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1. Introduction

The aim of this note is to construct left R–modules M , where R is a K–algebra

over some field K, with the following properties:

(1) M has exactly three non zero proper submodules N1, N2 and N1 ∩N2.

(2) M/N1 is not isomorphic to M/N2.

(3) EndM/Ni is isomorphic to K for i = 1,2.

Given a module M , we say that M is quasi projective (resp. pseudo projective) if,

for any submodule X of M , any morphism (resp. any epimorphism) f ∶M →M/X
is of the form π ○ g, where π ∶M →M/X is the canonical epimorphism and g is an

endomorphism of M . By [4, Lemma 2.1] any module M satisfying (1) and (2) is

not quasi projective. Moreover, if (1) and (2) holds, then M is pseudo projective if

and only if it satisfies (3) with K = Z2. In the sequel we shall say, for short, that M

satisfies (123) if M satisfies conditions (1), (2) and (3). If x is a vertex of a quiver Q,

and R is the K–algebra given by Q, then x also denotes the simple module (Vi, fj),
with Vx =K, Vi = 0 for i ≠ x and fj = 0 for any j. Moreover, P (x) and I(x) denote

the projective and injective module corresponding to the vertex x. In the examples

constructed in [4] R is always a K–algebra given by quivers with at least 2 vertices

and at most 4 vertices, and the modules satisfying (123) are three dimensional
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vector spaces. In this note we consider algebras given by quivers with n vertices

for any n ≥ 1. By making one point extensions or coextensions, or by changing the

relations, we obtain modules satisfying (123) of any injective dimension (Proposition

2.1) and of any projective dimension ≥ 1 (Proposition 2.2). We also show that

modules satisfying (123) are very far from being selforthogonal (Examples 2.3, 2.4

and 2.5), and that they cannot be faithfully balanced (Proposition 3.8). Moreover

their endomorphism ring is a rather small commutative algebra (Theorem 3.6).

As we shall see, the free algebra K < x, y > admits modules of dimension three

satisfying (123) (Example 2.5, Proposition 2.6, Corollaries 3.10 and 3.11). On the

other hand, the free algebra K < x, y, z > admits modules satisfying (123) of any

countable dimension ≥ 3 (Theorem 3.2). Finally, suitable matrix algebras admit

modules satisfying (123) of any infinite dimension over K (Proposition 3.4 and

Corollary 3.5).

This paper is organized as follows. In Section 1 we recall some definitions, we

fix some conventions and we describe the main results. In Section 2 we investigate

homological dimensions and extensions of modules satisfying (123). Finally, in Sec-

tion 3, we describe composition factors and endomorphism rings of these modules.

For more background on generalizations of projective modules we refer to [3] and

[5]. For more background on quivers and their representations we refer to [1] and

[2].

2. Homological dimensions and extensions

We begin with two results on homological dimensions.

Proposition 2.1. Any d ∈ N ∪ {∞} is the injective dimension of a module M

satisfying (123).

Proof. If d = 0,1,∞, then the assertion follows from [4, Example 2.3 and Theorem

2.8]. Assume now 2 ≤ d <∞. Let n = d+ 3 and let R be the K-algebra given by the
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following quiver with relations ab = 0 for all arrows a and b.

●
n

��

●

●
1

��

●
2

��

●
4

��
●
3

Next let M be the module
1 2

3
. Then the injective coresolution of M is

0 // M // 124

3
// 5

4
// . . . // n

n − 1
// n // 0 .

Hence n − 3 = d is the injective dimension of M . �

Proposition 2.2. Any d with 1 ≤ d ≤ ∞ is the projective dimension of a module

M satisfying (123).

Proof. The modules
1 2

3
and

1 2

2
in [4, Examples 2.3 and 2.4] have projective

dimension 1 and ∞, respectively. Assume now 1 < d < ∞ and let n = d + 2. Next

let R be the K–algebra given by the following quiver with relations ab = 0 for all
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arrows a and b.
1

●

��

2

●

��
3

●

��
4

●

●
n

Let M be the module I(3) = 1 2

3
. Then the projective resolution of M is

0 // n // n − 1

n
// . . . // 3

4
// 1

3
⊕ 2

3
// M // 0 .

Consequently the projective dimension of M is n − 2 = d. �

Propositions 2.1 and 2.2 suggest that we investigate the groups of selfextensions

of the modules satisfying (123).

Example 2.3. There is a module M satisfying (123) such that Extn(M,M) ≃ K
for any n ≥ 1.

Construction. As in [4, Theorem 2.8], let R be the K–algebra given by the quiver

●
1

a // ●
2

bdd with relations ba = 0 and b3 = 0. Next let M be the module
1 2

2
.

Then I(1) = 1 and I(2) =
2

1 2

2

are the indecomposable injective modules. From

the exact sequence 0 → M → I(2) → 2 → 0 we obtain the long exact sequence

0 Ð→ Hom(M,M) ≃Ð→ Hom(M,I(2)) 0Ð→ Hom(M,2) ≃Ð→ Ext1(M,M) Ð→ 0 Ð→
. . .Ð→ 0Ð→ Exti(M,2)Ð→ Exti+1(M,M)Ð→ 0 . . . . . . .

Consequently we have

Ext1(M,M) ≃ Hom(M,2) ≃K (1)

and

Extn+1(M,M) ≃ Extn(M,2) for any n ≥ 1. (2)
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On the other hand, from the exact sequence 0 Ð→ 2 Ð→ I(2) Ð→ 1 ⊕ 2

2
Ð→

0, we obtain the long exact sequence 0 Ð→ Hom(M,2) Ð→ Hom(M,I(2)) Ð→

Hom(M, 1 ⊕ 2

2
) Ð→ Ext1(M,2) Ð→ 0 . . . Ð→ 0 Ð→ Exti (M, 1 ⊕ 2

2
) Ð→

Exti+1 (M,2)Ð→ 0Ð→ . . . .

Hence, comparing dimensions and using the fact that 1 is an injective module,

we have

Ext1(M,2) ≃K (3)

and

Extn+1(M,2) ≃ Extn (M,
2

2
) for any n ≥ 1. (4)

Combining (2) and (3), we get

Ext2(M,M) ≃K. (5)

Finally, from the exact sequence 0 Ð→ 2

2
Ð→ I(2) Ð→ 1 ⊕ 2 Ð→ 0, we obtain

the long exact sequence 0 Ð→ Hom(M,
2

2
) Ð→ Hom(M,I(2)) Ð→ Hom(M,1 ⊕

2) Ð→ Ext1 (M,
2

2
) Ð→ 0 Ð→ . . . Ð→ 0 Ð→ Exti(M,1⊕ 2) Ð→ Exti+1 (M,

2

2
) Ð→

0→ . . . . Therefore we have

Ext1 (M,
2

2
) ≃K (6)

and

Extn+1 (M,
2

2
) ≃ Extn (M,2) for any n ≥ 1. (7)

Putting (2), (4) and (6) together, we get

Ext3 (M,M) ≃K. (8)

Combining (4) and (7), we obtain

Exti+2 (M,2) ≃ Exti (M,2) for any i ≥ 1. (9)

This result and (2) imply that

Exti+3 (M,M) ≃ Exti+1 (M,M) for any i ≥ 1. (10)

Putting (1), (5), (8) and (10) together, we conclude that Extn(M,M) ≃K for any

n ≥ 1. �

As the next examples show, we may have Ext1(M,M) ≠ 0 also when M is defined

over hereditary algebras.
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Example 2.4. There is a module M satisfying (123) such that dim Ext1(M,M) =
2.

Construction. Let R be the infinite dimensional K–algebra given by the quiver

●
1

b //a :: ●
2

. Let M be the module described by the following picture

v1

●

b

��

a 88
v2

●

b

��
●
v3

where {v1, v2, v3} is a basis of M and av1 = v1, av2 = 0, bv1 = v3 = bv2. Then

Rv1, Rv2 and Rv1 ∩ Rv2 = Rv3 are the three non zero proper submodules of M .

On the other hand the three composition factors of M are one dimensional. Let

U1 = M/Rv1 an let U2 = M/Rv2. Then aU1 = 0 and aU2 ≠ 0. Hence M satisfies

(123). From the exact sequence

0Ð→ Rv3 ≃ P (2)Ð→M Ð→ U1 ⊕U2 Ð→ 0 (1)

we get the long exact sequence

0 = Hom(U1 ⊕U2,M)Ð→ Hom(M,M) ≃Ð→ Hom(Rv3,M) 0Ð→

Ð→ Ext1(U1 ⊕U2,M) ≃Ð→ Ext1(M,M)Ð→ 0. (2)

Let e1 be the path of length zero around the vertex 1. Then the definition of U1 and

U2 guarantees the existence of epimorphisms f ∶ P (1) Ð→ U1 and g ∶ P (1) Ð→ U2

such that Ker f = Ra ⊕ Rb and Ker g = R(e1 − a) ⊕ Rb. Consequently, there are

exact sequences of the form

0Ð→ P (1)⊕ P (2)Ð→ P (1)Ð→ Ui Ð→ 0 for i = 1,2. (3)

Hence also the following long sequences are exact

0 = Hom(Ui,M)Ð→ Hom(P (1),M)Ð→ Hom(P (1)⊕ P (2),M)Ð→

Ð→ Ext1(Ui,M)Ð→ 0 for i = 1,2. (4)

Since Hom(P (1),M) ≃ K2 and Hom(P (1) ⊕ P (2),M) ≃ K3, we deduce from

(4) that Ext1(Ui,M) ≃ K for i = 1,2. Consequently we deduce from (2) that

dim Ext1(M,M) = 2. �

In the next example we use a quiver with one vertex.
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Example 2.5. The free algebra A =K < x, y > admits a module M satisfying (123)

such that dim Ext1(M,M) = 10.

Construction. Let M be the A–module described by the following picture

v1

●

y

��

x 88
v2

●

x

��

yff

●
v3

More precisely, let {v1, v2, v3} be a basis of M and assume that xv1 = v1, yv2 = v2,

yv1 = v3 = xv2 and xv3 = 0 = yv3. Also in this case Av1, Av2 and Av1 ∩Av2 = Av3
are the three non zero proper submodules of M . Moreover the three composition

factors S1 = Av1/Av3, S2 = Av2/Av3 and S3 = Av3 are pairwise non isomorphic.

Hence M satisfies (123). From the exact sequence

0Ð→ A2 Ð→ AÐ→ Si Ð→ 0 for i = 1,2,3, (1)

we obtain the long exact sequences

0Ð→ Hom(Si,M)Ð→ Hom(A,M)Ð→ Hom(A2,M)Ð→

Ð→ Ext1(Si,M)Ð→ 0 for any i.

Since Hom(Si,M) = 0 for i = 1,2 and Hom(S3,M) ≃K, we obtain

dim Ext1(Si,M) = 3 for i = 1,2 (2)

and

dim Ext1(S3,M) = 4. (3)

Since the sequence 0 Ð→ S3 Ð→M Ð→ S1 ⊕ S2 Ð→ 0 is exact and A is hereditary,

we obtain the long exact sequence

0 = Hom(S1 ⊕ S2,M)Ð→ Hom(M,M) ≃Ð→ Hom(S3,M)Ð→

Ð→ Ext1(S1 ⊕ S2,M)Ð→ Ext1(M,M)Ð→ Ext1(S3,M)Ð→ 0. (4)

Putting (2), (3) and (4) together, we conclude that dim Ext1(M,M) = 10. �

In the next statement we compare the dimensions of certain subspaces of small

modules satisfying (123).

Proposition 2.6. Let A be the free K–algebra K ⟨x, y⟩, and let M be a module

satisfying (123) with dimM = 3. Then, among others, the following cases are

possible:



INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE 225

(i) dimxM = dim yM = 2;

(ii) dimxM = dim yM = 1;

(iii) dimxM = 2, dim yM = 1.

Proof. (i) This follows from Example 2.5, where we have xM = ⟨v1, v3⟩ and

yM = ⟨v2, v3⟩.
(ii) Let M be the A–module, obtained in an obvious way from Example 2.4, with

basis {v1, v2, v3} described by the following picture.

v1

●

y

��

x 88
v2

●

y

��
●
v3

Then we have xM = ⟨v1⟩ and yM = ⟨v3⟩.
(iii) Let M be the A–module with basis {v1, v2, v3} described by the following

picture.
v1

●

y

��

x 88
v2

●

x

��
●
v3

then we have xM = ⟨v1, v3⟩ and yM = ⟨v3⟩.
�

3. Composition factors and endomorphism rings

In the sequel we denote by N+ the set of positive integers. In order to construct

modules satisfying (123) of infinite dimension, we need the following lemma.

Lemma 3.1. Let A =K ⟨x, y⟩. Then for any d ∈ N+∪{ℵ0} there is a simple module

S with dimS = d and EndS ≃K.

Proof. If d = 1, the assertion is obvious. Assume d is finite and d > 1. Let S be

the module with basis {v1, . . . , vd} described in an obvious way by the following

picture.
v1

●
x //

v2

● ●
x //

vd

●

y

dd
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If 0 ≠ v = ∑d
i=1 kivi, then we have yxiv = kd−iv1 for i = 0, . . . , d − 1. Consequently

Av = Av1 = S. Hence S is a simple module of dimension d. Assume now f ∈ EndS

and f(v1) = ∑d
i=1 kivi. Since yxiv1 = 0 for i = 0, . . . , d−2, we have kd−iv1 = yxif(v1) =

f(yxiv1) = 0 for i = 0, . . . , d − 2. Hence kd = kd−1 = ⋅ ⋅ ⋅ = k2 = 0, and so f is the

multiplication by k1. Assume d = ℵ0. Let S be the module with basis {vn∣n ≥ 1}
described in obvious way by the following picture.

●
v1

x
))
●
v2

x
))

y

ii ●
v3

x
))

y

ii ●
v4y

ii

If 0 ≠ v = ∑n
i=1 kivi with kn ≠ 0, then we have yn−1v = knv1. Consequently Av =

Av1 = S, and so S is a simple module of dimension ℵ0. Assume now f ∈ EndS

and f(v1) = ∑n
i=1 kivi for some n ≥ 2. Since yv1 = 0, it follows that ∑n−1

i=1 ki+1vi =
yf(v1) = f(yv1) = 0. Hence we have k2 = ⋅ ⋅ ⋅ = kn = 0, and so f is the multiplication

by k1. The lemma is proved. �

By dealing with reasonably large free K–algebras it is easy to construct big

modules satisfying (123).

Theorem 3.2. If di ∈ N+ ∪ {ℵ0} for i = 1,2,3 and A =K ⟨x, y, z⟩, then there is an

A–module M , satisfying (123), such that the three composition factors of M have

dimensions d1, d2, d3 and d3 = dim socM .

Proof. Let M be the A–module with basis B1 ∪B2 ∪B3 with ∣Bi∣ = di for any i

described by the following picture.

●
v1

z

��

●
y

ii ●
u1

y

��

●
z

ii

●
ω1

●
y

ii

More precisely we have B1 = {vi}i≥1, B2 = {ui}i≥1, B3 = {ωi}i≥1 and the following

conditions hold. If d1 = 1, then yv1 = v1, xv1 = 0 and zv1 = ω1. If d1 > 1, then

B1 generates the K ⟨x, y⟩–module of dimension d1 constructed in Lemma 3.1, and

we have zv1 = ω1 and zvi = 0 for any i > 1. If d2 = 1, then zu1 = u1, xu1 = 0 and

yu1 = ω1. If d2 > 1, then B2 generates the K ⟨x, z⟩–module of dimension d2 (with z
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instead of y) constructed in Lemma 3.1, and we have yu1 = ω1 and yui = 0 for any

i > 1. If d3 = 1, then yω1 = ω1 and xω1 = 0 = zω1. If d3 > 1, then B3 generates the

K ⟨x, y⟩–module of dimension d3 constructed in Lemma 3.1, and we have zωi = 0

for any i. Let now N1 = Av1, N2 = Au1. Then we have N1 ∩ N2 = Aω1, and so

dimN1∩N2 = d3. On the other hand dimM/N1 = d2 and dimM/N2 = d1. Moreover,

by Lemma 3.1, K is the endomorphism ring of M/N1, M/N2 and N1 ∩N2. To end

the proof, take any 0 ≠m ∈M . If m ∈ N1∩N2, then we have Am = Aω1 = N1∩N2. If

m /∈ N1, then there exists a ∈ A and k ∈K such that zam = u1 + kω1. Consequently

there is some b ∈ A such that zb(u1 + kω1) = u1, and so N2 = Au1 ⊆ Am. Suppose

now m /∈ N2. Then there exist a ∈ A and s ∈ N1 ∩ N2 such that yam = v1 + s.
Consequently ω1 = zyam ∈ Am, and so N1 ∩ N2 = Aω1 ⊆ Am. It follows that

v1 = yam − s ∈ Am; hence N1 = Av1 ⊆ Am. Putting things together, we conclude

that Am = N1 if m ∈ N1 ∖N2, Am = N2 if m ∈ N2 ∖N1, and Am = N1 +N2 =M if

m /∈ N1 ∪N2. Hence M satisfies (123) and the proof is complete. �

Corollary 3.3. Let R be the K–algebra given by the quiver

1

●

c

��

a1 :: b1dd

2

●

d

��

a2 :: b2dd

3

●a3 :: b3dd

.

If di ∈ N+ ∪ {ℵ0} for i = 1,2,3, then there is an R–module V = (Vi, fi) such that V

satisfies (123) and dimVi = di for any i.

Proof. By Lemma 3.1 we can define a simple K ⟨x, y⟩–module (Vi;ai, bi) with

dimension di and endomorphism ring K for any i = 1,2,3. Next we fix a non zero

map c ∶ V1 Ð→ V3 and a non zero map d ∶ V2 Ð→ V3. In this way we obtain an

R–module V = (V1, V2, V3; fj) with the following properties:

● The three non zero proper submodules of V are N1 = (V1,0, V3; fj), N2 =
(0, V2, V3; fj) and N1 ∩N2 = (0,0, V3; fj).

● V /N1 is not isomorphic to V /N2.

● EndV /Ni is isomorphic to K for i = 1,2.

Consequently V satisfies (123) and dimVi = di for any i. �

By hypothesis, two non isomorphic composition factors belonging to the top of

a module satisfying (123) have the smallest possible endomorphism ring. However
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it is easy to see that the socle of a module satisfying (123) may have a large

endomorphism ring.

Proposition 3.4. Let E be an extension field of K with [E ∶ K] > 1. Then

there are a K–algebra R and a faithful R–module M , satisfying (123), such that

End(socM) ≃ E and M is not injective.

Proof. Let R be the matrix algebra

⎛
⎜⎜⎜
⎝

K 0 0

0 K 0

E E E

⎞
⎟⎟⎟
⎠

. Next let P be the left ideal

⎛
⎜⎜⎜
⎝

K 0 0

0 K 0

E E 0

⎞
⎟⎟⎟
⎠

, and let Q be the left ideal

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

a −a 0

⎞
⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRR

a ∈ E

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

. Finally let M =

P /Q, L1 =
⎛
⎜⎜⎜
⎝

K 0 0

0 0 0

E E 0

⎞
⎟⎟⎟
⎠

, L2 =
⎛
⎜⎜⎜
⎝

0 0 0

0 K 0

E E 0

⎞
⎟⎟⎟
⎠

, N1 = L1/Q and N2 = L2/Q. Then N1,

N2 and N1 ∩N2 = socM are the unique proper submodules of M . Moreover M/N1

and M/N2 have dimension one over K and we have M/N1 /≃ M/N2. Hence M

satisfies (123), and we clearly have End(socM) ≃ E. Moreover it is easy to check

that M is a faithful R–module. Finally, let P̃ be the left R–module

⎛
⎜⎜⎜
⎝

E 0 0

0 E 0

E E 0

⎞
⎟⎟⎟
⎠

. It

remains to check that M = P /Q is an essential submodule of P̃ /Q. To see this, take

any p̃ =
⎛
⎜⎜⎜
⎝

x 0 0

0 y 0

z t 0

⎞
⎟⎟⎟
⎠
∈ P̃ ∖ P . Then

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 0 0

⎞
⎟⎟⎟
⎠
p̃ =

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

x 0 0

⎞
⎟⎟⎟
⎠

and

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

0 1 0

⎞
⎟⎟⎟
⎠
p̃ =

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

0 y 0

⎞
⎟⎟⎟
⎠

. Consequently R(p̃+Q)∩P /Q ≠ 0, and so P /Q is an essential submodule

of P̃ /Q, as claimed. �

Corollary 3.5. Any infinite cardinal d is the dimension over K of a faithful module

satisfying (123).

Proof. If E is an extension field of K with [E ∶K] = d, then the claim follows from

the proof of Proposition 3.4. �

As the next result shows, only two K–algebras occur as the endomorphism ring

of a module satisfying (123) and defined over a K–algebra.
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Theorem 3.6. Let M be a module satisfying (123) and defined over a K–algebra.

Let N1 and N2 be the two maximal submodules of M . The following facts hold:

(i) If N1 ∩N2 /≃M/Ni for any i, then EndM is isomorphic to K.

(ii) If N1 ∩N2 ≃M/Ni for some i, then EndM is isomorphic to K[x]/(x2).

Proof. Let π ∶M Ð→M/(N1 ∩N2) be the canonical morphism. Since N1 ∩N2 is

fully invariant in M , for any f ∈ EndM there is a unique morphism f⋆ ∈
End (M/(N1 ∩N2)) such that π○f = f⋆○π. Let ρ ∶ EndM → End (M/(N1 ∩N2)) ≃
K ⊕K be the morphism sending f to f⋆ for any f . We first note that

End (M/(N1 ∩N2)) has non trivial idempotents. (1)

We next observe that

f2 = 0 for every f ∈ Kerρ. (2)

Since M is indecomposable and idempotents lift modulo nil ideals, we conclude

that

ρ is not surjective. (3)

Suppose first N1 ∩N2 /≃ M/Ni for any i. In this case ρ is injective. This remark

and (3) imply that EndM is isomorphic to K. Hence (i) holds. Assume now

N1 ∩ N2 ≃ M/Ni for some i. In this case there is some 0 ≠ f ∈ Kerρ. Since

End (M/Ni) ≃K, it follows that Kerρ is the vector space generated by f . Putting

(2) and (3) together, we conclude that EndM is isomorphic to K[x]/(x2). Thus

also (ii) holds. �

Corollary 3.7. Let R be a K–algebra, let M be a module satisfying (123), and let

E = EndM . The following facts hold:

(i) R is not commutative and E is commutative.

(ii) M is a cyclic R–module and M is not a cyclic E–module.

Proof. (i) We know from [4, Remark 2.2] that R is not commutative, while we

know from Theorem 3.6 that E is commutative.

(ii) Let N1 and N2 be the maximal submodules of M . Then any m ∈M∖(N1∪N2)
generates M as an R–module. By Theorem 3.6 we have dimE ≤ 2. On the

other hand we clearly have dimM ≥ 3. Hence M is not a cyclic E–module.

�

As usually, we say that a bimodule AXB is faithfully balanced if the canonical

morphisms A Ð→ EndXB and B Ð→ EndAX, sending any a ∈ A and b ∈ B to the

corresponding multiplications, are isomorphisms.
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Proposition 3.8. Let R,M,N1,N2 and E = EndM be as in Corollary 3.7. Let

T be the algebra of all endomorphisms of M as an E–module. The following facts

hold:

(i) M is not a faithfully balanced R −E bimodule.

(ii) If R is a finite dimensional algebra, then we may have dimT = dimR + 1.

Proof. We first note that

M is not a simple R–module. (1)

Assume first E ≃ K. Then T ≃ EndK(M) and M is a simple T–module. This

remark and (1) prove that M is not faithfully balanced. Assume now E =K[f] for

some endomorphism f of M such that

f(N1) = 0 and f(N2) = N1 ∩N2. (2)

Let now B be a basis of M of the form B1 ∪B2 ∪B3 such that B1 ∪B3 and B2 ∪B3

are bases of N1 and N2 respectively, while B3 is a basis of N1 ∩ N2. Next let

s ∶M Ð→M be a K–linear map such that

s(b) = 0 for any b ∈ B1 ∪B3, (3)

and

s(b) ∈ B1 for any b ∈ B2. (4)

Consequently we deduce from (2), (3) and (4) that (s○f)(b) = 0 = (f ○s)(b) for any

b ∈ B. It follows that s ∈ T . On the other hand we deduce from (4) that s(N2) /⊆ N2.

Hence s does not act as the multiplication by an element of R, and so (i) holds. To

prove (ii), we choose R and M as in [4, Example 2.4]. More precisely, let R be the

K –algebra given by the quiver ●
1

a // ●
2

bdd with relations ba = 0 and b2 = 0,

and let M be the module
1 2

2
. We first note that

R is isomorphic to the algebra of all matrices over K of the form

⎛
⎜⎜⎜
⎝

a 0 0

0 b 0

c d b

⎞
⎟⎟⎟
⎠
. (5)
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Consequently E is isomorphic to the algebra of all matrices over K of the form

⎛
⎜⎜⎜
⎝

x 0 0

0 x 0

0 y x

⎞
⎟⎟⎟
⎠

. Therefore it is easy to check that

T is isomorphic to the algebra of all matrices over K of the form

⎛
⎜⎜⎜
⎝

a e 0

0 b 0

c d b

⎞
⎟⎟⎟
⎠
. (6)

Hence, by (5) and (6), we have dimR = 4 and dimT = 5. Hence also (ii) holds. �

In the next statement we collect some results on dimensions and generators.

Proposition 3.9. Let R be a K–algebra and let M be an R–module satisfying

(123). The following facts hold:

(i) R is generated by at least two elements.

(ii) dimR ≥ 4.

(iii) There is an algebra B, having a B–module satisfying (123), such that B is

generated by two elements and dimB = 4.

Proof. (i) This follows from the fact that R is not commutative (Corollary 3.7).

(ii) We first note that M is a cyclic R–module which is not projective (Corollary

3.7 and [4, Lemma 2.1]). Consequently either dimR = ∞ or 3 ≤ dimM <
dimR <∞.

(iii) Let B be the K–algebra given by the quiver ●
1

a // ●
2

bdd with relations

ba = 0 and b2 = 0, used to prove condition (ii) of Proposition 3.8. Next let

e1 and e2 be the paths of length zero around 1 and 2. Then {e1, e2, a, b} is a

basis of B, and we clearly have e2 = 1 − e1, a = (a + b)e1 and b = (a + b)e2 =
(a + b)(1 − e1). Hence B is generated by e1 and a + b. �

The proof of Proposition 2.1 shows that many modules of dimension 3, satisfying

(123), are injective modules over suitable algebras. We finally show that also the

previous K ⟨x, y⟩–modules of dimension 3 have this property.

Corollary 3.10. Let B be the K–algebra used to prove Proposition 3.9 (iii), and

let M be the K ⟨x, y⟩–module used to prove Proposition 2.6 (ii) (resp. (iii)). Then

M is a faithful injective B–module.
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Proof. By hypothesis M is described by the following picture

v1

●

y

��

x 88
v2

●

y

��
●
v3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

resp.

v1

●

y

��

x 88
v2

●

x

��
●
v3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let f and g be the endomorphisms of M induced by x and y. Then we clearly have

f2 = f , g2 = 0, fg = 0 and gf ≠ 0 (resp. f3 = f2, g2 = 0, fg = 0 and gf = g). On the

other hand, by Proposition 3.9, we have dimK ⟨f, g⟩ ≥ 4. Consequently {1, f, g, gf}
(resp. {1, f, f2, g}) is a basis of K ⟨f, g⟩. Moreover the K–linear map B Ð→K ⟨f, g⟩
such that e1 ↦ f , e2 ↦ 1 − f , a ↦ gf , b ↦ g − gf (resp. e1 ↦ f2, e2 ↦ 1 − f2,

a ↦ g, b ↦ f − f2) is an algebra isomorphism. Since
1

2
,

2

2
,

1 2

2
, 1 , 2 , are the

indecomposable B–modules, we conclude that the B–module M is the injective

module
1 2

2
. �

Corollary 3.11. Let C be the K–algebra given by the Dynkin diagram

1
a // 3 2

boo ,

and let M be the K ⟨x, y⟩–module constructed in Example 2.5. Then M is a faithful

injective C–module.

Proof. By hypothesis M is described by the following picture.

v1

●

y

��

x 88
v2

●

x

��

yff

●
v3

Let f and g be the endomorphisms of M induced by x and y. Then we clearly have

f3 = f2, g3 = g2, fg = fg2 = f − f2, gf = gf2 = g − g2, and f2g = g2f = 0. Moreover

{1, f, f2, g, g2} is a basis of K ⟨f, g⟩. As always, let ei be the path of length zero

around the vertex i. Then the K–linear map C Ð→ K ⟨f, g⟩ such that e1 ↦ f2,

e2 ↦ g2, e3 ↦ 1 − f2 − g2, a ↦ g − g2, b ↦ f − f2 is an algebra isomorphism. Hence

the C–module M is the injective module
1 2

3
. �
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In all the previous examples of faithful modules M , satisfying (123) and defined

over finite dimensional K–algebras R, we always have dimR − dimM ≤ 2. To see

that this is not always true, it suffices to consider the following example.

Example 3.12. There are a K–algebra R and a faithful R–module M , satisfying

(123), such that dimM = 4, EndM ≃K and dimR = 10.

Construction. Let M be the K ⟨x, y, z⟩–module described by the following picture.

v1

●

z

��

y 88
v2

●

y

��

zff

●
v3

x
))
●
v4y

ii

Then we deduce from Theorems 3.2 and 3.6 thatM is aK ⟨x, y, z⟩–module satisfying

(123) with EndM ≃ K and dimM = 4. Let f, g, h be the endormorphisms of M

induced by x, y, z respectively, and let R =K ⟨f, g, h⟩. Next let e = 1−g2−h2−gf and

` = ge. Then the linear maps g2, h2, hg, gh, gf, `, fh, fgh, f, e are described by ten

different matrices (with entries in K) with one entry equal to 1 and the remaining

ones equal to 0, as suggested by the following matrix

⎛
⎜⎜⎜⎜⎜⎜
⎝

g2 0 0 0

0 h2 0 0

hg gh gf `

fh fgh f e

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

This remark and the shape of M imply that R is isomorphic to the matrix algebra

⎛
⎜⎜⎜⎜⎜⎜
⎝

K 0 0 0

0 K 0 0

K K K K

K K K K

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Consequently we have dimR = 10, as claimed. �

As the next example shows, the dimension of a faithful module satisfying (123)

and that of its endomorphism ring do not determine the dimension of the algebra.

Example 3.13. There are a K–algebra A and a faithful A–module L, satisfying

(123), such that dimL = 4, EndL ≃K and dimA = 9.
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Construction. Let L be the K ⟨x, y, z⟩–module described by the following picture.

v1

●

z

��

x
)) v2
●

y

ii
v3

●

y

��

zff

●
v4

Then we have dimL = 4. Proceeding as in Theorem 3.2 we conclude that the

K ⟨x, y, z⟩–module L satisfies (123). Hence we deduce from Theorem 3.6 that

EndL ≃ K. Next let f, g, h be the endomorphisms of L induced by x, y, z re-

spectively, and let A =K ⟨f, g, h⟩. Finally let e = 1−gf −fg−h2. Then the elements

gf, gfg, f, fg, h2, hgf, hg, gh, e are described by nine different matrices (with entries

in K) with one entry equal to 1 and the remaining ones equal to 0, as suggested by

the following matrix

⎛
⎜⎜⎜⎜⎜⎜
⎝

gf gfg 0 0

f fg 0 0

0 0 h2 0

hgf hg gh e

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

This observation and the shape of M imply that A is isomorphic to the matrix

algebra

⎛
⎜⎜⎜⎜⎜⎜
⎝

K K 0 0

K K 0 0

0 0 K 0

K K K K

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Hence we have dimA = 9. �

Example 3.14. There are a K–algebra B and a faithful B–module U , satisfying

(123), such that dimU = 4, EndU ≃K[x]/(x2) and dimB = 8.

Construction. Let U be the K ⟨x, y, z⟩–module described by the following picture.

v1

●

z

��

x
)) v2
●

y

ii
v3

●

y

��
●
v4

Let f, g, h be the endomorphisms of U induced by x, y, z respectively, and let B =
K ⟨f, g, h⟩. Then U is a faithful B–module with dimU = 4 and, proceeding as in
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Theorem 3.2, it is easy to see that the B–module U satisfies (123). Finally, by

Theorem 3.6, we have EndU ≃ K[x]/(x2). Let e = 1 − gf − fg and let ` = g − gfg.

Then the elements gf, gfg, f, fg, e, h, hg, ` are described by matrices with one or two

entries equal to 1 and the remaining ones equal to 0, as suggested by the following

matrix
⎛
⎜⎜⎜⎜⎜⎜
⎝

gf gfg 0 0

f fg 0 0

0 0 e 0

h hg ` e

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

This remark and the shape of U imply that B is the K–algebra of all matrices (with

entries in K) of the form

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋆ ⋆ 0 0

⋆ ⋆ 0 0

0 0 t 0

⋆ ⋆ ⋆ t

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Hence we have dimB = 8, as claimed. �

Corollary 3.15. There exist two finite dimensional factor algebras A and B of

K ⟨x, y, z⟩ and two faithful modules AL and BU , satisfying (123), such that dimL =
dimU , dim socL = dim socU , dimA + dim EndL = dimB + dim EndU and dimA ≠
dimB.

Proof. Let A,B,L and U be as in Examples 3.13 and 3.14. Then we have dimL =
dimU = 4, dim socL = dim socU = 1, dimA = 9, dimB = 8, dim EndL = 1 and

dim EndU = 2. �
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Modules which are coinvariant under automorphisms of their projective covers,

J. Algebra, 466 (2016), 147-152.

Gabriella D’Este

Department of Mathematics

University of Milano

Via Saldini 50

20133 Milano, Italy

e-mail: gabriella.deste@unimi.it


	1. Introduction 
	2. Homological dimensions and extensions
	3. Composition factors and endomorphism rings
	toReferences

