

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Volume 27 (2020) 88-101 DOI: 10.24330/ieja.662967

EM-HERMITE RINGS

Emad Abuosba and Manal Ghanem Received: 13 January 2019; Accepted: 5 August 2019 Communicated by Abdullah Harmancı

ABSTRACT. A ring R is called EM-Hermite if for each $a, b \in R$, there exist $a_1, b_1, d \in R$ such that $a = a_1d, b = b_1d$ and the ideal (a_1, b_1) is regular. We give several characterizations of EM-Hermite rings analogue to those for K-Hermite rings, for example, R is an EM-Hermite ring if and only if any matrix in $M_{n,m}(R)$ can be written as a product of a lower triangular matrix and a regular $m \times m$ matrix. We relate EM-Hermite rings to Armendariz rings, rings with a.c. condition, rings with property A, EM-rings, generalized morphic rings, and PP-rings. We show that for an EM-Hermite ring, the polynomial ring and localizations are also EM-Hermite rings, and show that any regular row can be extended to regular matrix. We relate EM-Hermite rings to weakly semi-Steinitz rings, and characterize the case at which every finitely generated R-module with finite free resolution of length 1 is free.

Mathematics Subject Classification (2010): 13Axx, 13B25, 13B30, 13C10 Keywords: Hermite ring, K-Hermite ring, weakly semi-Steinitz ring, generalized morphic ring, regular matrix

1. Introduction

All rings are assumed to be commutative with unity 1. For any ring R, let Z(R) be the set of all zero-divisors, and $reg(R) = R \setminus Z(R)$ be the set of all regular elements, and let U(R) be the set of all units in R. Recall that if R is a commutative ring with unity, then the total quotient ring of R is the localization $T(R) = (reg(R))^{-1}R$. Let $M_{n,m}(R)$ be the ring of all $n \times m$ matrices defined on R. It is well known that $A \in U(M_{n,n}(R))$ if and only if $det(A) \in U(R), A \in reg(M_{n,n}(R))$ if and only if $det(A) \in U(R)$, $A \in reg(M_{n,n}(R))$ if and only if $det(A) \in reg(R)$, and A is left zero-divisor if and only if it is right zero-divisor, see [3]. The row $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$ is called unimodular if the ideal $(a_1, a_2, \cdots, a_n) \notin Z(R)$, in this case the ideal (a_1, a_2, \cdots, a_n) is called a regular ideal. Similar definitions are for columns.

The first author was supported by the "Scientific Research Deanship" at "The University of Jordan".

A ring R is called a K-Hermite ring if for each $a, b \in R$, there exist $a_1, b_1, d \in R$ such that $a = a_1d, b = b_1d$ and the ideal $(a_1, b_1) = R$, see [6] and [8]. It is clear that if R is a K-Hermite ring, then it is a Bézout ring (every finitely generated ideal is principal). A ring R is called Hermite if any unimodular row over R can be completed to an invertible matrix by adding a suitable number of new rows. Any K-Hermite is Hermite, but the converse is not true, see [10].

We generalize the concept of K-Hermite rings in the following sense: we call a ring R EM-Hermite, if for each $a, b \in R$, there exist $a_1, b_1, d \in R$ such that $a = a_1d, b = b_1d$ and the ideal (a_1, b_1) is regular. We find that this ring has some nice properties; it is preserved by the direct products and localizations, and unlike the case of K-Hermite rings, if R is EM-Hermite, then so is R[x]. We give several characterizations of EM-Hermite rings analogue to those for K-Hermite rings, for example, R is an EM-Hermite ring if and only if any matrix in $M_{n,m}(R)$ can be written as a product of a lower triangular matrix and a regular $m \times m$ matrix. We also show that any regular row can be extended to a regular matrix by adding a suitable number of rows. We prove that EM-Hermite rings are non-comparable with Bézout rings, nor Hermite rings, but R is K-Hermite if and only if it is Bézout EM-Hermite. We also relate EM-Hermite rings to Armendariz rings, rings with a.c. condition, rings with property A, PP-rings, weakly semi-Steinitz rings, EM-rings, and generalized morphic rings. Finally, we characterize when an R-module with finite free resolution of length 1 is free.

2. EM-Hermite rings

In this section, we define EM-Hermite rings, and give several characterizations for it, and study some cases at which an EM-Hermite ring is K-Hermite.

Definition 2.1. A ring R is called EM-Hermite if for each $a, b \in R$, there exist $a_1, b_1, d \in R$ such that $a = a_1d, b = b_1d$ and the ideal (a_1, b_1) is regular.

We now give some examples of EM-Hermite rings.

Example 2.2. (1) Since any principal ideal ring is K-Hermite, see [10], it is also EM-Hermite.

(2) It is clear that any integral domain is an EM-Hermite ring, and so, $\mathbb{Z}[x]$ is an EM-Hermite ring that is not K-Hermite, being non-Bézout.

(3) Consider the idealization $\mathbb{Z}_4(+)\mathbb{Z}_4$, and consider the two elements (2,0) and (0,1). Assume (2,0) = (a,b)(c,d) and (0,1) = (a,b)(x,y).

If $x \neq 0$, then we must have a = 2 = x, and so we have 1 = 2y + 2b, and hence 2 = 0, a contradiction.

So, we must have x = 0, and hence, 1 = ay, i.e. a is a unit in \mathbb{Z}_4 . Thus we have c = 2. Now,

$$(2, d)(0, 2) = (0, 0),$$

 $(0, y)(0, 2) = (0, 0).$

Hence $Ann((2, d), (0, y)) \neq \{(0, 0)\}$, and $\mathbb{Z}_4(+)\mathbb{Z}_4$ is not an EM-Hermite ring. Since any finite ring is Hermite, then $\mathbb{Z}_4(+)\mathbb{Z}_4$ is Hermite that is not EM-Hermite.

(4) Let $R = \mathbb{Z}[x_1, x_2, x_3, y_1, y_2, y_3] / (x_1y_1 + x_2y_2 + x_3y_3 - 1)$. Then R is an integral domain, and hence EM-Hermite that is not a Hermite ring, see [12].

We now give equivalent characterizations of EM-Hermite rings, parallel to those for K-Hermite, see [10].

Theorem 2.3. The following statements are equivalent for a ring R.

- (1) R is an EM-Hermite ring.
- (2) For any finite set $\{a_1, a_2, \ldots, a_n\} \subseteq R$, there exists $\{b_1, b_2, \ldots, b_n, d\} \subseteq R$ such that $a_i = b_i d$, for each i, and the ideal (b_1, b_2, \ldots, b_n) is regular.
- (3) For any finite set $\{a_1, a_2, \ldots, a_n\} \subseteq R$, there exist $d \in R$ and a regular matrix $Q \in M_{n,n}(R)$ such that $[a_1 \ a_2 \ \ldots \ a_n] = [d \ 0 \ 0 \ \ldots \ 0]Q$.
- (4) For any matrix $B \in M_{m,n}(R)$, there exists a regular matrix $Q \in M_{n,n}(R)$ such that B = LQ, with L a lower triangular matrix.

Proof. (1) \Rightarrow (2) Assume R is an EM-Hermite ring, and let $a, b, c \in R$. Then there exist $a_1, b_1, d \in R$ such that $a = a_1d, b = b_1d$ and $r_1 = \alpha_1a_1 + \beta_1b_1 \in$ $(a_1, b_1) \cap reg(R)$. Also there exist $a_2, b_2, k \in R$ such that $d = a_2k, c = b_2k$ and $r_2 = \alpha_2a_2 + \beta_2b_2 \in (a_2, b_2) \cap reg(R)$.

But $a = a_1d = a_1a_2k$ and $b = b_1d = b_1a_2k$. Also we have $r_1r_2 = (\alpha_1\alpha_2)(a_1a_2) + (\alpha_2\beta_1)(a_2b_1) + (\alpha_1\beta_2a_1 + \beta_1\beta_2b_1)(b_2) \in (b_2, a_1a_2, a_2b_1) \cap reg(R)$. So, the condition can be applied to any finite subset of R.

(2) \Rightarrow (3) Let $\{a_1, a_2, \ldots, a_n\} \subset R$. Then there exits $\{b_{n-1}, b_n, d_1\} \subseteq R$ such that $a_i = b_i d_1$, for $i \in \{n, n-1\}$, and $r_1 = \alpha_{n-1}b_{n-1} + \alpha_n b_n \in (b_{n-1}, b_n) \cap reg(R)$. So we have

 $[a_1 \ a_2 \ \dots \ a_n] = [a_1 \ a_2 \ \dots \ a_{n-2} \ d_1 \ 0]Q_1,$ where $Q_1 = \begin{bmatrix} I_{n-2} & 0 \\ & & \\ 0 & \begin{bmatrix} b_{n-1} & b_n \\ -\alpha_n & \alpha_{n-1} \end{bmatrix} \end{bmatrix},$

and note that $\det(Q_1) = r_1 \in reg(R)$.

There exists $\{b_{n-3}, b_{n-2}, d_2\} \subset R$ such that $a_{n-2} = b_{n-2}d_2, d_1 = b_{n-3}d_2$ and $r_2 = \alpha_{n-2}b_{n-2} + \alpha_{n-3}b_{n-3} \in (b_{n-2}, b_{n-3})R \cap reg(R)$. So we have

$$\begin{bmatrix} a_1 \ a_2 \ \dots \ a_{n-2} \ d_1 \ 0 \end{bmatrix} = \begin{bmatrix} a_1 \ a_2 \ \dots \ a_{n-3} \ d_2 \ 0 \ 0 \end{bmatrix} Q_2,$$

where $Q_2 = \begin{bmatrix} I_{n-3} & 0 \\ & & \\ 0 & \begin{bmatrix} b_{n-2} & b_{n-3} & 0 \\ -\alpha_{n-3} & \alpha_{n-2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{bmatrix},$

and note that $det(Q_2) = r_2 \in reg(R)$.

In this case we have $[a_1 \ a_2 \ \dots \ a_n] = [a_1 \ a_2 \ \dots \ a_{n-3} \ d_2 \ 0 \ 0]Q_2Q_1$, and $\det(Q_2Q_1) = r_2r_1 \in reg(R)$.

Continue to get $[a_1 \ a_2 \ \dots \ a_n] = [d \ 0 \ 0 \ \dots \ 0]Q$, and $\det(Q) = r \in reg(R)$.

 $(3) \Rightarrow (4)$ Let $B \in M_{m,n}(R)$. We will proceed by induction on m. By (3) the result is true when m = 1. So assume it is true for all k < m, and let $B = [b_{ij}]_{m \times n}$. It follows by (3) that $[b_{11} \ b_{12} \ \dots \ b_{1n}] = [d \ 0 \ 0 \ \dots \ 0]Q_1$, where Q_1 is a regular matrix. So, $[b_{11} \ b_{12} \ \dots \ b_{1n}]adj(Q_1) = \det(Q_1)[d \ 0 \ 0 \ \dots \ 0]$. Thus, $B \ adj(Q_1) = \det(Q_1) \begin{bmatrix} d & 0 \\ C & D \end{bmatrix}$. By induction hypothesis we have $D = L_1Q_2$, where L_1 is a lower triangular matrix and Q_2 is regular matrix in $M_{(n-1),(n-1)}(R)$. Substituting we get

$$B \ adj(Q_1) = \det(Q_1) \begin{bmatrix} d & 0 \\ C & L_1 Q_2 \end{bmatrix} = \det(Q_1) \begin{bmatrix} d & 0 \\ C & L_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & Q_2 \end{bmatrix},$$

and so,

$$B = \begin{bmatrix} d & 0 \\ C & L_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & Q_2 \end{bmatrix} Q_1.$$

Now, let $L = \begin{bmatrix} d & 0 \\ C & L_1 \end{bmatrix}$, and $Q = \begin{bmatrix} 1 & 0 \\ 0 & Q_2 \end{bmatrix} Q_1$. Then L is lower triangular, det(Q) =

 $det(Q_2) det(Q_1) \in reg(R)$, and B = LQ.

 $(4) \Rightarrow (1)$ Let $a, b \in R$, Then there exist $d \in R$, and a regular matrix $Q \in M_{2,2}(R)$ such that $[a \ b] = [d \ 0 \]Q$.

So, $a = dq_{11}, b = dq_{12}$, and $det(Q) = q_{11}q_{22} - q_{12}q_{21} \in (q_{11}, q_{12}) \cap reg(R)$. Thus, *R* is an EM-Hermite ring.

If we extend our work to non-commutative rings, we will have:

Corollary 2.4. If R is an EM-Hermite ring, then $M_{n,n}(R)$ is also EM-Hermite.

Proof. Assume R is an EM-Hermite ring, and let $A, B \in M_{n,n}(R)$. Then there exist lower triangular matrix $L \in M_{n,2n}(R)$ and a regular matrix $Q \in M_{2n,2n}(R)$ such that

$$\begin{bmatrix} A & B \end{bmatrix} = LQ = \begin{bmatrix} L_1 & 0 \end{bmatrix} \begin{bmatrix} Q_1 & Q_2 \\ Q_3 & Q_4 \end{bmatrix}$$

So it follows by (3) in Theorem 2.3 that $M_{n,n}(R)$ is EM-Hermite.

We can follow the proof of [10] to show that the following statements are equivalent.

Proposition 2.5. The following statements are equivalent for a ring R.

- (1) For any matrix $B \in M_{m,n}(R)$, there exists a regular matrix $Q \in M_{n,n}(R)$ such that BQ = L a lower triangular matrix.
- (2) For any vector $[a_1 \ a_2 \ \dots \ a_n] \in M_{1,n}(R)$, there exists a regular matrix $Q \in M_{n,n}(R)$ and $d \in R$ such that $[a_1 \ a_2 \ \dots \ a_n]Q = [d \ 0 \ 0 \ \dots \ 0].$
- (3) For any $a, b \in R$, there exists a regular matrix $Q \in M_{2,2}(R)$ and $d \in R$ such that $[a_1 \ a_2]Q = [d \ 0]$.
- (4) For any $a, b \in R$, there exist $x, y \in R$ such that ax + by = 0 and (x, y) is a regular ideal in R.

Assume that R is an EM-Hermite ring, and let $a, b, d, -x, y \in R$ such that a = dy, b = d(-x) and $\beta(-x) + \alpha y = r \in reg(R)$. Then ax + by = 0. So, R satisfies condition (4) in Proposition 2.5, and hence it satisfies all the conditions. Moreover we have:

$$\begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} d & 0 \end{bmatrix} \begin{bmatrix} y & -x \\ -\beta & \alpha \end{bmatrix}$$
$$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} \alpha & x \\ \beta & y \end{bmatrix} = \begin{bmatrix} dr & 0 \end{bmatrix},$$
with det
$$\begin{bmatrix} y & -x \\ -\beta & \alpha \end{bmatrix} = \det \begin{bmatrix} \alpha & x \\ \beta & y \end{bmatrix} = r \in reg(R).$$

To give a more general result, let $B \in M_{m,n}(R)$. There exists a regular matrix $Q \in M_{n,n}(R)$ such that B = LQ with L a lower triangular matrix. Then $B \ adj(Q) = \det(Q)L$. Moreover, $\det(Q)L$ is a lower triangular matrix and $\det(adj(Q)) = (\det(Q))^{n-1} \in reg(R)$.

Although EM-Hermite rings are in general not K-Hermite, the following Theorem shows that for some rings they are equivalent.

Theorem 2.6. If every regular element in R is a unit, then R is a K-Hermite ring if and only if it is an EM-Hermite ring.

The condition in the above Theorem is not necessary, since \mathbb{Z} has regular elements that are not units, but it is K-Hermite.

Corollary 2.7. If R is a finite ring, then R is K-Hermite ring if and only if it is an EM-Hermite ring.

Corollary 2.8. For any ring R, T(R) is K-Hermite ring if and only if it is an *EM*-Hermite ring.

We now continue the investigation started in [7], [8] and [11] for the cases at which a Bézout ring is K-Hermite.

Theorem 2.9. A ring R is K-Hermite if and only if it is a Bézout EM-Hermite ring.

Proof. If R is K-Hermite, then clearly it is a Bézout EM-Hermite ring. So assume that R is a Bézout EM-Hermite ring, and let $a, b \in R$. Then there exist $a_1, b_1, d \in R$ such that $a = a_1d, b = b_1d$ and $(d_1) = (a_1, b_1)$ is a regular ideal in R, and so $d_1 \in reg(R)$. Thus we have:

$$d_1 = a_1 x + b_1 y,$$
$$a_1 = \alpha d_1,$$
$$b_1 = \beta d_1.$$

Hence we get

$$d_1 = d_1(\alpha x + \beta y),$$

and since $d_1 \in reg(R)$, we would have

$$1 = \alpha x + \beta y.$$

Therefore, $a = \alpha(d_1d), b = \beta(d_1d)$ and $(\alpha, \beta) = R$, i.e. R is K-Hermite.

3. Relations with other rings

In this section, we relate EM-Hermite rings to Armendariz rings, rings with a.c. condition, rings with property A, EM-rings, generalized morphic rings, and PP-rings.

A ring R is said to be Armendariz if the product of two polynomials in R[x] is zero if and only if the product of their coefficients is zero.

Theorem 3.1. If R is an EM-Hermite ring, then it is Armendariz.

Proof. Let $f(x) = \sum_{i=0}^{n} f_i x^i$. Then it follows by Theorem 2.3 that $f_i = k_i h$ for each i and $Ann(k_0, \ldots, k_n) = \{0\}$. So it follows by McCoy's Theorem that $\sum_{i=0}^{n} k_i x^i$ is not a zero-divisor in R[x], and $f(x) = h \sum_{i=0}^{n} k_i x^i$. If $g(x) = \sum_{i=0}^{m} g_i x^i = k \sum_{i=0}^{m} l_i x^i$ with $\sum_{i=0}^{m} l_i x^i$ is not a zero-divisor in R[x]. Then f(x)g(x) = 0 if and only if hk = 0. Thus we have $f_i g_j = (hk)(k_i l_j) = 0$ for each i and j. Hence R is Armendariz.

A ring R is said to have a.c. condition, if for any $a, b \in R$ there exists $c \in R$ such that Ann(a, b) = Ann(c).

Theorem 3.2. If R is an EM-Hermite ring, then it has a.c. condition.

Proof. Let $a, b \in R$. Then there exist d, x, y such that a = dx, b = dy and the ideal (x, y) is regular. Thus we have $Ann(x, y) = \{0\}$ and so, Ann(a, b) = Ann(d). \Box

A ring R is said to have property A, if any finitely generated ideal contained in Z(R) has nonzero annihilator. It was shown in [9] that any Noetherian ring has property A, see Theorem 82.

Theorem 3.3. If R is an EM-Hermite ring, then it has property A.

Proof. Let $a, b \in R$ such that $Ann(a, b) = \{0\}$. Then there exist d, x, y such that a = dx, b = dy and the ideal (x, y) is regular. Let $r = \alpha x + \beta y \in reg(R)$. But $d \in reg(R)$ since $Ann(d) = Ann(a, b) = \{0\}$. Thus we have

$$a\alpha + b\beta = dx\alpha + dy\beta = dr \in (a,b) \cap reg(R).$$

Therefore, $(a, b) \nsubseteq Z(R)$.

Let R be a ring, and let $f(x) \in Z(R[x])$ such that $f(x) = c_f f_1(x)$, where $c_f \in R$ and $f_1(x) \in reg(R[x])$. Then c_f is called an annihilating content for f(x). It is clear that $\deg(f) \leq \deg(f_1)$. If every zero-divisor polynomial in R[x] has an annihilating content, R is called an EM-ring. A ring R is called generalized morphic ring if Ann(a) is a principal ideal for each $a \in R$, see [1]. Using Theorem 2.3, one can see easily that any EM-Hermite ring is an EM-ring. But the following Theorem shows that the two properties are equivalent if the ring was Noetherian. But first we need the following important lemma.

Lemma 3.4 ([1, Lemma 3.25]). Assume that R is a Noetherian ring, and bR is a prime principal ideal with $b \in Z(R)$. If $a \in bR \setminus \{0\}$, then $a = b^n s$ for some $n \in \mathbb{N}$ and $s \in R \setminus bR$.

Theorem 3.5. Assume that R is a Noetherian ring. Then the following are equivalent:

- (1) R is an EM-ring.
- (2) R is a generalized morphic ring.
- (3) R is an EM-Hermite ring.

Proof. For the equivalence of (1) and (2), see [1].

 $(2) \Rightarrow (3)$ Recall first that since R is a Noetherian ring, then $Ann(a_1, a_2) \neq \{0\}$ if and only if the ideal $(a_1, a_2) \subseteq Z(R)$.

Let $a_1, a_2 \in R$. If $Ann(a_1, a_2) = \{0\}$, then $a_1 = a_1.1, a_2 = a_2.1$, and $Ann(a_1, a_2) = \{0\}$. If $0 \neq m \in Ann(a_1, a_2)$, then $(a_1, a_2) \subseteq Ann(m) \subseteq M_1 = c_1R \subseteq Z(R)$, where M_1 is a maximal ideal in Z(R), and so it is prime, see [9, Theorem 6]. Hence, using Lemma 3.4, $a_i = \alpha_i c_1^{k_i}$ with $\alpha_i \notin c_1R$, and $k_i \ge 1$ for each i = 1, 2. Let $k_{11} = Min\{k_i\}, b_i = \alpha_i c_1^{k_i-k_{11}}$. Then $a_i = c_1^{k_{11}}b_i$ and $(a_1, a_2) \subset (b_1, b_2)$. Then repeat the work to write $b_i = c_2^{k_{22}}d_i$ and $(a_1, a_2) \subset (b_1, b_2) \subset (d_1, d_2)$. Continue to get an ascending chain in the Noetherian ring R, and thus it must terminate. Hence there exits $f_i \in R$ and $a_i = c_1^{k_{11}} c_2^{k_{22}} c_3^{k_{33}} \dots a_n^{k_{nn}} f_i = cf_i$ with $Ann(f_1, f_2) = \{0\}$. (3) \Rightarrow (1) Clear.

It was shown in [5] that if $X = \beta \mathbb{R}^+ - \mathbb{R}^+$, then C(X) is a K-Hermite, and hence EM-Hermite ring, and since X is connected, C(X) is not generalized morphic ring. Also it was shown in [5] that if $X = [-1, 1] \times [0, \infty)$, then $C(\beta X - X)$ is a Bézout ring that is not K-Hermite, then it follows by Theorem 2.9 that $C(\beta X - X)$ is not an EM-Hermite ring. Also it follows by [1] that $C(\beta X - X)$ is an EM-ring.

We note that the Bézout property and the EM-Hermite property are non-comparable, but adding them together would give the K-Hermite property, unlike the case of Hermite property and the EM-Hermite property, they are noncomparable, and adding them together need not be K-Hermite as in the case of $\mathbb{Z}[x]$.

Recall that a ring R is called a PP-ring if every principal ideal in R is a projective R-module. While any von Neumann regular ring is K-Hermite, $\mathbb{Z}[x]$ is a PP-ring that is not K-Hermite.

Theorem 3.6. If R is a PP-ring, then it is an EM-Hermite ring.

Proof. Let $a_1, a_2 \in R$. Then $a_i = u_i e_i$, where $u_i \in reg(R)$ and e_i is an idempotent for each *i*, see [4, Lemma 2]. Let $e = e_1 + e_2 - e_1 e_2$. Then *e* is also an idempotent and $e_i e = e_i$ for i = 1, 2. Thus $a_i = eu_i(e_i + 1 - e)$, and since $1 = (e_1 + 1 - e) + (e_2 + 1 - e) - (e_1 + 1 - e)(e_2 + 1 - e)$, we have $u_1 u_2 = (u_1(e_1 + 1 - e)) u_2 + (u_2(e_2 + 1 - e)) u_1 - u_1(e_1 + 1 - e)u_2(e_2 + 1 - e) \in (u_1(e_1 + 1 - e), u_2(e_2 + 1 - e)) \cap reg(R)$.

The converse of this theorem needs not be true, since \mathbb{Z}_8 is an EM-Hermite ring which is not a PP-ring, being non-reduced.

4. Some properties of EM-Hermite rings

In this section, we study some properties of EM-Hermite rings, such as polynomial rings and localizations of EM-Hermite rings, and extending regular rows to regular matrices.

The ring \mathbb{Z} is K-Hermite, but $\mathbb{Z}[x]$ is not, and it is conjectured that if R is Hermite, then R[x] is Hermite. We now show that if R is an EM-Hermite ring, then R[x] is EM-Hermite.

Theorem 4.1. If R is an EM-Hermite ring, then R[x] is an EM-Hermite ring.

Proof. Let $f(x) = \sum_{i=0}^{n} f_i x^i, g(x) = \sum_{i=0}^{m} g_i x^i \in R[x]$. Then it follows by Theorem 2.3 that $f_i = k_i h, g_i = l_i h$, for each i and the ideal $(k_0, \ldots, k_n, l_0, \ldots, l_m) \notin Z(R)$. Thus, $f(x) = h \sum_{i=0}^{n} k_i x^i, g(x) = h \sum_{i=0}^{m} l_i x^i$. If $\sum_{i=0}^{l} h_i x^i \in Ann(\sum_{i=0}^{n} k_i x, \sum_{i=0}^{m} l_i x^i)$, then since R is Armendariz, $h_i \in Ann(k_0, \ldots, k_n, l_0, \ldots, l_m) = \{0\}$ for each i, and so, $Ann(\sum_{i=0}^{n} k_i x, \sum_{i=0}^{m} l_i x^i) = \{0\}$, and since R[x] has property A for any ring R, see [9], we have $(\sum_{i=0}^{n} k_i x, \sum_{i=0}^{m} l_i x^i) R[x] \notin Z(R[x])$.

Corollary 4.2. Let R be an EM-Hermite ring. Then $R[x_1, x_2, ..., x_n]$ is an EM-Hermite ring.

Theorem 4.3. Let R be an EM-Hermite ring, and let S be a multiplicatively closed subset of R. Then $S^{-1}R$ is an EM-Hermite ring.

Proof. Let $a, b \in S^{-1}R$. Then there exist $t, s \in S$ such that $ta, sb \in R$. Since R is an EM-Hermite ring, there exist $d, a_1, b_1 \in R$ such that $ta = da_1$ and $sb = db_1$ and (a_1, b_1) is a regular ideal in R. There exist $x, y \in R$ such that $r = xa_1 + yb_1 \in reg(R)$. Thus we have $a = d(\frac{a_1}{t})$ and $b = d(\frac{b_1}{s})$.

Now,
$$\frac{x}{s}\frac{a_1}{t} + \frac{y}{t}\frac{b_1}{s} = \frac{r}{st} \in (\frac{a_1}{t}, \frac{b_1}{s}) \cap reg(S^{-1}R).$$

Corollary 4.4. Let R be an EM-Hermite ring. Then T(R) is K-Hermite.

The converse of this Corollary is not in general true as illustrated in the following example.

Example 4.5. It was shown in [1] that if $R = \mathbb{Z}_6[x, y]/(xy)$, then T(R) is a von Neumann regular ring, and hence it is K-Hermite. But R is not an EM-Hermite ring, since $x, 3 \in R$, and if x = ah, 3 = bh with $Ann(a, b) = \{0\}$, then 0 = a(2yh) =

b(2yh), which implies that 0 = 2yh, and so, $(h) \subseteq Ann(2y) = (3, x) \subseteq (h)$, and so, (h) = (3, x), a contradiction.

Theorem 4.6. If R is an EM-Hermite ring, then any regular row can be completed to a regular square matrix by adding a suitable number of rows.

Proof. We will proceed by induction on n, and make some modifications on the proof of [10, page 28].

If n = 2, and $\begin{bmatrix} a_1 & a_2 \end{bmatrix}$ is regular, then $a_1t + a_2s = r \in reg(R)$, and det $\begin{bmatrix} a_1 & a_2 \\ -s & t \end{bmatrix} = r \in reg(R)$. So, assume that the result is true for all m < n, and consider the regular row $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$. Since R is an EM-Hermite ring, $a_i = dc_i$, $1 \le i < n$, and $(c_1, c_2, \cdots, c_{n-1}) \notin Z(R)$, and so, the regular row $\begin{bmatrix} c_1 & c_2 & \cdots & c_{n-1} \end{bmatrix}$ can be extended to an $(n-1) \times (n-1)$ regular matrix C. Again, since R is an EM-Hermite ring, $a_n = k\alpha$, $d = k\beta$, with $\alpha t + \beta s = r \in reg(R)$. Note that if wk = 0, then $w \in Ann(a_1, a_2, \cdots, a_n) = \{0\}$, and hence we have $k \in reg(R)$. Thus $a_nt + ds = k\alpha t + k\beta s = kr \in reg(R)$. Now consider the matrix,

$$B = \begin{bmatrix} d & 0 & a_n \\ 0 & I_{n-2} & 0 \\ -t & 0 & s \end{bmatrix}$$

Then $det(B) = kr \in reg(R)$, and the $n \times n$ matrix

$$A = B \left[\begin{array}{cc} C & 0 \\ 0 & 1 \end{array} \right]$$

is regular and has first row $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$.

Corollary 4.7. If R is an EM-Hermite ring, then any regular column can be completed to a regular square matrix by adding a suitable number of columns.

Proof. Just take transpose, and the result follows immediately by the previous Theorem. $\hfill \Box$

Corollary 4.8. If R is an EM-Hermite ring, then any unimodular row can be completed to a regular square matrix by adding a suitable number of rows.

Note that in the ring $\mathbb{Z}_4(+)\mathbb{Z}_4$ any regular row is extendable to a regular matrix, being a finite Hermite ring, although it is not an EM-Hermite ring.

5. Applications to finitely presented modules

In this section, we relate EM-Hermite rings to weakly semi-Steinitz rings, and characterize the case at which every finitely generated R-module with finite free resolution of length 1 is free.

An *R*-module *M* satisfies property P if any two maximal independent subsets of *M* have the same cardinality. It was shown in [2] that every free *R*-module satisfies property P if and only if whenever $a_1, \ldots, a_n \in R$ such that $Ann_R(a_1, \ldots, a_n) = \{0\}$, then the row $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$ can be completed to a square regular matrix.

A ring R is called a weakly semi-Steinitz ring if every finite independent subset of a finitely generated free R-module can be extended to a basis. The following two propositions characterize weakly semi-Steinitz rings, see [2] and [12].

Proposition 5.1. The following statements are equivalent:

- (1) R is a weakly semi-Steinitz ring.
- (2) R is Hermite and every finitely generated proper ideal of R has non-zero annihilator.
- (3) Every finitely generated proper ideal of R has non-zero annihilator and any finitely generated stably free R-module is a direct sum of cyclic modules.
- (4) For each n ≥ 1, every linearly independent element of Rⁿ can be extended to a basis of Rⁿ.
- (5) reg(R) = U(R) and every free R-module satisfies property P.

Proposition 5.2. Let R be a Noetherian ring. Then R is a weakly semi-Steinitz ring if and only if reg(R) = U(R). If in addition, R is reduced, then R is a weakly semi-Steinitz ring if and only if R is a finite direct product of fields.

We now give extra two characterizations of weakly semi-Steinitz rings.

Theorem 5.3. R is a weakly semi-Steinitz ring if and only if whenever $a_1, \ldots, a_n \in R$ such that $Ann_R(a_1, \ldots, a_n) = \{0\}$, then the row $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$ can be completed to a square invertible matrix.

Proof. Assume R is a weakly semi-Steinitz ring and assume that $a_1, \ldots, a_n \in R$ such that $Ann_R(a_1, \ldots, a_n) = \{0\}$. Then $\overline{x}_1 = (a_1, \ldots, a_n) \in R^n$ is linearly

independent, and so \mathbb{R}^n has a basis $\{\overline{x}_1, \ldots, \overline{x}_n\}$. Let $A = \begin{bmatrix} \overline{x}_1 \\ \vdots \\ \overline{x}_n \end{bmatrix}$. There exist

 $c_{ij} \in R$ such that $\sum_{j=1}^{n} c_{ij}\overline{x}_j = \overline{e}_i$ for $i = 1, 2, \dots, n$, where $\{\overline{e}_1, \dots, \overline{e}_n\}$ is the

standard basis for \mathbb{R}^n . Let $C = [c_{ij}]$. Then $CA = I_n$. Thus, A is a regular matrix, with the ideal $(\det(A))$ is non-proper. Thus A is invertible.

Conversely, it is clear that R is Hermite. Assume that $a_1, \ldots, a_n \in R$ such that $Ann_R(a_1, \ldots, a_n) = \{0\}$. Let $\overline{x} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$. Then there exists an

invertible $n \times n$ matrix $A = \begin{bmatrix} \overline{x}_1 \\ \vdots \\ \overline{x}_n \end{bmatrix}$. But $\det(A) \in \sum_{i=1}^n a_i R \cap U(R)$. Thus, the ideal

 (a_1, \ldots, a_n) is non-proper, and R is a weakly semi-Steinitz ring.

Recall that a finitely generated R-module P is said to have finite free resolution of length 1 if we have the short exact sequence

$$0 \longrightarrow R^m \stackrel{\alpha}{\longrightarrow} R^n \longrightarrow P \longrightarrow 0.$$

If the sequence splits, then P is a finitely generated stably free module.

Theorem 5.4. R is a weakly semi-Steinitz ring if and only if every finitely generated R-module with finite free resolution of length 1 is free.

Proof. Assume that R is a weakly semi-Steinitz ring, and consider the short exact sequence

$$0 \longrightarrow R^m \stackrel{\alpha}{\longrightarrow} R^n \longrightarrow P \longrightarrow 0.$$

If $\{\overline{a}_i\}_{i=1}^m$ is a basis for \mathbb{R}^m , then $\{\alpha(\overline{a}_i)\}_{i=1}^m$ is a linear independent subset of the weakly semi-Steinitz ring \mathbb{R}^n and so it can be extended to a basis $\{\alpha(\overline{a}_i)\}_{i=1}^m \cup \{\overline{b}_i\}_{i=1}^{n-m}$. Now, define the *R*-module homomorphism $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ such that $T(\alpha(\overline{a}_i)) = \overline{a}_i$, and $T(\overline{b}_i) = 0$. Then $T \circ \alpha = Id_{\mathbb{R}^m}$, and so, the exact sequence splits. Thus *P* is a finitely generated stably free *R*-module, and hence it is free, since *R* is Hermite.

Conversely, it is clear that R is Hermite. Assume $a_1, \ldots, a_n \in R$ such that $Ann_R(a_1, \ldots, a_n) = \{0\}$. Then $\overline{x} = (a_1, \ldots, a_n) \in R^n$ is linearly independent, and so $\alpha : R \longrightarrow R^n$ defined by $\alpha(r) = r\overline{x}$ is an injective R-homomorphism. Thus the sequence

$$0 \longrightarrow R \xrightarrow{\alpha} R^n \longrightarrow R^n / \operatorname{Im} \alpha \longrightarrow 0$$

is short exact, and so, $\mathbb{R}^n / \text{Im } \alpha$ is a free *R*-module. Thus there exists an *R*-homomorphism $\beta : \mathbb{R}^n \longrightarrow \mathbb{R}$ such that $\beta \circ \alpha = Id_R$, and so, $\beta \circ \alpha(1) = 1$, and hence

$$1 = M(\beta)M(\alpha)(1) = \begin{bmatrix} \beta_1 & \cdots & \beta_n \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} (1),$$

where $M(\beta)$ and $M(\alpha)$ are the corresponding matrices for β and α respectively. Therefore, the ideal (a_1, \ldots, a_n) is non-proper.

Thus R is a weakly semi-Steinitz ring.

It follows by Theorem 4.6 that if R is an EM-Hermite ring, then every free R-module satisfies property P. Thus we have the following result:

Theorem 5.5. If R is an EM-Hermite ring, then T(R) is a weakly semi-Steinitz ring.

It is clear that $\mathbb{Z}_4(+)\mathbb{Z}_4$ is a weakly semi-Steinitz ring that is not EM-Hermite, while \mathbb{Z} is a K-Hermite ring that has \mathbb{Z} -modules of finite resolution that are not free.

References

- E. Abuosba and M. Ghanem, Annihilating content in polynomial and power series rings, J. Korean Math. Soc., 56(5) (2019), 1403-1418.
- [2] A. Bouanane and F. Kourki, On weakly semi-Steinitz rings, Commutative Ring Theory, Lecture Notes in Pure and Appl. Math., Dekker, New York, 185 (1997), 131-139.
- [3] W. C. Brown, Matrices over Commutative Rings, Monographs and Textbooks in Pure and Applied Mathematics, 169, Marcel Dekker, Inc., New York, 1993.
- [4] S. Endo, Note on p.p. rings, A supplement to Hattori's paper, Nagoya Math. J., 17 (1960), 167-170.
- [5] L. Gillman and M. Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc., 82 (1956), 366-391.
- [6] L. Gillman and M. Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc., 82 (1956), 362-365.
- [7] M. Henriksen, Some remarks on elementary divisor rings II, Michigan Math. J., 3(2) (1955), 159-163.
- [8] I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc., 66 (1949), 464-491.
- [9] I. Kaplansky, Commutative Rings, Revised Edition, The University of Chicago Press, Chicago, 1974.
- [10] T. Y. Lam, Serre's Problem on Projective Modules, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006.

EM-HERMITE RINGS

- [11] M. D. Larsen, W. J. Lewis and T. S. Shores, *Elementary divisor rings and finitely presented modules*, Trans. Amer. Math. Soc., 187 (1974), 231-248.
- [12] B. Nashier and W. Nichols, On Steinitz properties, Arch. Math. (Basel), 57(3) (1991), 247-253.

Emad Abuosba (Corresponding Author) and Manal Ghanem Department of Mathematics School of Science The University of Jordan Amman, Jordan e-mails: eabuosba@ju.edu.jo (E. Abuosba) m.ghanem@ju.edu.jo (M. Ghanem)