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Abstract

In the present article, we study the energy eigenvalues and wavefuntions of the spinless particles in the existance of
space-dependent electric and magnetic fields. The investigation is performed for two different orientations of the
external fields by solving the Schrodinger and Klein-Gordon equations via Asymptotic Iteration Method (AIM). The
obtained results are discussed numerically for first few quantum levels to understand the relativistic contributions by
comparing the energy eigenvalues of Schrédinger and Klein-Gordon equations. By considering the quantum conditions
for the resulting equations in the case of parallel and orthogonal orientations of the fields, we obtained the plots for the
energy levels.
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Bu ¢alismada, uzay-bagimh elektrik ve manyetik alanlarin varliginda, spinsiz par¢aciklarin enerji 6zdegerleri ve dalga
fonksiyonlart incelenmektedir. Calismada, dis alanlarin iki farkli yonelimi igin Schrédinger ve Klein-Gordon
denklemleri Asimptotik Iterasyon Metodu (AIM) ile ¢oziilmektedir. Elde edilen sonuclar, Schrodinger ve Klein-Gordon
denklemlerinin enerji 6zdegerleri karsilastirilarak gorveceli katkilari gérebilmek icin, ilk birka¢ kuantum seviyesi igin,
sayisal olarak tartisilmistir. Alanlarin paralel ve ortogonal yomelimlerinde ortaya c¢ikan denklemlerin kuantum
kosullarimi goz oniine alarak, enerji seviyelerinin egrisi elde edilmistir.
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1. Introduction

Electromagnetic fields have lots of important
applications used in the medicine and technology
for a long time. Depending on their usage in
fundamental  processes occurring in  the
engineering, particle and medical physics,
important steps have been taken such as
developments on the intense particle beams
generated by laser sources or on the construction
of accelerators. Besides, some observations in
astrophysics such as the discovery of the pulsars
got attention on the different configurations of
parallel electric and magnetic fields (Chiu et al.,
1969; Chiu and Canuto, 1969; Chiu and
Occhionero, 1969). After these developments,
exact solutions of the relativistic particle
equations in external electromagnetic fields
required considerable attention. Such studies have
been accomplished for different configurations of
the external fields (Redmond, 1965; Liboff, 1966;
Occhionero and Demianski, 1969; Lam, 1971;
Grewing and Heintzmann, 1972; Bergou and
Ehlotzky, 1983; lvanovski et al., 1993; Villalba
and Pino, 2001; Chiang and Ho, 2001; RutkowskKi
and Poszwa., 2009; Sogut and Havare, 2014) in
which the exact solutions of the non-relativistic
and relativistic wave equations are obtained and
principal informations regarding the
corresponding quantum mechanical system are
derived. These investigations have been very
helpful in the interpretation of the physical
processes such as Compton scattering by a laser
source and the Brownian motion. There are less
studies on the motion of the spinless particles in
the coexistence of the electric and magnetic fields.

The aim of the present study is to obtain the exact
solutions of the spinless particles for two

orientations of exponentially varying electric and
magnetic fields that are given by

Ap = (afoﬁz) 6‘(‘) + (Ff_;)\y) 6/1 (1)

Ay = () 60 + (72 83 2)

where Eg, By, a, B,T" and A are constants and
Y,z € [0,0). Egs. (1) and (2) represent the case

of parallel fields (E Il §) and perpendicular fields
(E 1 §), respectively.

There are different methods that can be used for
the investigation of such a motion in quantum
mechanics, such as Nikiforov-Uvarov (NU)
method  (Nikiforov —and  Uvarov, 1988),
faztorization method (Dong, 2007) and
Supersymmetric Quantum Mechanics (SUSYQM)
(Valance et al., 1990). In this study, we use
Asymptotic Iteration Method (AIM) which is
widely used in recent years (Ciftci et al., 2003).
AIM is a novel method that makes the
calculations in quantum mechanics easier and
faster. It can be applied to both exactly and
approximately (numerically) solvable problems
(Ciftci et al., 2005a, 2013; Ciftci and Kisoglu
2016; Benchiheub et al., 2015; Chabab et al.,
2016; Demic et al., 2016). AIM can also be used
in the scope of perturbation method (Ciftci et al.,
2005b, 2013; Onate and Idiodi, 2015; Zhang et al.,
2015; Alsadi, 2015; Kumaresan et al., 2015).
Availability in the scope of perturbation method,
besides the usage for exactly and approximately
solvable problems, makes AIM a powerful
method.

In present work, the motion of a spinless particle
in the external fields given in Eq. (1) is
investigated by means of Asymptotic Iteration
Method (AIM). We obtain the exact solutions of
both Schrédinger and Klein-Gordon equations for
such a particle via the method. We also construct
the energy spectrums for both equations.

According to organization of the paper, we
introduce briefly the AIM in Section 2, and by
applying this method to the Schrédinger and
Klein-Gordon equations by considering Egs. (1)
and (2) in Section 3. Finally, we discuss the
obtained results in Section 4.

2. A Brief Introduction to Asymptotic Iteration Method (AIM)

We summarize Asymptotic Iteration Method (AIM) in this section, while exhaustive information can be
found in Ref. (Ciftci et al., 2003). AIM was provided for solving the second order linear differential

equations in a form as follows

y"'(x) = A (x)y' (x) + $0(x)y (%)

3)
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where A4(x), so(x) and their derivatives are continuous functions within the boundaries of the given
system. On the assumption that

Sn An

=¢ (4)

Sn-1 An-1

is satisfied for n € Z* (n is large enough), there is a general solution given by
X X t
y(x) = exp(=[ S @O)dt)| C, +C, [ exp( [ (4 (7) +2¢ () M7t (5)

where C; and C, are constants and

Ap = /1;1—1 + Sp-1 + Aodno1, Sp = 51’1—1 + SoAn-1 (6)
The (unknown) E energy eigenvalues of the eigenvalue problem are obtained from the following equation:

6 (X, E) = sp(x, E) A1 (X, E) = Ay (%, E)sp—1 (%, E) = 0 U]
which is named as "termination condition", and is obtained through the Eq. (4).

This termination condition has a crucial role to get the eigenvalues. If the unknown E energy eigenvalues
(roots of Eq. (7)) can be obtained independently from the variable x, the problem is exactly solvable. If not,

the problem is approximately (or numerically) solvable and an acceptable initial x = x, value is needed to
initiate the AIM iterations. This initial value may be obtained from A, =0 (Ciftci et al., 2003, 2013; Aygun

et al., 2007). Besides that, eigenfunctions of the problem are obtained by using the function generator given
as follows (Bayrak and Boztosun, 2006; Bayrak et al. 2007):

y,(9=C, exp(— | jj—?&dt} ®

3. Application of AIM to the Problem

In this section, we apply AIM to Schréodinger and Klein-Gordon equations individually, for a scalar particle

subjected to external electric and magnetic fields. For each equation, both E Il Band E L B cases are
tackled, and exact energy eigenvalues and eigenfunctions for each case are obtained.

3.1. Solution of Schrodinger Equation

The Schrddinger equation for a particle moving in external electric and magnetic fields is

[(ﬁ—ez)z] W= (12— o)W o

2m at

in natural units (A = ¢ = 1) where e and m are charge and mass of the particle, respectively. 4, = (AO,/T)
is electromagnetic four-vector potential (Greiner, 1997, 2001).

3.1.1. TheCase of E | B

In the case of E || §, since the electromagnetic vector potential is independent of the x variable, we can write
the wavefunction as follow
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Wit (x, 3,2, £) = ' EOF ()G (2)

where x,y, z € [0, ). By inserting this form of the wavefunction into Eq. (9), we obtain

[0 +V(@)]F()G(2) =0 (10)
where U(y) and V() operators are defined as follows

—~ ~ B, 2

0) =p3+ (kx - ) (11)
V(z) = p2 — 2me + Zm;i" (12)

Eqg. (10) can be separated into two ordinary differential equations as follows
[U») +a*]F(y) =0 (13)
[V(2) —a?|G(z) =0 (14)

where a? is separation constant. If we change the variable as p = I' + Ay, then Eq. (13) reduces to
following form

d? e?B? 1 2ek,B
[d—pz— T A’§° 2| F(p) =0 (15)
2 _ k2+a2
where T4 = "A—Z

Regarding to domain of the problem, F(p) can be assumed as

F(p) = p°*te™g(p) (16)
where
0= 24 A2 ( )

Substituting Eq. (16) into Eq. (15), we get

g”(p) _ [2 2(0'+1)] ( ) + [21‘[(0+1) ZeféBo %] g(p) (18)

This equation is in appropriate form to start the AIM iterations with the functions

2 1
Jo(p) = [2m =222 (19)
2 1)  2ekyBy 1
so(p) = | ”(Z+ )2 °;] (20)

First few iterations of AIM give

_ ekao _ ekao _ ekaO
T[O T A2 y M = 2 y Ty = 2
AZ(c+1) A2(c+2) A2(5+3)

So, we can generalize T as
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ekao

Tn = FnrosD (n=0123,...) -
. 2 k,zc+a2 . 5 -
Thus, using T° = o the separation constant a“ can be obtained as
2 = 2|28 _
o = e [A2<n+a+1>z 1 (22)

As for Eq. (14), it is written in the explicit form as below

d? 2meE, 1
[ =5 —m*am =0 @)

where we defined a new variable, y = a + fz and 7 as

a’+2me

One can choose G(») , in Eq. (23), as follows

Gy)=ve "f(y)

Then it yields
') =20 =2 o+ 2+ E20 ro) (25)

In order to follow the procedures of AIM, we use the following functions

2
Ao(¥) = [Zn - ;] (26)
_ 2_17 ZmeEol

son) = |2+ 2520 @7
According to first few AIM iterations, we have

meE meE meE meE
No = — ﬁzoi n=- 2320‘ Ny, = — 3320 and n3 = — 4ﬁ20
Then we obtain the exact form of generalized n

_ mekE, _

m = TENE (1=0,1,23,...) (28)

Reminding Egs. (22) and (24), we obtain the exact energy eigenvalues of Schrodinger equation for the case
E |l B as

sch _ _ 1 (m?eEg 2[__e*B§
int = T om {(1+1)232 +kx [Az(n+a+1)2 1]} (29)

The wave functions belonging to Egs. (11) and (12) are determined in two steps. The functions given in Egs.

5O

P
(19) and (20) are used to obtain the function generator g, (p) = exp[—j}b o

}. We get the following

results according to first few AIM iterations
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9o =1,

91=-Qo+2)(c+2)[1-2£]

62 = (20 +2)(20 +3)(0 +3)2[1 - 7L 4 T

g3 = (20 +2)(20 +3)(20 + 4)(0 + 4)° [1 B 2622 + (201227555;3) - (2o+z)(821§f33)(20+4)]’

8 24m3p?
9:=Q0+2)(20 +3)20 +H(20 +5)(c +5)* |1 - L 4 R

32m3p3 n 16mfp* ]
(2o+2)(20+3)(20+4) (20+2)(20+3)(20+4)(20+5)

So, the function generator can be generalized as
gn(P) = (—D™(o +n+ DL 20 + k)] Fi(—n; 20 + 2; 2m,p) (30)

where ;F;(a; b;z) is the confluent hypergeometric function of the first kind. By using Eqg. (30), the
eigenfunction of Eq. (15) is obtained as

Fo(p) = (D)"p7 e ™ (0 + n + DM[[[i2E (20 + k)1 Fy (—n; 20 + 2; 21,p) (31)

The eigenfunction of Eq. (23) is determined in the same manner we followed in Eqg. (15). Using the
functions in Egs. (26) and (27), AIM iterations give the following expressions for the f, () function
generator:

fo=1,

fi=2-2[1-2]
fo=2-3-32[1- L o]
fy=2-34 431 - 2L 2P _48n§y3]

2:320  2:3:4:3
Then we generalize the f;(y) as follows
fiy) = U+ DHITELS k1o Fu (=L 25 2n07) (32)
So, the eigenfunction of Eq. (23) is
G () = ye ™ (L + D'ITELL k1 Fu (=L 2; 2my) (33)
and the wavefunction of Schrédinger equation for the case E Il E is obtained as below
n+1 1+1
I/Jﬁflhl = N, el@kzx=et)y po+lo=(mp+my) (| 4 1) [—(o +n + 1]" <1_[ 20 + k) (1_[ t>
k t=2
1F1(=1; 20 + 2; 21, p) 1 Fi (=15 2; 2m7) (34)
where N; is normalization constant and n,1=0, 1, 2, 3....
3.1.2. Thecaseof E 1 B
For perpendicular orientation of the external fields, the particle is assumed as moving freely on xz-plane, and

the wave function of the particle can be written as
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leCh (x’ y,Z, t) — ei(xkx+zkz—et)¢(y)

The Schrédinger equation for this wavefunction is

d?> e?BZ 1  2e(kyB mE)l .
i~ T - o) =0 (%)

kZ+kZ-2me

where @ =T + Ay and 2 = -

. By defining ¢(8) as ¢(0) = 07 e 20 £ ()

Eqg. (35) yields

£(6) = [22 - 222 /() + [EEHD — ZelaBuomin 1] £ (36)
where T = —% + E ej\ljg-

1o(0) = |22 - 2] (37)
5o(6) = [0 _ 2eCatoomi) 1 (38)

Following expressions are acquired with reference to first few AlM iterations

_ e(kyBy —mE)) _ e(kyBy —mE))

O A(r+1) YT A2(c42)

v = e(kyBy —mEy) _ e(kyBy —mE))
27 A(T+3) TP A2(r+4)

So, the general form of Z is

e(kxBg—mEy)

Iy = A2(n+1+1)

(n=0,1,23,...) (39)
Thus, we get the energy eigenvalues for the case E 1 B as follows

sch _ _ 1 {Je(kxBo—mEy) 2 L2 2
Ein = Zm{[ A(n+t+1) (kx + kZ)} (40)

The wavefunction for the case of E L B can easily be determined by using the fact that Eq. (39) and Eq. (21)
are in the same form. So, we can obtain the below given eigenfunction of the case E L B in the same

manner we used for the case of E // B

Pieh = N,elCkatzkz—e) gT+1o=2nb (_p — ¢ — 1)*[[ML (27 + k)], Fi (—n; 2T + 2; 2%,,0)
(41)

where N, is normalization constant and n=0,1,2,3,...

Figure 1 depicts the variation of energy eigenvalues versus the parameters A and S for the case E ||§,
whereas, Figure 2 illustrates A dependency of energy eigenvalues for the case ELlB.
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Figure 1. Variation of the energy eigenvalues versus the parameters 4 (a) and g (b) for the case E||B. We

setm=q=1,k, =p, =0.6,E, =0.5 B, =50taking f = 10 (a) and A = 15 (b).
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Figure 2. 4 dependency of the energy eigenvalues for the case E | B takingm = q = 1,k, =
py =06, k,=p,=08, E, =0.5B, =50and § = 10.

A

3.2. Solutions of Klein-Gordon Equation

Klein-Gordon equation for any relativistic scalar particle interacting with external electric and magnetic
fields is given by (Greiner, 1997) (A =c = 1)

[(ﬁ - e/f)z + mz] Y = (py — edo)*¥

where e and m are charge and mass of the spin-zero particle, respectively, and A, = (Ao,ff) is four-vector
electromagnetic potential.

3.2.1. Thecase of E | B
Regarding to the selected electromagnetic potential, the wavefunction is written as

WG (x,y,2,t) = e!@Rx"EOH(y)R(2)
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By using Eq.(2), the Klein-Gordon equation yields

[D(y) = b*|H(y) =0

[0(2) + b?|R(2z) = 0

where

D) = p* ) + (ky —

0(2) = p*(2) — (e -

e

[dz e?BZ 1 2ekyBy1
ds? A2 §2 A2 &
kZ+m?—b?
where §2 = *2———
AZ

H(6) = 6**1e%3f(6)

EQ. (46) is reduced to

£1(8) = [26 =252 1/(8) + [2E -

where yu = —

2 1
s0(8) = |22~

N |-

eBo

2
2
m
I‘+Ay) +

Eo )2
a+pz

and b? is separation constant. By changing the variable such as § = ' + Ay, Eq. (42) can be given as

- EZ]H(6) =0

By writing H sy as

2ekyBy 1

] £0)

1, e2B2 . . S .
+ PR So, AlIM iterations are initiated using

to = [ - 22

Zekao 1

A2

8]

First few AIM iterations give the following results

50=m,

ek,B,

LT N2 +2)

ek,B,

ek,B,

27 N2(u+3)

d &3

ek,B,

T N2 (u+ 4)

With the usage of these expressions, the analytical form of £ is achieved as

$n =

T A2(n+u+l)
If we use the relation 2 =
bZ = k2|1

For Eq.(43), changing the variable as v = a + [z gives follows

|

d2
dv?

ekao

(n

e?B?

- A2(n+u+1)2

=0,1,2,3,...)

kZ+m?—b?
A2

]+m2

861

, b2 separation constant is derived as

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)
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b2—g2

B* -

where A =

One can assume R(v) as
R(V) — VQ+1e—Avg(V)

. _ 1 1 e2E§
with () = . + Pl Then Eq. (52) reduces to
" 2(Q+1 2A(Q+1 2ecE,
9" = |28 =22 gy + [+ 22 g (v) (53)

Which is in AIM form, where

Lo(v) = |28 - 2] (54)
v
2A(Q+1) | 2egEy 1
so(v) = [0+ 2] (55)
in accordance to Eq. (3) and Eq. (53). Then first few AIM iterations give
A ecky, A ecky, A ecky, d A ecky,
==, ==, = ——— an = - —
B+ T B@+2) TP BQ+3) OB+
and the general form of A is
— ecEy _
A = Y (1=10,1,23,...) (56)
So, using A% = 32 : followmg exact energy eigenvalues are got
KG _ bA[B(I+Q+1)]?
Elint = i\/ezE§+[[3(l+Q+1)]2 (57)

for the case of E || B where b2 is given as Eq. (51).

One can attain the wave function for this case through the same procedures of Schrédinger equation. If
A0(6) and s¢(6) , given in Egs. (48) and (49), are used for AIM iterations one can get the

2, (1)

n

5
s (t
f,(0)= exp[— jﬁdt] function generator for Eq. (47). Then following results are obtained

fo=1,
fi=~@ut D+ [1-222]

2u+2

45,6 45382
fo=Qu+2)@u+3)u+3)72[1-222 4 (2u+2)2(2u+3)]’

_ 3[4 6838 128562 8&383
f3 B (2[.1 + 2)(2# + 3)(2# + 4) ('u + 4) [1 2u+2  (2u+2)(2u+3) (2u+2)(2u+3)(2u+4)]

Thus, the general form of f,,(§) is obtained as
f2(8) = (DM + p+ DMITRZZ Cu+ k)] Fi (-1 20 + 2; 28,6) (58)
and eigenfunction of Eq. (46) is
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H,(8) = (=D)"e~ 088+ (n + 4+ DM[IRES Qu+ k)1 Fi(—n; 2p + 2; 26,6) (59)

rs(t
The wavefunction related to the motion in z-direction is obtained via g, (v) = exp[—jl'—((t))dtJ function
1

generator for Eq. (53). Thus, 4¢(v) and s, (v) functions given in Egs. (54) and (55) should be used in AIM
iterations. We have following expressions

90 =1, A

_ _ 2 1V
g1=Qo+2)@+2)|1-22 y

— 2 _ 440,V 4A2V
g2 = (20+2)(20 +3)(0 +3) [1 2arz T 2a+2)(20+3)1’

6A3V 12A%v? 8A3v3 ]
2042 (2Q+2)(2Q+3)  (2Q+2)(2Q+3)(2Q+4)

g: = 20+ 2)(2Q +3)(20 + 4) (2 + 4)° [1 -
pursuant to AIM iterations. Then, the general form of g;(v) is got as follow

g(v) = L+ 0+ D'[IIE 20+ d)] Fi(=120+2;240) (60)
So, the eigenfunction of Eq. (52) is found as

Ri(v) = v e 2 (1 + 0 + D[, (2Q + d)] Fi(=12Q + 2;24v) (61)

Therefore, the wavefunction for the case E I B is achieved as below

n+1
PfiS) = Nyelhamet gutly Qtle=(End+am) (1 4+ 0 + D! [—(u +n + D] (1_[ 2u + k)
(M52 2Q + d) (Fi(—m; 20 + 25 28,8) 1F (=1 2Q + 2; 24,v) - (62)
where N3 is normalization constant and n,1=0,1,2,3,....
3.2.2. Thecase of E L B
By introducing the wavefunction as

LPJI_(G (X, y,Z, t) — ei(xkx+zkz—st)D(y)

and using the electromagnetic potential given by Eq. (2), The Klein-Gordon equation for the case ELFEis
reduced to the form

[dz e?(B¢-E®) 1 +2e(kao sEO) 1
dw? A? w? A2

]D(w) =0 (63)

_ kZ+kZ+m?-¢g?

where we introduced a new variable w = I' + Ay, and made a definition y? = = . Taking into

consideration the domain of the problem, the wavefunction D (w) can be taken as
D(w) = w™*e ™ f (w)

e?(B5-Ef)
A2

N |-

withw = —-+ i + . Then, the following equation can be obtained
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f”(w) _ [2)( 2(w+1)]f( ) + [Zx(w+1) Ze(kao €Ep) 1]f(a)) (64)

in which the AIM iterations can be initialized with the following functions

2(m+1
Ro(w) = |2y - 22| (65)
2 +1 2e(kyBo—¢Ep) 1

So(a)) — [ X(Zf )_ e( A(Z) € O)Z] (66)
First few AIM iterations give the below results

_ e(kyBy — €Ey) _e(kyBy — eEy)
=@+ M T T 2@ +2)

_e(kyBy — €Ey) _e(kyBy — €Ey)
2= @mr3) | BT T A (w4
from which, the general expression for y is derived as

L =UaBomeh) 2 9123,...) (67)

A2(n+w+1)

_ kZ+kZ+m?-g?

Taking into consideration the definition y? = = , one can obtain the following second order

linear equation for
c1e2+ce+c3=0 (68)

So, the exact energy eigenvalues for the case E 1 B is obtained as follows

kG _ —cyt |c2—4cicq

€in = 2¢4 (69)

where
c; =e’E2+N(n+ @+ 1)? ,c, = —2e%k,ByE,

c3 = e?kZBZ — (k2 + k2 + m»)A’(n+ @ + 1)?

The wavefunction for the case of E L B can be achieved by comparing the similar forms of Eq. (50) and Eq.
(67). So, one can suppose the following eigenfunction for the case EL1EB

n+1
YKE = N, el(kxtzks—e0) (@ +1o=dn® (—py — g — 1) [1_[ Qw+k)| F

k=2 1
(—1; 2@ + 2; 2,w) (70)

where N, is normalization constant.

Variations of energy eigenvalues versus the parameters A and f for the case E ||§ are shown in Figure 3.
Figure 4 shows A dependency of energy eigenvalues for the case E L B.
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Figure 3: Variations of energy eigenvalues of Klein-Gordon equation versus the parameters A (a) and
(b) forthe case E || B. Wesetm = g = 1,k, = p, = 0.6,E, = 0.5, B, = 50 taking 8 = 10 (a) and
A=15 (b).
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Figure 4: A dependency of the energy eigenvalues of Klein-Gordon equation for the case EFl

Btakingm = q = 1,k, = p, = 0.6,k, = p, = 0.8,E, = 0.5,B, = 50 and 8 = 10.

A

Figure 3 and Figure 4 show us that energy eigenvalues have weak commitment to the parameter $. This is
the case which we have also identified for the non-relativistic equation. We compare the energy eigenvalues

of Schrodinger and Klein-Gordon equations for the both E B and E L B cases in Table 1 and Table 2,
respectively. The eigenvalues are written in terms of A parameter in these tables.
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Table 1. Energy eigenvalues of Schrodinger and Klein-Gordon equations for certain values of A. We set

m=gq=1,p, = 0.6,E, =0.5 B, =50and = 10.

n A &||Sch E|IKG
2.5 0.007528 1.007470
0 5 0.015872 1.015700
15 0.045254 1.044160
2.5 0.024018 1.023720
1 5 0.043877 1.042930
15 0.0953811 1.091170
2.5 0.037718 1.037020
2 5 0.064891 1.062890
15 0.121830 1.115160
2.5 0.049615 1.048430
3 5 0.081339 1.078260
15 0.137554 1.129190

Table 2. Energy eigenvalues of Schrodinger and Klein-Gordon equations for certain values of A. We set
m=q=1,p,=0.6,p,=08,E,=0.5B; =50and § = 10.

n A &||Sch E|IKG
2.5 0.334438 1.293110
0 5 0.342506 1.299300
15 0.370917 1.320840
2.5 0.349476 1.304620
1 5 0.368679 1.319150
15 0.418480 1.356060
2.5 0.362555 1.314540
2 5 0.388830 1.334220
15 0.443887 1.374480
2.5 0.374001 1.323150
3 5 0.404676 1.345940
15 0.459033 1.385330

4. Conclusion

We study the motion of the spinless non-
relativistic and relativistic particles in the presence
of parallel and orthogonal electric and magnetic
fields, which can be derived from Egs. (1) and (2),
via Asymptotic lteration Method (AIM). The
resulting wave-functions of the studied quantum
systems show us that the relativistic effects arise
for the motion on both y- and z-directions.

On the other hand, the energy eigenvalues against
the beta and lambda parameters are drawn for
non-relativistic and relativistic cases in Figures 1-
4. Afirst look at the plots shows us that while the
motion on the y-direction contributes to increase
of the energy, the motion on the z-direction has no
effect on the increase of energy spectrum, namely
energy spectrum becomes constant after a certain
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value of . Therefore, while reduction of the
magnetic field due to the increase of A has no
effect in the increase of the energy spectrum, the
reduction of electric field due to the increase of
the [ causes the energy eigenvalues to be
constant. ~ Such a variation on the energy

eigenvalues upon the A is due to the term —% +
1 . e2B}
PRNY

applies for the both Schrédinger and Klein-

Gordon equations. In addition to this, energy

eigenvalues of Klein-Gordon equation are about

one mass greater than the ones obtained for

Schrodinger equation as expected. This can also

be clearly seen from Table 1 and Table 2. From

Figures 1-4 and Table 1 and Table 2, it can be

deduced in the case of E Il B that the external
magnetic field bounds the system, since the

in the denominator. This outcome
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energy eigenvalues specifically vary with respect
to the A. In this case, it can also be said that the
time-dependent electric field is responsible for the
particle production, as expected (Sogut and

Havare, 2015). As for the E L1 B case, one could
not interpret which field component dominate the
energy eigenvalues since the A is used for both
electric and magnetic fields. Besides, one can
refer the differences on the energy eigenvalues of
the particle for the cases where the electric and
magnetic fields are perpendicular and parallel to
each other, seperately (see in Table 1 and Table
2), can be refered to the Poynting Theorem in the
classical electromagnetic theory (Griffiths, 1991).

Finally, it is also seen from Table 1 and Table 2
that as the A parameter increases, the difference
between Klein-Gordon and Schrodinger energy
eigenvalues falls below the mass difference (i.e.,
m = 1) between these two equations. This can be
explained by that Schrédinger equation
approaches to the relativistic case (i.e., Klein-
Gordon case) as the parameter A increases.
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