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Abstract: Particle Swarm Optimization (PSO) algorithm inspired from behaviour of bird flocking and fish schooling. It is well-known 

algorithm which has been used in many areas successfully. However it sometimes suffers from premature convergence. In resent year’s 

researches have been introduced a various approaches to avoid of this problem. This paper presents the particle swarm optimization 

algorithm with flexible swarm (PSO-FS). The new algorithm was evaluated on 14 functions often used to benchmark the performance of 

optimization algorithms. PSO-FS algorithm was compared to some other modifications of PSO. The results show that PSO-FS always 

performed one of the better results. 
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1. Introduction 

I Particle Swarm Optimization (PSO) algorithm has been 

developed by Eberhart and Dr. Kennedy, inspired by behaviour 

of bird flocking and fish schooling (Kennedy and Eberhart, 

1995). PSO is a stochastic population-based global optimization 

technique. In PSO context the population is called as swarm, 

while the members of population are called as particle. The 

algorithm is made of two essential steps: particle movement 

(dynamics) through a search space of solutions and an indirect 

particle interaction, which is mediated by information sharing 

within a social network (Blackwell and Bratton, 2008). PSO uses 

the physical movements of the individuals in the swarm and has a 

flexible and well-balanced mechanism to enhance and adapt to 

the global and local exploration abilities. Because of its easy 

implementation and inexpensive computation, its simplicity in 

coding and consistency in performance, the PSO has proved to be 

an effective and competitive algorithm for the optimization 

problem in continuous space (Marinakis and Marinak, 2008). 

PSO has many key advantages over other optimization techniques 

like (Alrashidi and El-Hawary, 2006):  

• It is a derivative-free algorithm unlike many conventional 

techniques. 

• It has the flexibility to be integrated with other optimization 

techniques to form a hybrid tool. 

• It is less sensitive to the nature of the objective function, i.e., 

convexity or continuity. 

• It has less parameter to adjust unlike many other competing 

evolutionary techniques. 

• It has the ability to escape local minima. 

• It is easy to implement and program with basic mathematical 

and logic operations. 

• It can handle objective functions with stochastic nature. 

• It does not require a good initial solution to start its iteration 

process. 

PSO has been successfully applied in many different application 

areas due to its robustness and simplicity. In comparison with 

other stochastic optimization techniques, PSO have fewer 

complicated operations and fewer defining parameters, and can 

be coded in just a few lines (Wanget al., 2007). But this algorithm 

sometimes may suffer from premature convergence problem. 

There have been many researchs to improve the performance of 

the original PSO algorithm.  

Bergh and Engelbrecht (2004) proposed a cooperative particle 

swarm frame (CPSO), the cooperative particle swarm optimizer. 

The authors used multiple swarms to optimize different 

components of the solution vector cooperatively. They tested 

CPSO over five benchmark optimization problems. The tests 

showed that CPSO reaches significantly better solution than PSO. 

Pena, Upegui and Sanchez (2006) presented a hybrid bio-inspired 

optimization technique that introduces the concept of discrete 

recombination in a particle swarm optimizer (PSODR), obtaining 

a simple and powerful algorithm, well suited for embedded 

applications. Proposed algorithm validated over four optimization 

problems and noted that PSODR shows a better performance than 

the standard PSO algorithm. Baskar and.Suganthan (2004) 

present PSO (CONPS0) algorithm to alleviate the premature 

convergence problem of PSO algorithm. CONPSO is a type of 

parallel algorithm in which modified PSO and FDR-PSO 

algorithms are simulated concurrently with frequent message 

passing between them. To demonstrate the effectiveness of the 

proposed algorithm experiments were conducted on six 

benchmark optimization problems. Results clearly demonstrate 

the superior performance of the proposed algorithm. Kok and 

Snyman (2008) proposed dynamic interacting particle swarm 

optimization algorithm (DYN-PSO). In this method, the 

_______________________________________________________________________________________________________________________________________________________________ 

a Faculty of Technology, Selcuk University Campus,Konya,Turkey.  

Tel: +90 332 2233330; E-mail:hkahramanli@selcuk.edu.tr 
b Faculty of Technology, Selcuk University Campus,Konya,Turkey.  

Tel: +90 332 2233329; E-mail:noval@selcuk.edu.tr 

* Corresponding Author 



 

This journal is © Advanced Technology & Science 2013 IJISAE, 2013, 1(1), 08–13  |  9 

minimization of a function is achieved through the dynamic 

motion of a strongly interacting particle swarm, where each 

particle in the swarm is simultaneously attracted by all other 

particles located at positions of lower function value. The force of 

attraction experienced by a particle at higher function value due 

to a particle at a lower function value is equal to the difference 

between the respective function values divided by their 

stochastically perturbed position difference. The resultant motion 

of the particles under the influence of the attracting forces is 

computed by solving the associated equations of motion 

numerically. An energy dissipation strategy is applied to each 

particle. The specific chosen force law and the dissipation 

strategy result in the rapid collapse (convergence) of the swarm to 

a stationary point. Obtained results of seven benchmark 

optimization problem show that, in comparison to the standard 

particle swarm algorithm, the proposed DYN-PSO algorithm is 

promising. Yan Jiang, Tiesong Hu, ChongChao Huang, Xianing 

Wu (2007) proposed an improved particle swarm optimization 

(IPSO). In IPSO, a particle sampled randomly from the feasible 

space. Then the population is partitioned into several sub-swarms, 

each of which is made to evolve based on particle swarm 

optimization (PSO) algorithm. At periodic stages in the evolution, 

the entire population is shuffled, and then points are reassigned to 

sub-swarms to ensure information sharing. Simulations for three 

benchmark test functions show that IPSO possesses better ability 

to find the global optimum than that of the standard PSO 

algorithm. Ali and Kaelo (2008) proposed some modifications in 

the position update rule of particle swarm optimization algorithm 

in order to make the convergence faster. These modifications 

result in two new versions of the particle swarm optimization 

algorithm. A numerical study is carried out using a set of 54 test 

problems some of which are inspired by practical applications. 

Results show that the new algorithms are much more robust and 

efficient than some existing particle swarm optimization 

algorithms. Yuxin Zhao, Wei Zu, Haitao Zeng (2009) proposed a 

new modified algorithm to ensure the rational flight of every 

particle's dimensional component. Meanwhile, two parameters of 

particle-distribution-degree and particle-dimension-distance are 

introduced into the proposed algorithm in order to avoid 

premature convergence. Simulation results of the new PSO 

algorithm show that it has a better ability of finding the global 

optimum, and still keeps a rapid convergence as with the standard 

PSO. S. He, Q.H. Wu, J.Y. Wen, J.R. Saunders, R.C. Paton 

(2004) presented a particle swarm optimizer with passive 

congregation to improve the performance of standard PSO. By 

introducing passive congregation to PSO, information can be 

transferred among individuals of the swarm. A particle swarm 

optimizer with passive congregation (PSOPC) is tested with a set 

of 10 benchmark functions with 30. Experimental results indicate 

that the PSO with passive congregation improves the search 

performance on the benchmark functions significantly. Qi Kang, 

Lei Wang, Qi-di Wu (2008) presented a particle swarm 

optimization algorithm from the angle of ecological population 

evolution, called the ecological particle swarm optimization 

(EPSO). From the basis of the ecological population competition 

model, the EPSO algorithm and its general framework are 

proposed; in which particle swarm system with ecological 

hierarchy and competition model is defined and two collocating 

strategies of inertia weight factor are considered. The 

convergence performance and population dynamics including 

population aggregation and population diversity of the proposed 

approach are discussed separately through empirical simulations 

with four benchmarks optimization problems. Chen (2011) 

proposed a two-layer particle swarm optimization (TLPSO) to 

increase the diversity of the particles so that the drawback of 

trapping in a local optimum is avoided. In order to design the 

TLPSO, a structure with two layers (top layer and bottom layer) 

is proposed so that M swarms of particles and one swarm of 

particles are generated in the bottom layer and the top layer, 

respectively. Each global best position in each swarm of the 

bottom layer is set to be the position of the particle in the swarm 

of the top layer. Therefore, the global best position in the swarm 

of the top layer influences indirectly the particles of each swarm 

in the bottom layer so that the diversity of the particles increases 

to avoid trapping into a local optimum. Besides, a mutation 

operation is added into the particles of each swarm in the bottom 

layer so that the particles leap the local optimum to find the 

global optimum. Nine optimization problems were used to 

illustrate the efficiency of the proposed method. The author noted 

that proposed TLPSO approach is superior to the other 

evolutionary algorithms in the ability to finding the global 

optimum solution. Bratton and Blackwell (2008) introduced PSO 

with discrete recombination model (PSO-DR). They have noted 

that the PSO-DR variant is important not only because of its 

improved performance on several benchmark functions, but also 

because its simplified state allows us to examine what happens to 

the standard algorithm when pieces are modified or removed. 

PSO-DR has been tested over 14 benchmark problem. Bratton 

and Kennedy (2007) have compared three PSO algorithms in the 

interest of demonstrating the performance gains granted by 

improvements to the technique: the original algorithm, a 

constricted swarm using a global topology, and a constricted 

swarm using a local topology. The algorithms have been tested 

over 14 benchmark problem. Chen and Chi (2010) have tuned 

some of the parameters and added mechanisms to the PSO 

algorithm in order to improve its robustness in finding the global 

solution. This approach has been tested over 10 problems. Abd-

El-Wahed,Mousa, and El-Shorbagy (2011) introduced a hybrid 

approach combining two heuristic optimization techniques, 

particle swarm optimization (PSO) and genetic algorithms (GA). 

The method integrates the merits of both GA and PSO and it has 

two characteristic features. Firstly, the algorithm is initialized by 

a set of random particles which travel through the search space. 

During this travel an evolution of these particles is performed by 

integrating PSO and GA. Secondly, to restrict velocity of the 

particles and control it, the authors introduce a modified 

constriction factor. Finally, the results of various experimental 

studies using a suite of multimodal test functions taken from the 

literature have demonstrated the superiority of the proposed 

approach to finding the global optimal solution. Akbari and 

Ziarati (2011) presented a variation on the standard PSO 

algorithm called the rank based particle swarm optimizer 

(PSOrank). In this method, in order to efficiently control the local 

search and convergence to global optimum solution, the γ best 

particles are taken to contribute to the updating of the position of 

a candidate particle. The contribution of each particle is 

proportional to its strength. The strength is a function of three 

parameters: Strivness, immediacy and number of contributed 

particles. All particles are sorted according to their fitness values, 

and only the γ best particles will be selected. The value of γ 

decreases linearly as the iteration increases. A time-varying 

inertia weight decreasing non-linearly is introduced to improve 

the performance. PSO rank is tested on five commonly used 

optimization problems. 

In this study PSO-FS model has been proposed. The work is 

organized as follows: In Section 2 and Section 3 classical PSO 
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algorithm and new PSO-FS algorithms are presented respectively. 

In Section 4, Experimental Results and Comparison has been 

explained. In Section 5 this paper is concluded. 

2. Overview of the standard PSO 

Since PSO is a population based optimization method, first a 

population of random particles must be generated. Suppose that 

the search space is D-dimensional and the swarm consists of N 

particles. The ith particle is represented as                     , 

i=1,2,…N. A current velocity of ith particle is represented as 

                    , i=1,2,…N. The personal best position 

achieved by ith particle is represented by                         

and the best position achieved by swarm is represented by 

                       . The velocity of particle and its next 

position is updated according to the following equations (Bratton 

and Kennedy, 2007):  

     [        (       )      (       )]   (1) 

                (2) 

where i=1,2,…N, j=1, 2,…D. χ is a parameter called as 

constriction factor which is used to limit the maximum velocity; 

c1 and c2 are two positive constants called cognitive and social 

parameter, respectively; and r1, r2, are random numbers in the 

range [0, 1]. 

The execution of the PSO algorithm is as follows: 

1. Initialization: randomly initialize a population of particles, set 

parameters c1, c2, r1, r2, χ . 

2. Population loop: for each particle xi do:  

 2.1. Goodness evaluation and update: evaluate the goodness 

      using corresponding fitness function of the particle. 

If             , namely its goodness is greater than its 

best goodness so far, then this particle becomes the best 

particle found so far. 

 2.2. Neighbourhood evaluation: if             , namely  the 

goodness of this particle is the best among all its 

neighbors, then this particle becomes the best particle of 

the whole neighbourhood. 

 2.3. Determine vi: Update the velocity vi using Equation 1. 

 2.4. Particle update: Update the position xi using Equation 2. 

3. Cycle: repeat Step 2 until a given termination criterion is met. 

3. PSO with flexible swarm 

In this method, natural selection has been applied to swarm. For 

this after each iteration particles were scored between 1-N, where 

successful particle has N, unsuccessful particle has 1 point. After 

m iteration higher score maxs and lower score mins has been 

found. Using Equation 3 valid score vs has been calculated.  

   √             (3)  

The particles, which score less than vs were removed and a new 

particles has been generated instead it. 

The execution of the algorithm is as follows: 

1. Initialization: randomly initialize a population of particles, set 

parameters c1, c2, r1, r2, χ , m. Set parameter iter=0. 

2. Iteration loop: Set iter=iter+1.  

3. Population loop: for each particle xi , do: 

 3.1. Goodness evaluation and update: evaluate the goodness 

      using corresponding fitness function of the particle. 

If             , namely its goodness is greater than its 

best goodness so far, then this particle becomes the best 

particle found so far. 

 3.2. Neighbourhood evaluation: if             , namely  the 

goodness of this particle is the best among all its 

neighbours, then this particle becomes the best particle of 

the whole neighbourhood. 

 3.3. Determine vi: Update the velocity vi: using Equation 1. 

 3.4. Particle update: Update the position x using Equation 2. 

 3.5. Determine si: Determine the scor si . 

 3.6. Revision of swarm: If iter=m, then set iter=0, determine 

vs using Equation 3, wipe out particles, which score less than vs 

and compose new particle instead of they.  

4. Cycle: Go to step 2 until a given termination criterion is met. 

4. Experimental Results and Comparison 

Algorithms have been tested over of 14 benchmark functions for 

300000 iterations for each function. Testing functions, feasible 

bounds, optimum points and dimension of functions are shown in 

Table 1 and Table 2. Functions f1-f3 are functions with a single 

minimum, f4-f9 are complex problems, with a number of local 

minimas and a single global minimum. Functions f1-f9 are high-

dimensional problems. Function f10 is symmetric around the 

origin, so it has two global minimum and a several local minimas. 

f11−f14 are problems with a several local minimas and a single 

global minimum point. 

Some parameters of the algorithm in this paper are set as follow: 

the number of particles in the population space is set as ps=50; 

The maximum iteration number is set as 300000 in each running. 

Each algorithm for each function has been run 30 times. 

Dimension is set as d=30 for functions f1-f9, d=2 for functions f10-

11 and d=4 for functions f12-14. These dimensions are widely used 

in literature, so for objective comparison in this study they have 

been preferred. During the optimization process, the particles are 

limited to move in the region defined by [         ] . An inertia 

weight of 0.5, cognitive and social parameters of 2 were used. A 

fully connected topology is used in all cases. Performance was 

measured as the minimum error |          | found over the 

trial, where       is the optimum fitness for the problem. 
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Table 2. Results of the biopsy, FPSA/PSA, risk ratios of online calculator and FES 
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Table 2. The feasible bounds, optimas and dimensions of benchmark function 

Equation Feasible Bounds Optimum Dimension 

1f  ( 100,100)D
 0.0D

 
30 

2f  ( 100,100)D
 0.0D

 30 

3f  ( 30,30)D
 1.0D

 30 

4f  ( 500,500)D
 420.9687D

 30 

5f  ( 5.12,5.12)D
 0.0D

 30 

6f   D32,32
 

0.0D

 30 

7f  ( 600,600)D
 0.0D

 30 

8f   D50,50
 

D0.1  30 

9f   D50,50
 

D0.1  
30 

10f
  D5,5

 
 7126.0,0898.0

, 
 7126.0,0898.0 

 2 
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 1,0 
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D0.4  
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13f
  D10,0

 

D0.4  
4 

14f
  D10,0

 

D0.4  
4 

Table 3. Mean error after 30 trials 

Eq. 

PSO PSO-FS 
Const.  

Gbest 

Const.  

Lbest 

PSO-DR  

M1 Ring 

PSO-DR  

M1 Global 

PSO-

DR  

M2 

PSO-DR  

M3 

1f  0 0 0 0 0 0 0 0 

2f  173.5927 0 0 0.1259 0.01 0 3.7E-7 5.14 

3f  36.4739 0 8.1579 12.6648 16.79 0.8 34.57 18.64 

4f  2112 0.0134 3508 3360 2697 3754 2418 1830 

5f  62.7733 0.1990 140.4876 144.8155 44.64 115.51 35.21 9.88 

6f  1.8608e-009 2.1574e-011 17.6628 17.5891 0.68 18.51 0 0 

7f  0.2269 0.0245 0.0308 0.0009 0 0.008 0 0 

8f  3 0 0.1627 0 0 0.005 0 0 

9f  0,0179 0 0.0040 0 0 0.002 0 0 

10f
 0 0 0 0 0 0 0 0 

11f
 0 0 0 0 0 0 0 0 

12f
 5.1753 1.1789 4.5882 2.5342 0.17 4.34 0 0 

13f
 2.6457 0.7046 4.4747 1.0630 0 2.55 8.1e-11 0 

14f
 4.7298 0.3574 3.8286 0.5409 0 3.13 6.6e-11 0 

 

In many studies researches showed the results on the few 

functions. Hence we couldn’t compare all of our result with a 

number of others.  Table 3 shows the averaged results of 30 

independent trials relative to the works Bratton & Blackwell 

(2008) and Bratton & Kennedy (2007). 

5. Conclusions 

The PSO algorithm was inspired by the social behaviour of birds 

and fishes flocking to a food source. There are numerous 

researches in modifications of original PSO algorithm. In this 

study the particle swarm optimization algorithm with flexible 

swarm has been presented. Proposed algorithm was evaluated on 

fourteen functions, which often used to benchmark the 

performance of optimization algorithms. PSO-FS algorithm was 

compared to some other modifications and classical PSO. The 

results show that PSO-FS always performed one of the better 

results than the others. 
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