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Abstract

Residuated relational systems have been the focus of many researchers in the past decade. In this
article, as a continuation of [9], we focused on residuated relational systems hA; �;!; 1;�i ordered
under co-quasiorder relation 0 � 0 within the Bishop�s constructive framework. In this report we give
some new results on co-�lters in such relational systems by more depth and deeper analyzing of the
connection between the internal operation 0 � 0 and 0 ! 0 with the co-quasiorder relation.
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1 Introduction

Although in the last decade the concept of residual relational systems is in the focus of many
researchers (for example, [3, 4]), there are still not many research reports on such algebraic structures.

De�nition 1.1. ([4], De�nition 2.1) A residuated relational system is a structure A = hA; �;!; 1; Ri,
where hA; �;!; 1i is an algebra of type h2; 2; 0i and R is a binary relation on A and satisfying the
following properties:

(1) hA; �; 1i is a commutative monoid;
(2) (8x 2 A)((x; 1) 2 R);
(3) (8x; y; z 2 A)((x � y; z) 2 R() (x; y ! z) 2 R).

They referred to the operation 0 � 0 as multiplication, to 0 ! 0 as its residuum and to condition (3) as
residuation.

The concept of residual relational system ordered under a quasi-order relation can be found in
Bonzio�s dissertation [3] from 2015 and in one of his articles [4] from 2018 (done together with I.
Chajda). In the forthcoming articles [11, 12] this author introduced and analyzed concepts of ideals
and �lters in such systems. In the aforementioned texts, authors observed the relational system
hA; �;!; 1; Ri where R was a quasi-order relation.

In our article [9], we are developed this concept within the Bishop�s constructive framework
[1, 2, 5, 6, 13]. Observed and analyzed is residuated relational system with a set with apartness as
the carrier of the algebraic construction, and additionally R was a co-quasiorder relation on the set A.
With this article, as a continuation of our article [9, 10], we complements our researches on algebraic
structures within Bishop�s principled-philosophical orientation (see, for example [7, 8]).
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The Constructive algebra abounds in speci�c behavior of algebraic structures determined on sets
with apartness. Additionally, the ordered algebraic structures constructed on sets with apartness are
also very interesting. Particularly, there is a possibility that an algebraic structure is ordered under a
co-order (under a co-quasiorder) relation instead an order (or a quasi-order) relation.

In this article we continue our analysis of co-quasiordered residuated systems launched in [9] and
[10]. Second, we continue to analyze the concept of co-�lters in such systems and proved some new
properties of this concept.

2 Preliminaries

2.1 The research framework

The setting of this research is the Bishop�s constructive mathematics [Bish] in the seance of the
following books [1], [2], [5], [6] and [13] - a mathematics based on the Intuitionistic logic [IL] (See [13])
and principled-philosophical orientation on Bishop�s constructive mathematics.

Let (S;=; 6=) be a constructive set in the sense of Bishop [1], Mines et all. [6], Troelstra and van
Dalen [13]. On set S = (S;=; 6=) in this mathematics we look as on a relational system with an one
binary relation extensive with respect to the equality in the following sense

= � 6= � 6= and 6= � = � 6=;

where 0 � 0 is the standard operation between relations. The relation 6= is a binary relation on S with
the following properties:

:(x 6= x), x 6= y =) y 6= x, x 6= z =) x 6= y _ y 6= z,
x 6= y ^ y = z =) x 6= z.

It is called apartness. Let S and T be two sets with apartness, then the relation 6= on S � T is
de�ned by

(x; y) 6= (u; v) () (x 6= u _ y 6= v)

for any x; u 2 S and any y; v 2 T .

Let Y be a subset of S and x 2 S. We put it the following notation C as a relation between an
element x and subset Y with (For more details on this relation, the readers can see the following texts
[7, 8])

xC Y () (8y 2 Y )( x 6= y):
Following the orientation in books [1], [2], [5] we de�ne a subset

Y C = fx 2 S : xC Y g

of S called the complement of Y in S.

For subset Y of S we say that it is a strongly extensional subset if

(8x; y 2 S)(y 2 Y =) x 6= y _ x 2 Y ):

For a relation R on S it is called a strongly extensional if

(8x; y; z; u 2 S)((x; y) 2 R =) ((x; y) 6= (z; u) _ (z; u) 2 R))

holds. For example, for a mapping f : S �! T it is called a strongly extensional (shortly: se-mapping)
if holds

(8x; y 2 S)(f(x) 6= f(y) =) x 6= y):
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2.2 Co-quasiorder relation

The constructive notion of a co-quasiorder relation is the dual notion to the classical notion of a
quasi-order relation. Let (S;=; 6=) be a set with apartness. A consistent and co-transitive relation �
de�ned on S is called a co-quasiorder ([7, 8]):

(8c; y 2 S)(x � y =) x 6= y) (consistency)
(8x; y; z 2 S)(x � z =) (x � y _ y � z)) (co-transitivity).

We accept that the empty set ; is also a co-quasiorder relation on set S. The strong complement �C
of a co-quasiorder � has the well known property.

Lemma 2.1. ([7], Lemma 2.2) If � is a co-quasiorder on S, then the relation �C= f(x; y) 2 S � S :
(x; y)C �g is a quasi-order on S.

2.3 Co-quasiordered residuated systems

In our papers [9, 10], following the ideas of Bonzio [3] and Bonzio and Chajda [4], we introduced
and analyzed the notion of residuated relational systems ordered under a co-quasiorder - a residuated
relational systems A = hA; �;!; 1; Ri where R is a co-quasiorder relation on set (A;=; 6=). In the
article [9] we introduced and analyzed the concept of co-�lters in such systems, and in the text [10]
we introduced and analyzed the concept of co-ideals.

If R is a co-quasiorder relation on set (A;=; 6=), then the axiom (2) in De�nition 1.1 gives (1; 1) 2
R � 6= which is a contradiction. That is why we transformed this axiom into the next formula

(2�) (8x 2 A)(x 6= 1 =) (x; 1) 2 R).
Let (A;=; 6=) be a set with apartness. A co-quasiordered residuated system is a residuated relational
system A = hA; �;!; 1; Ri, where the axiom (2�) is replaced by (2) and where R is a co-quasiorder on
A.

De�nition 2.1. ([9], De�nition 2.1) A co-quasiordered residuated relational system is a structure
A = hA; �;!; 1;�i, where A = (A;=; 6=) is a set with apartness and where hA; �;!; 1i is an algebra of
type h2; 2; 0i and � is a co-quasiorder relation on A and satisfying the following properties:

(1) hA; �; 1i is a commutative monoid;
(2�) (8x 2 A)(x 6= 1 =) x � 1);
(3) (8x; y; z 2 A)(x � y � z () x � y ! z).

We will refer to the operation 0 � 0 as multiplication, to 0 ! 0 as its residuum and to condition (3) as
residuation.

Apart from the di¤erence in the carrier of this constructed algebraic structure, the di¤erence
between the residuated relational system in our de�nition and the de�nition in texts [3, 4] is in the
strong extensionality of the internal binary operations in A. Let us note that the internal operations
0 � 0 and 0 ! 0 are total strongly extensional function from A�A into A:

(8a; b; a0; b0 2 A)(a � b 6= a0 � b0 =) (a; b) 6= (a0; b0)),
(8a; b; a0; b0 2 A)(a! b 6= a0 ! b0 =) (a; b) 6= (a0; b0)).

Proposition 2.1. ([9], Proposition 2.3) Let A be a co-quasiordered residuated relational system.
Then

(8x; y 2 A)(x � y () 1 6= x! y):

In the following theorem we shown that the co-quasiorder 0 � 0 is compatible with the internal
operation 0 � 0.

Theorem 2.1. ([9], Theorem 2.1) Let A be a co-quasiordered residuated system. Then

(8x; y; a; b 2 A)((a � x � a � y _ x � b � y � b) =) x � y):

In the following theorem we shown that the co-quasiorder 0 � 0 is left compatible and right
anti-compatible with the internal operation 0 ! 0.
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Theorem 2.2. ([9], Theorem 2.2) Let A be a co-quasiordered residuated system. Then
(a) (8x; y; a 2 A)(a! x � a! y =) x � y).
(b) (8x; y; b 2 A)(y ! b � x! b =) x � y).
Speaking by the language of classical algebra, when we speak of the compatibility of the internal

binary operations 0 � 0 and 0 ! 0 with the relation 0 � 0, we mean on the cancellativity of these
operations with respect to 0 � 0.

The algebraic system ordered under co-quasiorder relation thus determined was in the focus of
our forthcoming work [10], also.

3 Further developing the idea of co-�lters

The following is valid
Lemma 3.1. Let hA; �;!; 1;�i be a co-quasiordere resuated system. The relation �C is a quasi-order
on the monoid (A; �) compatible with the internal operation in A.
Proof. As is known (see, for example [7], Lemma 2.1), �C is a quasi-order relation on the set A. Let
x; y; a; u; v 2 A be arbitrary elements such that x �C y and u � v. Then

u � a � x _ a � x � a � y _ a � y � u

by co-transitivity of �. Thus u 6= a � x _ a � y 6= v because the option a � x � a � y implies x � y by
Theorem 2.1 and according to consistency of �. So, we have (a � x; a � y) 6= (u; v) 2�. This means
a � x �C a � y. Therefore, the relation �C is left compatible with the internal operation in A.
The implication of x �C y =) x � a �C y � a can be prove by analogy with the previous evidence.

Corollary 3.1. If � \ ��1= ;, then
(4) (8x 2 A)(1 �C x) and
(5) (8x; y 2 A)(x �C x � y and y �C x � y).

Proof. Let x; u; v 2 A be arbitrary elements such that u � v and x 6= 1. Then x � 1 by (2�) and

u � v =) (u � 1 _ 1 � x _ x � v):

Since the second option is impossible because x � 1 and � \ ��1= ;, we have (1; x) 6= (u; v) 2�. So,
it means 1 �C x.
Since 1 �C x by the �rst evidence of this proof, it follows 1 � y �C x � y by Lemma 3.1. So, y �C x � y
holds. The claim y �C x � y can prove by analogy to the previous claim.

It should be noted here that the condition � \ ��1= ; is not always satis�ed. In what follows,
we will always assume that this condition is ful�lled.

It is shown in [9], Proposition 2.1, that condition (3) implies condition
(6) (8x; yz 2 A)(x � y �C z () x �C y ! z).

Naturally, the reverse implication does not valid in general case.
In our forthcoming article [10], Proposition 5, is proven.

Proposition 3.1. Classes L�(a) = fy 2 A : a � yg (a 2 A) are strongly extensional subsets of A
such that aC L�(a), 1 2 L�(a) and following formula is valid

(L) (8u; v 2 A)(v 2 L�(a) =) (u � v _ u 2 L�(a))).
In addition, these left classes of the relation � have the following properties:

Proposition 3.2. Let hA; �;!; 1;�i be a co-quasiordere resuated system with � \ ��1= ; and
a; b 2 A. Then

(7) (8x; y 2 A)(x � y 2 L�(a) =) (x 2 L�(a) ^ y 2 L�(a))) ;
(8) (8x; y 2 A)(x � y =) x! y 2 L�(a));
(9) L�(a) [ L�(b) � L�(a � b).
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Proof. (7) Let x; y 2 A be arbitrary elements such that x � y 2 L�(a). Then a � x � y. Thus
a � x _ x � x � y and a � y _ y � x � y by co-transitivity of �. Since the second option is impossible
by (5), we have x 2 L�(a) and y 2 L�(a).
(8) Let x; y 2 A arbitrary elements such that x � y. Then x � a � x _ a � x � y by co-transitivity of
�. Thus a � x � y because the �rst option is impossible by (5). So, a � x ! y by (3). Therefore,
x! y 2 L�(a).
(9) If t 2 L�(a), then a � t. Thus a � a � b _ a � b � y. So, we have t 2 L�(a � b) by (5). From this
follows L�(a) [ L�(b) � L�(a � b) immediately.

Corollary 3.2. Let hA; �;!; 1;�i be a co-quasiordere resuated system with � \ ��1= ; and a 2 A.
Then

(10) (8x; y 2 A)(y 2 L�(a) =) (x! y 2 L�(a) _ x 2 L�(a))).
Proof. Let x; y 2 A be arbitrary elements such that y 2 L�(a). Then x � y _ x 2 L�(a) by (L).
Thus x! y 2 L�(a) _ x 2 L�(a) by (8).

In the article [9], we have developed the idea of co-�lters in these algebraic systems. In addition,
we have shown some of the signi�cant features of these substructures in a residuated relational system
ordered under a co-quasiorder.

De�nition 3.1. ([9], De�nition 2.2) A subset G of A is a co-�lter of a residuated system A ordered
under a co-quasiorder � if the following conditions hold

(G1) (8x; y 2 A)(x � y 2 G =) x 2 G _ y 2 G);
(G2) (8x; y 2 A)(y 2 G =) (x � y _ x 2 G).
Condition (G1) speaks that a co-�lter G is a co-subgroupoid in (A; �).
Lemma 3.2. ([9]) Any co-�lter G of a co-quasiordered residuated system A is a strongly exten-

sional subset in A.
Our �rst theorem correlate condition (G2) to condition (G1).

Theorem 3.1. Let A be a co-quasiordered residuated system and G be a co-�lter in A. Then
(G2) =) (G1).
Proof. Let x; y 2 A be arbitrary elements such that x � y 2 G. Then x � x � y _ x 2 G by (G2).
Since the �rst option is impossible by (5), we have x 2 G. The second part x � y 2 G =) y 2 G of
the proof of this theorem can be obtained analogously to the �rst part.

Corollary 3.3. Any co-�lter G of a co-quasiordered residuated system A = hA; �; 1;!;�i is a
consistent subset in A.

Corollary 3.4. If G is a non empty co-�lter in a co-quasiordered residuated system A, then 1 2 G.

Theorem 3.2. Let A be a co-quasiordered residuated system and G be a subset of A. Then the
condition (G2) is equivalent to the condition

(G3) (8x; y; z 2 A)(z 2 G =) (x � y ! z _ x � y 2 G)).
Proof. (G2) =) (G3): Suppose (G2) holds and let x; y; z 2 A be arbitrary element such that z 2 G.
Then z 2 G =) (x � y � z _ x � y 2 G). Thus x � y ! z _ x � y 2 G by (3). So, the condition (G3)
is proven.
(G3) =) (G2). Opposite, let the condition (G3) be a valid formula in A and let x; y 2 A be arbitrary
elements such that y 2 G. Then y 2 G =) (x � 1 ! y _ x � 1 2 G by (G3) where we put z = 1.
Thus y 2 G =) (x � y _ x 2 G) by (1) and (3). So, the condition (G2) is a valid formula in A.

Subsets L�(a) (a 2 A) are co-�lters in a residuated relational system A ordered under a co-
quasiorder � according to (L) and (7), Therefore, the family G(A) of all co-�lters in A is not empty.

Theorem 3.3. The family G(A) of all co-�lters of a co-quasiordered residuated system A forms a
complete lattice.
Proof. (i) Let x; y 2 A be arbitrary elements. Thus
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y 2
S
G() (9G 2 G)(y 2 G)
=) (9G 2 G)(x � y _ x 2 G)
=) x � y _ x 2

S
G.

(ii) LetB be the families of all co-ideals contained in
T
G. Then

S
B is the maximal co-�lter contained

in
T
G, according to the �rst part of this evidence.

(iii) If we put tG =
S
G and uG =

S
B, then (G(A);t;u) is a complete lattice.

Corollary 3.5. For each subset B of A, there is the maximal co-�lter of A contained in B.

Corollary 3.6. For elements a1; :::; an 2 A, there is the maximal co-�lter K of A such that a1 CK,
..., an CK.

If T is a subset of A, then
S
t2T L�(t) is a co-�lter in A, by Theorem 3.3. We call such a co-�lter

a normal co-�lter. We will write TU =
S
t2T L�(t) in this case.

Proposition 3.3. Let A be a co-quasiordered residuated system. Then the union of any family of
normal co-�lters in A is a normal co-�lter in A.

Proof. The assertion of this proposition is a direct consequence of the following equality (
S
i2I Ti)

U =S
i2I T

U
i :

Corollary 3.7. The family of all normal co-�lters in A forms join semi-lattice.
However, the intersection of two normal co-�lters is not a co-�lter in the general case.

In the following proposition we give one upper measure for a non-empty co-�lter.

Proposition 3.4. For any non empty co-�lter G in a co-quasiordered residuated system A the
following G �

S
aCG L�(a) holds.

Proof. Let a 2 A be an arbitrary element such that aCG. Then from t 2 G follows a � t _ a 2 G by
(G2). Since the second option is impossible by hypothesis, we have t 2 L�(a). Thus G �

S
aCG L�(a).

In order to o¤er one lower measure of a co-�lter in a co-quasiprdered residuated system A, we need
the notion of right class R�(b) of relation � generated by the element b 2 A: R(b) = fx 2 A : x � bg.

Proposition 3.5. For any non empty co-�lter G in a co-quasiordered residuated system A the
following

S
b2GR(b)

C � G holds.

Proof. Let t 2 A be an arbitrary element such that t 2
S
b2GR(b)

C. Then there exists an element
b 2 G such that tCR(b). Thus from (G2): b 2 G =) (t � b _ y 2 G) follows t 2 G because :(t � b)
by the hypothesis. Therefore, we have

S
b2GR(b)

C � G.

4 Final re�ection

Bishop�s constructive mathematics includes the following two aspects:
(1) The Intuitionistic logic and
(2) The principled-philosophical orientations of constructivism.

Intuitionistic logic does not accept the TND principle as an axiom. In addition, Intuitionistic logic
does not accept the validity of the �double negation� principle. This makes it possible to have a
di¤erence relation in sets which is not a negation of the equality relation. Therefore, we accept that in
Bishop�s constructive mathematics we consider set S as one relational system (S;=; 6=). In Bishop�s
constructive algebra we always encounter the following two problems:

(a) How to choose a predicate (or more predicates) between several classically equivalent ones by
which an algebraic concept is determined.
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(b) Since every predicate has at least one of its duals, how to construct a dual of the algebraic
concept de�ned with a given predicate(s).

In this case, we are faced with the problem of describing a residuated relational system based on
a set with apartness as the carrier for constructing an algebraic structure. By our orientation that in
this construction, groupoid (A; �) is ordered under a a co-quasiorder relation instead of a quasi-order
relation, a signi�cantly di¤erent logical-sets framework is formed. In addition to the above, in this
report we have described some of the important features of a class of substructures (in this case - the
class of co-�lers) in residuated relational systems constructed on sets with apartness in which both
internal binary operations are strongly extensional functions.

The problem encountered by authors working within Bishop�s constructive framework is that when
developing concepts of new ideas and de�ning their interrelationships with respect to the permissible
rules of conclusion in [IL], they must always strive for the results obtained to be correlated with the
corresponding results that exist or can be obtained in the classical case.
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