

Theorem 4.1. If R is an EM-Hermite ring, then R[x] is an EM-Hermite ring.

Proof. Let f(x) =
n∑
i=0

fix
i, g(x) =

m∑
i=0

gix
i ∈ R[x]. Then it follows by Theorem

2.3 that fi = kih, gi = lih, for each i and the ideal (k0, . . . , kn, l0, . . . , lm) * Z(R).

Thus, f(x) = h
n∑
i=0

kix
i, g(x) = h

m∑
i=0

lix
i. If

l∑
i=0

hix
i ∈ Ann(

n∑
i=0

kix,
m∑
i=0

lix
i), then

since R is Armendariz, hi ∈ Ann(k0, . . . , kn, l0, . . . , lm) = {0} for each i, and so,

Ann(
n∑
i=0

kix,
m∑
i=0

lix
i) = {0}, and since R[x] has property A for any ring R, see [9],

we have (
n∑
i=0

kix,
m∑
i=0

lix
i)R[x] * Z(R[x]). �

Corollary 4.2. Let R be an EM-Hermite ring. Then R[x1, x2, . . . , xn] is an EM-

Hermite ring.

Theorem 4.3. Let R be an EM-Hermite ring, and let S be a multiplicatively closed

subset of R. Then S−1R is an EM-Hermite ring.

Proof. Let a, b ∈ S−1R. Then there exist t, s ∈ S such that ta, sb ∈ R. Since R

is an EM-Hermite ring, there exist d, a1, b1 ∈ R such that ta = da1 and sb = db1

and (a1, b1) is a regular ideal in R. There exist x, y ∈ R such that r = xa1 + yb1 ∈
reg(R). Thus we have a = d(a1t ) and b = d( b1s ).

Now, x
s
a1
t + y

t
b1
s = r

st ∈ (a1t ,
b1
s ) ∩ reg(S−1R). �

Corollary 4.4. Let R be an EM-Hermite ring. Then T (R) is K-Hermite.

The converse of this Corollary is not in general true as illustrated in the following

example.

Example 4.5. It was shown in [1] that if R = Z6[x, y] /(xy) , then T (R) is a von

Neumann regular ring, and hence it is K-Hermite. But R is not an EM-Hermite

ring, since x, 3 ∈ R, and if x = ah, 3 = bh with Ann(a, b) = {0}, then 0 = a(2yh) =
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b(2yh), which implies that 0 = 2yh, and so, (h) ⊆ Ann(2y) = (3, x) ⊆ (h), and so,

(h) = (3, x), a contradiction.

Theorem 4.6. If R is an EM-Hermite ring, then any regular row can be completed

to a regular square matrix by adding a suitable number of rows.

Proof. We will proceed by induction on n, and make some modifications on the

proof of [10, page 28].

If n = 2, and
[
a1 a2

]
is regular, then a1t + a2s = r ∈ reg(R), and

det

[
a1 a2

−s t

]
= r ∈ reg(R). So, assume that the result is true for all m < n,

and consider the regular row
[
a1 a2 · · · an

]
. Since R is an EM-Hermite

ring, ai = dci, 1 ≤ i < n, and (c1, c2, · · · , cn−1) * Z(R), and so, the regular row[
c1 c2 · · · cn−1

]
can be extended to an (n − 1) × (n − 1) regular matrix C.

Again, since R is an EM-Hermite ring, an = kα, d = kβ, with αt+βs = r ∈ reg(R).

Note that if wk = 0, then w ∈ Ann(a1, a2, · · · , an) = {0}, and hence we have

k ∈ reg(R). Thus ant+ ds = kαt+ kβs = kr ∈ reg(R). Now consider the matrix,

B =

 d 0 an

0 In−2 0

−t 0 s

.

Then det(B) = kr ∈ reg(R), and the n× n matrix

A = B

[
C 0

0 1

]

is regular and has first row
[
a1 a2 · · · an

]
. �

Corollary 4.7. If R is an EM-Hermite ring, then any regular column can be com-

pleted to a regular square matrix by adding a suitable number of columns.

Proof. Just take transpose, and the result follows immediately by the previous

Theorem. �

Corollary 4.8. If R is an EM-Hermite ring, then any unimodular row can be

completed to a regular square matrix by adding a suitable number of rows.

Note that in the ring Z4(+)Z4 any regular row is extendable to a regular matrix,

being a finite Hermite ring, although it is not an EM-Hermite ring.
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5. Applications to finitely presented modules

In this section, we relate EM-Hermite rings to weakly semi-Steinitz rings, and

characterize the case at which every finitely generated R-module with finite free

resolution of length 1 is free.

An R-module M satisfies property P if any two maximal independent subsets of

M have the same cardinality. It was shown in [2] that every free R-module satisfies

property P if and only if whenever a1, . . . , an ∈ R such that AnnR(a1, . . . , an) =

{0}, then the row
[
a1 a2 · · · an

]
can be completed to a square regular matrix.

A ring R is called a weakly semi-Steinitz ring if every finite independent subset

of a finitely generated free R-module can be extended to a basis. The following two

propositions characterize weakly semi-Steinitz rings, see [2] and [12].

Proposition 5.1. The following statements are equivalent:

(1) R is a weakly semi-Steinitz ring.

(2) R is Hermite and every finitely generated proper ideal of R has non-zero

annihilator.

(3) Every finitely generated proper ideal of R has non-zero annihilator and any

finitely generated stably free R-module is a direct sum of cyclic modules.

(4) For each n ≥ 1, every linearly independent element of Rn can be extended

to a basis of Rn.

(5) reg(R) = U(R) and every free R-module satisfies property P.

Proposition 5.2. Let R be a Noetherian ring. Then R is a weakly semi-Steinitz

ring if and only if reg(R) = U(R). If in addition, R is reduced, then R is a weakly

semi-Steinitz ring if and only if R is a finite direct product of fields.

We now give extra two characterizations of weakly semi-Steinitz rings.

Theorem 5.3. R is a weakly semi-Steinitz ring if and only if whenever a1, . . . , an ∈
R such that AnnR(a1, . . . , an) = {0}, then the row

[
a1 a2 · · · an

]
can be

completed to a square invertible matrix.

Proof. Assume R is a weakly semi-Steinitz ring and assume that a1, . . . , an ∈
R such that AnnR(a1, . . . , an) = {0}. Then x1 = (a1, . . . , an) ∈ Rn is linearly

independent, and so Rn has a basis {x1, . . . , xn}. Let A =


x1
...

xn

. There exist

cij ∈ R such that
n∑
j=1

cijxj = ei for i = 1, 2, . . . , n, where {e1, . . . , en} is the
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standard basis for Rn. Let C = [cij ]. Then CA = In. Thus, A is a regular matrix,

with the ideal (det(A)) is non-proper. Thus A is invertible.

Conversely, it is clear that R is Hermite. Assume that a1, . . . , an ∈ R such

that AnnR(a1, . . . , an) = {0}. Let x =
[
a1 a2 · · · an

]
. Then there exists an

invertible n×n matrix A =


x1
...

xn

. But det(A) ∈
n∑
i=1

aiR ∩ U(R). Thus, the ideal

(a1, . . . , an) is non-proper, and R is a weakly semi-Steinitz ring. �

Recall that a finitely generated R-module P is said to have finite free resolution

of length 1 if we have the short exact sequence

0 −→ Rm
α−→ Rn −→ P −→ 0.

If the sequence splits, then P is a finitely generated stably free module.

Theorem 5.4. R is a weakly semi-Steinitz ring if and only if every finitely gener-

ated R-module with finite free resolution of length 1 is free.

Proof. Assume that R is a weakly semi-Steinitz ring, and consider the short exact

sequence

0 −→ Rm
α−→ Rn −→ P −→ 0.

If {ai}mi=1 is a basis for Rm, then {α(ai)}mi=1 is a linear independent subset of

the weakly semi-Steinitz ring Rn and so it can be extended to a basis {α(ai)}mi=1 ∪
{bi}n−mi=1 . Now, define the R-module homomorphism T : Rn −→ Rm such that

T (α(ai)) = ai, and T (bi) = 0. Then T ◦ α = IdRm , and so, the exact sequence

splits. Thus P is a finitely generated stably free R-module, and hence it is free,

since R is Hermite.

Conversely, it is clear that R is Hermite. Assume a1, . . . , an ∈ R such that

AnnR(a1, . . . , an) = {0}. Then x = (a1, . . . , an) ∈ Rn is linearly independent, and

so α : R −→ Rn defined by α(r) = rx is an injective R-homomorphism. Thus the

sequence

0 −→ R
α−→ Rn −→ Rn /Imα −→ 0

is short exact, and so, Rn /Im α is a free R-module. Thus there exists an R-

homomorphism β : Rn −→ R such that β ◦ α = IdR, and so, β ◦ α(1) = 1, and

hence

1 = M(β)M(α)(1) =
[
β1 · · · βn

]
a1
...

an

 (1),
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where M(β)and M(α) are the corresponding matrices for β and α respectively.

Therefore, the ideal (a1, . . . , an) is non-proper.

Thus R is a weakly semi-Steinitz ring. �

It follows by Theorem 4.6 that if R is an EM-Hermite ring, then every free

R-module satisfies property P. Thus we have the following result:

Theorem 5.5. If R is an EM-Hermite ring, then T (R) is a weakly semi-Steinitz

ring.

It is clear that Z4(+)Z4 is a weakly semi-Steinitz ring that is not EM-Hermite,

while Z is a K-Hermite ring that has Z-modules of finite resolution that are not

free.
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